1932

Abstract

Historical processes tens to hundreds of millions of years in the past have shaped not only the trajectory of life through time but also the distribution and composition of life today. Studies aimed at the origin and evolution of regional biotas promise to forge a stronger link among paleobiology, ecology, and evolutionary biology. Improvements in high-resolution stratigraphic interpretation, numerical modeling of the fossil record, and the application of phylogenetic methods to extinct groups will lead to advances in understanding of () assembly of regional biotas, () the ecology of extinct taxa, () the diversification and environmental expansion of major groups, () the processes underlying regional ecosystem persistence and pulsed change, and () whether or not diversity has limits over geologic time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012317
2017-08-30
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-060115-012317.html?itemId=/content/journals/10.1146/annurev-earth-060115-012317&mimeType=html&fmt=ahah

Literature Cited

  1. Aberhan M, Kiessling W. 2014. Rebuilding biodiversity of Patagonian marine molluscs after the end-Cretaceous mass extinction. PLOS ONE 9:e102629 [Google Scholar]
  2. Aberhan M, Kiessling W. 2015. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. PNAS 112:7207–12 [Google Scholar]
  3. Albano PG, Tomasovych A, Stachowitsch M, Zuschin M. 2016. Taxonomic sufficiency in a live-dead agreement study in a tropical setting. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449:341–48 [Google Scholar]
  4. Alroy J. 2009. Speciation and extinction in the fossil record of North American mammals. Speciation and Patterns of Diversity RK Butlin, JR Bridle, D Schluter 301–23 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  5. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fursich FT. et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100 [Google Scholar]
  6. Alvarez LW, Alvarez W, Asaro F, Michel HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–108 [Google Scholar]
  7. Bambach RK. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152–67 [Google Scholar]
  8. Bambach RK, Bennington JB. 1996. Do communities evolve? A major question in evolutionary paleoecology. Evolutionary Paleobiology D Jablonski, DH Erwin, JH Lipps 123–60 Chicago: Univ. Chicago Press [Google Scholar]
  9. Barnosky AD. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21:172–85 [Google Scholar]
  10. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B. et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:51–57 [Google Scholar]
  11. Belanger CL, Garcia MV. 2014. Differential drivers of benthic foraminiferal and molluscan community composition from a multivariate record of early Miocene environmental change. Paleobiology 40:398–416 [Google Scholar]
  12. Benson RBJ, Butler RJ, Alroy J, Mannion PD, Carrano MT, Lloyd GT. 2016. Near-stasis in the long-term diversification of Mesozoic tetrapods. PLOS Biol 14:e1002359 [Google Scholar]
  13. Benton MJ. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–32 [Google Scholar]
  14. Benton MJ, Emerson BC. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50:23–40 [Google Scholar]
  15. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499–504 [Google Scholar]
  16. Boucot AJ. 1975. Evolution and Extinction Rate Controls Amsterdam: Elsevier [Google Scholar]
  17. Boucot AJ. 1983. Does evolution take place in an ecological vacuum? II. “‘The Time Has Come’ the Walrus Said…”: Presidential Address to the Society, November 1981. J. Paleontol. 57:1–30 [Google Scholar]
  18. Brame HR, Stigall AL. 2014. Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Palebiology 40:70–90 [Google Scholar]
  19. Bretsky PW. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 6:45–59 [Google Scholar]
  20. Brett CE, Baird GC. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. New Approaches to Speciation in the Fossil Record DH Erwin, RL Anstey 285–315 New York: Columbia Univ. Press [Google Scholar]
  21. Brett CE, Hendy AJW, Bartholomew AJ, Bonelli JR Jr., McLaughlin PI. 2007. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22:228–44 [Google Scholar]
  22. Brown JH. 1995. Macroecology Chicago: Univ. Chicago Press [Google Scholar]
  23. Burgess SD, Bowring SA, Shen S. 2014. High-precision timeline for Earth's most severe extinction. PNAS 111:3316–21 [Google Scholar]
  24. Bush AM, Bambach RK. 2015. Sustained Mesozoic-Cenozoic diversification of marine Metazoa: a consistent signal from the fossil record. Geology 43:979–82 [Google Scholar]
  25. Chamberlin TC. 1909. Diastrophism as the ultimate basis of correlation. J. Geol. 17:689–93 [Google Scholar]
