Clouds in Earth's atmosphere can be composed of liquid droplets, ice crystals, or a combination of the two. Clouds’ thermodynamic phase is largely controlled by temperature, but other factors can also have a significant effect. Aerosols—i.e., particles suspended in Earth's atmosphere—affect cloud properties differently depending on cloud phase and can potentially have a strong influence on climate via any cloud type. Aerosol-cloud-climate interactions have been a topic of active research for more than two decades, but these interactions nevertheless currently represent one of the most uncertain forcings of climate change over the past century. Most research to date has focused on how aerosols can impact climate via liquid clouds, which are better understood and observed than their ice-containing counterparts. Thus, the problem of how liquid clouds mediate aerosols’ effects on climate is a more tractable one. However, there is no a priori reason to think that mixed-phase and ice clouds are any less affected by changes in atmospheric aerosol composition than liquid clouds, and estimates of how aerosols can influence these ice-containing clouds have started to emerge. Laboratory and field work, as well as satellite observations, is now shifting attention to this new frontier in the field of aerosol-cloud-climate interactions, allowing for improved representation of ice processes in numerical models. Here, we review this recent progress in our understanding of aerosol effects on mixed-phase and ice clouds, focusing on the four underpinning research pillars of laboratory experiments, field observations, satellite retrievals, and numerical modeling of global climate. Evident from this review is the possibility of a powerful yet poorly constrained climate forcing, which is uncertain in terms of both its magnitude and its sign.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbatt J, Benz S, Cziczo D, Kanji Z, Lohmann U, Möhler O. 2006. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation. Science 313:1770–73 [Google Scholar]
  2. Ackerman AS, Toon O, Stevens D, Heymsfield A, Ramanathan V, Welton E. 2000. Reduction of tropical cloudiness by soot. Science 288:1042–47 [Google Scholar]
  3. Albrecht BA. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–30 [Google Scholar]
  4. Alfaro SC, Gomes L. 2001. Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J. Geophys. Res. 106:D1618075–84 [Google Scholar]
  5. Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian KJ. et al. 2013. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498:355–58 [Google Scholar]
  6. Baker MB, Charlson RJ. 1990. Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature 345:142–45 [Google Scholar]
  7. Barahona D, Nenes A. 2009. Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation—polydisperse ice nuclei. Atmos. Chem. Phys. 9:5933–48 [Google Scholar]
  8. Bezy JL, Leibrandt W, Heliere A, Silvestrin P, Lin CC. et al. 2005. The ESA Earth Explorer EarthCARE mission. Proc. SPIE 5882:58820F [Google Scholar]
  9. Borys RD. 1989. Studies of ice nucleation by arctic aerosol on AGASP-II. J. Atmos. Chem. 9:169–85 [Google Scholar]
  10. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G. et al. 2013. Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al. , pp. 571–658 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  11. Cesana G, Waliser D, Jiang X, Li JL. 2015. Multimodel evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res. Atmos. 120:7871–92 [Google Scholar]
  12. Chou C, Kanji ZA, Stetzer O, Tritscher T, Chirico R. et al. 2013. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmos. Chem. Phys. 13:761–72 [Google Scholar]
  13. Crosier J, Bower K, Choularton T, Westbrook CD, Connolly P. et al. 2011. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys. 11:257–73 [Google Scholar]
  14. Cziczo DJ, Froyd KD, Gallavardin SJ, Moehler O, Benz S. et al. 2009. Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett. 4:044013 [Google Scholar]
  15. Cziczo DJ, Froyd KD, Hoose C, Jensen EJ, Diao M. et al. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340:1320–24 [Google Scholar]
  16. Dai A. 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3:52–58 [Google Scholar]
  17. DeMott PJ, Cziczo DJ, Prenni AJ, Murphy DM, Kreidenweis SM. et al. 2003. Measurements of the concentration and composition of nuclei for cirrus formation. PNAS 100:14655–60 [Google Scholar]
  18. DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD. et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. PNAS 107:11217–22 [Google Scholar]
  19. DeMott PJ, Prenni AJ, McMeeking GR, Sullivan RC, Petters MD. et al. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 15:393–409 [Google Scholar]
  20. DeMott PJ, Rogers DC, Kreidenweis SM. 1997. The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res. 102:19575–84 [Google Scholar]
  21. Diehl K, Simmel M, Wurzler S. 2006. Numerical sensitivity studies on the impact of aerosol properties and drop freezing modes on the glaciation, microphysics, and dynamics of clouds. J. Geophys. Res. 111:D07202 [Google Scholar]
  22. Evan AT, Flamant C, Gaetani M, Guichard F. 2016. The past, present and future of African dust. Nature 531:493–95 [Google Scholar]