  26. Cisne JL, Rabe BD. 1978. Coenocorrelation: gradient analysis of fossil communities and its applications stratigraphy. Lethaia 11:341–64 [Google Scholar]
  27. Coe AL. 2003. The Sedimentary Record of Sea-Level Change Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  28. Cornell HV. 2013. Is regional species diversity bounded or unbounded?. Biol. Rev. 88:140–65 [Google Scholar]
  29. Cornell HV, Harrison SP. 2014. What are species pools and when are they important?. Annu. Rev. Ecol. Evol. Syst. 45:45–67 [Google Scholar]
  30. Crame JA. 2002. Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and recent bivalve faunas. Paleobiology 28:184–207 [Google Scholar]
  31. Crampton JS, Foote M, Beu AG, Maxwell PA, Cooper RA. et al. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509–32 [Google Scholar]
  32. Danise S, Twitchett RJ, Little CTS. 2015. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43:263–66 [Google Scholar]
  33. DiMichele WA, Behrensmeyer AK, Olszewski TD, Labandeira CC, Pandolfi JM. et al. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annu. Rev. Ecol. Evol. Syst. 35:285–322 [Google Scholar]
  34. Erwin DH. 2001. Lessons from the past: biotic recoveries from mass extinctions. PNAS 98:5399–403 [Google Scholar]
  35. Fischer AG. 1960. Latitudinal variations in organic diversity. Evolution 14:64–81 [Google Scholar]
  36. Foote M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:6–20 [Google Scholar]
  37. Foote M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:261–72 [Google Scholar]
  38. Hadly EA. 1999. Fidelity of terrestrial vertebrate fossils to a modern ecosystem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 149:389–409 [Google Scholar]
  39. Hadly EA, Spaeth PA, Li C. 2009. Niche conservatism above the species level. PNAS 106:19707–14 [Google Scholar]
  40. Hallam A. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos. Trans. R Soc. B 325:437–55 [Google Scholar]
  41. Hannisdal B. 2007. Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology 33:98–115 [Google Scholar]
  42. Harmon LJ, Harrison S. 2015. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185:584–93 [Google Scholar]
  43. Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. PNAS 2014:E2957–66 [Google Scholar]
  44. Hillebrand H. 2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163:192–211 [Google Scholar]
  45. Holland SM. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92–109 [Google Scholar]
  46. Holland SM. 1997. Using time-environment analysis to recognize faunal events in the Upper Ordovician of the Cincinnati Arch. Paleontological Event Horizons: Ecological and Evolutionary Implications CE Brett 309–34 New York: Columbia Univ. Press [Google Scholar]
  47. Holland SM. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26:148–68 [Google Scholar]
  48. Holland SM. 2012. Sea level change and the area of shallow-marine habitat: implications for marine biodiversity. Paleobiology 38:205–17 [Google Scholar]
  49. Holland SM, Miller AI, Dattilo BF, Meyers DL. 2001. The detection and importance of subtle biofacies in lithologically uniform strata: the Upper Ordovician Kope Formation of the Cincinnati, Ohio region. Palaios 16:205–17 [Google Scholar]
  50. Holland SM, Patzkowsky ME. 1999. Models for simulating the fossil record. Geology 27:491–94 [Google Scholar]
  51. Holland SM, Patzkowsky ME. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134–46 [Google Scholar]
  52. Holland SM, Patzkowsky ME. 2004. Ecosystem structure and stability: Middle Upper Ordovician of central Kentucky, USA. Palaios 19:316–31 [Google Scholar]
  53. Holland SM, Patzkowsky ME. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio Region, USA. Palaios 22:392–407 [Google Scholar]
  54. Holland SM, Patzkowsky ME. 2015. The stratigraphy of mass extinction. Palaeontology 58:903–24 [Google Scholar]
  55. Holland SM, Sclafani JA. 2015. Phanerozoic diversity and neutral theory. Paleobiology 41:369–76 [Google Scholar]
  56. Holland SM, Zaffos A. 2011. Niche conservatism along an onshore-offshore gradient. Paleobiology 37:270–86 [Google Scholar]
  57. Hull PM, Norris RD, Bralower TJ, Schueth JD. 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. 4:856–60 [Google Scholar]
  58. Hutchinson GE. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22:415–27 [Google Scholar]
  59. Ivany LC, Brett CE, Wall HLB, Wall PD, Handley JC. 2009. Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis. Paleobiology 35:499–524 [Google Scholar]
  60. Jablonski D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6:397–407 [Google Scholar]
  61. Jablonski D. 1985. Marine regressions and mass extinctions: a test using the modern biota. Phanerozoic Diversity Patterns JW Valentine 335–54 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  62. Jablonski D. 1993. The tropics as a source of evolutionary novelty. Nature 364:142–44 [Google Scholar]