  23. Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119:7863–75 [Google Scholar]
  24. Gettelman A, Liu X, Barahona D, Lohmann U, Chen C. 2012. Climate impacts of ice nucleation. J. Geophys. Res. 117:D20201 [Google Scholar]
  25. Ghan SJ, Smith SJ, Wang M, Zhang K, Pringle K. et al. 2013. A simple model of global aerosol indirect effects. J. Geophys. Res. Atmos. 118:6688–707 [Google Scholar]
  26. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M. 2012. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50:RG3005 [Google Scholar]
  27. Girard E, Blanchet JP, Dubois Y. 2005. Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut. Atmos. Res. 73:131–48 [Google Scholar]
  28. Hansen J, Sato M, Ruedy R. 1997. Radiative forcing and climate response. J. Geophys. Res. 102:D66831–64 [Google Scholar]
  29. Hiranuma N, Möhler O, Yamashita K, Tajiri T, Saito A. et al. 2015. Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci. 8:273–77 [Google Scholar]
  30. Hoose C, Möhler O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12:12531–621 [Google Scholar]
  31. Hu Y, Winker D, Vaughan M, Lin B, Omar A. et al. 2009. CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol. 26:2293–309 [Google Scholar]
  32. Jensen E, Lawson P, Baker B, Pilson B, Mo Q. et al. 2009. On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys. 9:5519–37 [Google Scholar]
  33. Kanji ZA, Welti A, Chou C, Stetzer O, Lohmann U. 2013. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys. 13:9097–118 [Google Scholar]
  34. Kärcher B, Möhler O, DeMott PJ, Pechtl S, Yu F. 2007. Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys. 7:4203–27 [Google Scholar]
  35. Knopf DA, Koop T. 2006. Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res. 111:D12201 [Google Scholar]
  36. Knutti R, Stocker TF, Joos F, Plattner GK. 2002. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–23 [Google Scholar]
  37. Koehler K, Kreidenweis S, DeMott P, Petters M, Prenni A, Möhler O. 2010. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation. Atmos. Chem. Phys. 10:11955–68 [Google Scholar]
  38. Köhler H. 1936. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32:1152–61 [Google Scholar]
  39. Komurcu M, Storelvmo T, Tan I, Lohmann U, Yun Y. et al. 2014. Intercomparison of the cloud water phase among global climate models. J. Geophys. Res. Atmos. 119:3372–400 [Google Scholar]
  40. Koop T, Luo B, Tsias A, Peter T. 2000. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406:611–14 [Google Scholar]
  41. Korolev A, Isaac GA. 2006. Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci. 63:2865–80 [Google Scholar]
  42. Korolev AV, Isaac GA, Cober SG, Strapp JW, Hallett J. 2003. Microphysical characterization of mixed-phase clouds. Q. J. R. Meteorol. Soc. 129:39–65 [Google Scholar]
  43. Korolev AV, Strapp JW, Isaac GA, Nevzorov AN. 1998. The Nevzorov airborne hot-wire LWC–TWC probe: principle of operation and performance characteristics. J. Atmos. Ocean. Technol. 15:1495–510 [Google Scholar]
  44. Krämer M, Rolf C, Luebke A, Afchine A, Spelten N. et al. 2016. A microphysics guide to cirrus clouds—part 1: cirrus types. Atmos. Chem. Phys. 16:3463–83 [Google Scholar]
  45. Krämer M, Schiller C, Afchine A, Bauer R, Gensch I. et al. 2009. Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys. 9:3505–22 [Google Scholar]
  46. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A. et al. 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10:7017–39 [Google Scholar]
  47. Liu X, Penner JE, Wang M. 2009. Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. J. Geophys. Res. 114:D03204 [Google Scholar]
  48. Liu X, Shi X, Zhang K, Jensen EJ, Gettelman A. et al. 2012. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the community atmosphere model CAM5. Atmos. Chem. Phys. 12:12061–79 [Google Scholar]
  49. Lohmann U. 2002. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett.29–11 [Google Scholar]
  50. Lohmann U, Feichter J. 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5:715–37 [Google Scholar]
  51. Lohmann U, Hoose C. 2009. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys. 9:8917–34 [Google Scholar]
  52. Lohmann U, Kärcher B. 2002. First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J. Geophys. Res. 107:D10AAC8 [Google Scholar]
  53. Lohmann U, Rotstayn L, Storelvmo T, Jones A, Menon S. et al. 2010. Total aerosol effect: radiative forcing or radiative flux perturbation?. Atmos. Chem. Phys 10:3235–46 [Google Scholar]
  54. Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S. et al. 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10:10875–93 [Google Scholar]
  55. Mahowald NM, Luo C. 2003. A less dusty future?. Geophys. Res. Lett. 30:1903 [Google Scholar]
  56. Martínez-Garcia A, Rosell-Melé A, Jaccard SL, Geibert W, Sigman DM, Haug GH. 2011. Southern Ocean dust-climate coupling over the past four million years. Nature 476:312–15 [Google Scholar]
  57. Matus AV, L'Ecuyer TS. 2017. The role of cloud phase in Earth's radiation budget. J. Geophys. Res. Atmos. 122:2559–78 [Google Scholar]
  58. Mitchell DL, Garnier A, Avery M, Erfani E. 2016. CALIPSO observations of the dependence of homo- and heterogeneous ice nucleation in cirrus clouds on latitude, season and surface condition. Atmos. Chem. Phys. Discuss. In review. https://doi.org/10.5194/acp-2016-1062 [Crossref] [Google Scholar]
  59. Möhler O, Benz S, Saathoff H, Schnaiter M, Wagner R. et al. 2008. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett. 3:025007 [Google Scholar]
  60. Möhler O, Büttner S, Linke C, Schnaiter M, Saathoff H. et al. 2005. Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res. 110:D11210 [Google Scholar]
  61. Mossop S, Hallett J. 1974. Ice crystal concentration in cumulus clouds: influence of the drop spectrum. Science 186:632–34 [Google Scholar]
  62. Murray BJ, O'Sullivan D, Atkinson JD, Webb ME. 2012. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41:6519–54 [Google Scholar]
  63. Murray BJ, Wilson TW, Dobbie S, Cui Z, Al-Jumur SM. et al. 2010. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3:233–37 [Google Scholar]
  64. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J. et al. 2013. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al. 659–740 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  65. Penner JE, Chen Y, Wang M, Liu X. 2009. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos. Chem. Phys. 9:879–96 [Google Scholar]
  66. Peter T, Marcolli C, Spichtinger P, Corti T, Baker MB, Koop T. 2006. When dry air is too humid. Science 314:1399–402 [Google Scholar]
  67. Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D. 2001. Aerosols, climate, and the hydrological cycle. Science 294:2119–24 [Google Scholar]
  68. Rogers DC, DeMott PJ, Kreidenweis SM, Chen Y. 2001. A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Ocean. Technol. 18:725–41 [Google Scholar]
  69. Rosenfeld D, Andreae MO, Asmi A, Chin M, Leeuw G. et al. 2014. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 52:750–808 [Google Scholar]
  70. Sagoo N, Storelvmo T. 2017. Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett. 44 https://doi.org/10.1002/2017GL072584 [Crossref] [Google Scholar]
  71. Sassen K, Wang Z, Liu D. 2008. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. 113:D00A12 [Google Scholar]
  72. Sitnikov NM, Yushkov VA, Afchine AA, Korshunov LI, Astakhov VI. et al. 2007. The FLASH instrument for water vapor measurements on board the high-altitude airplane. Instrum. Exp. Tech. 50:113–21 [Google Scholar]
  73. Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K. et al. 2002. The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 83:1771–90 [Google Scholar]
  74. Storelvmo T, Kristjánsson JE, Lohmann U. 2008. Aerosol influence on mixed-phase clouds in CAM-Oslo. J. Atmos. Sci. 65:3214–30 [Google Scholar]
  75. Storelvmo T, Leirvik T, Lohmann U, Phillips PC, Wild M. 2016. Disentangling greenhouse warming and aerosol cooling to reveal Earth's climate sensitivity. Nat. Geosci. 9:286–89 [Google Scholar]
  76. Storelvmo T, Tan I. 2015. The Wegener-Bergeron-Findeisen process—its discovery and vital importance for weather and climate. Meteorol. Z. 24:455–61 [Google Scholar]
  77. Storelvmo T, Tan I, Korolev AV. 2015. Cloud phase changes induced by CO2 warming—a powerful yet poorly constrained cloud-climate feedback. Curr. Clim. Change Rep. 1:288–96 [Google Scholar]
  78. Takemura T, Egashira M, Matsuzawa K, Ichijo H, O'ishi R, Abe-Ouchi A. 2009. A simulation of the global distribution and radiative forcing of soil dust aerosols at the last glacial maximum. Atmos. Chem. Phys. 9:3061–73 [Google Scholar]
  79. Tan I, Storelvmo T, Choi YS. 2014. Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds. J. Geophys. Res. Atmos. 119:6653–65 [Google Scholar]
  80. Tegen I, Werner M, Harrison S, Kohfeld K. 2004. Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 31:L05105 [Google Scholar]
  81. Twomey S. 1977. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34:1149–52 [Google Scholar]
  82. Twomey SA, Piepgrass M, Wolfe TL. 1984. An assessment of the impact of pollution on global cloud albedo. Tellus B 36B:356–66 [Google Scholar]
  83. Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A. Van et al. 2011. The representative concentration pathways: an overview. Clim. Change 109:5–31 [Google Scholar]
  84. Weinstock EM, Hintsa EJ, Dessler AE, Oliver JF, Hazen NL. et al. 1994. New fast response photofragment fluorescence hygrometer for use on the NASA ER-2 and the Perseus remotely piloted aircraft. Rev. Sci. Instrum. 65:3544–54 [Google Scholar]
  85. Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM. et al. 2015. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:234–38 [Google Scholar]
  86. Winker D, Pelon J, Coakley J Jr., Ackerman S, Charlson R. et al. 2010. The CALIPSO mission: a global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 91:1211 [Google Scholar]
  87. Yun Y, Penner JE. 2012. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds. J. Geophys. Res. 117:D07203 [Google Scholar]
  88. Zöger M, Afchine A, Eicke N, Gerhards MT, Klein E. et al. 1999. Fast in situ stratospheric hygrometers: a new family of balloon-borne and airborne Lyman photofragment fluorescence hygrometers. J. Geophys. Res. 104:D11807–16 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error