  63. Jablonski D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:1327–30 [Google Scholar]
  64. Jablonski D. 2005. Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. J. Exp. Zool. B 304:504–19 [Google Scholar]
  65. Jablonski D, Bottjer DJ. 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science 252:1831–33 [Google Scholar]
  66. Jablonski D, Huang S, Roy K, Valentine JW. 2017. Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. Am. Nat. 189:1–12 [Google Scholar]
  67. Jablonski D, Roy K, Valentine JW. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 313:102–6 [Google Scholar]
  68. Jablonski DJ, Sepkoski JJ Jr., Bottjer DJ, Sheehan PM. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:1123–25 [Google Scholar]
  69. Jackson JBC, Erwin DH. 2006. What can we learn about ecology and evolution from the fossil record. ? Trends Ecol. Evol. 21:322–28 [Google Scholar]
  70. Jackson ST, Overpeck JT. 2000. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220 [Google Scholar]
  71. Jackson ST, Williams JW. 2004. Modern analogs in Quaternary paleoecology: Here today, gone yesterday, gone tomorrow. ? Annu. Rev. Earth Planet. Sci. 32:495–537 [Google Scholar]
  72. Jiang S, Bralower TJ, Patzkowsky ME, Kump LR, Schueth JD. 2010. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nat. Geosci. 3:280–85 [Google Scholar]
  73. Johnson RG. 1972. Conceptual models of benthic marine communities. Models in Paleobiology TJM Schopf 148–59 San Francisco: Freeman, Cooper [Google Scholar]
  74. Kidwell SM. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803–6 [Google Scholar]
  75. Kidwell SM, Holland SM. 2002. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33:561–88 [Google Scholar]
  76. Kowalewski M, Goodfriend GA, Flessa KW. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287–304 [Google Scholar]
  77. Kowalewski M, Kiessling W, Aberhan M, Fursich FT, Scarponi D. et al. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533–61 [Google Scholar]
  78. Krug AZ, Jablonski D, Roy K, Beu AG. 2010. Differential extinction and the contrasting structure of polar marine faunas. PLOS ONE 5:e15362 [Google Scholar]
  79. Krug AZ, Jablonski D, Valentine JW, Roy K. 2009. Generation of Earth's first-order biodiversity pattern. Astrobiology 9:113–24 [Google Scholar]
  80. Krug AZ, Patzkowsky ME. 2004. Rapid recovery from the Late Ordovician mass extinction. PNAS 101:17605–10 [Google Scholar]
  81. Krug AZ, Patzkowsky ME. 2007. Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology 33:435–54 [Google Scholar]
  82. Lamsdell JC. 2016. Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. Palaeontology 59:181–94 [Google Scholar]
  83. Ludvigsen R, Westrop SR, Pratt BR, Tuffnell PA, Young GA. 1986. Dual biostratigraphy: zones and biofacies. Geosci. Can. 13:139–54 [Google Scholar]
  84. Marshall CR, Quental TB. 2016. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. R Soc. B 371:20150217 [Google Scholar]
  85. McGill BJ, Hadly EA, Maurer BA. 2005. Community inertia of Quaternary small mammal assemblages in North America. PNAS 102:16701–6 [Google Scholar]
  86. McPeek MA. 2007. The macroevolutionary consequences of ecological differences among species. Palaeontology 50:111–29 [Google Scholar]
  87. Miller AI, Sepkoski JJ Jr.. 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364–69 [Google Scholar]
  88. Moore RC. 1954. Evolution of late Paleozoic invertebrates in response to major oscillations of shallow seas. Bull. Mus. Comp. Zool. Harvard Coll. 122:259–86 [Google Scholar]
  89. Myers C, Stigall AL, Lieberman BS. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41:226–44 [Google Scholar]
  90. Newell ND. 1967. Revolutions in the history of life. Geol. Soc. Am. Spec. Pap. 89:63–91 [Google Scholar]
  91. Olszewski TD, Kidwell SM. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:1–23 [Google Scholar]
  92. Olszewski TD, Patzkowsky ME. 2001. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian-Permian Midcontinent. Palaios 16:444–60 [Google Scholar]
  93. Palmer AR. 1984. The biomere problem: evolution of an idea. J. Paleontol. 58:599–611 [Google Scholar]
  94. Pandolfi JM. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152–76 [Google Scholar]
  95. Pandolfi JM, Jackson JBC. 2006. Ecological persistence interrupted in Caribbean coral reefs. Ecol. Lett. 9:818–26 [Google Scholar]
  96. Patzkowsky ME, Holland SM. 1993. Biotic response to a Middle Ordovician paleoceanographic event in eastern North America. Geology 21:619–22 [Google Scholar]
  97. Patzkowsky ME, Holland SM. 1997. Patterns of turnover in Middle and Upper Ordovician brachiopods of the eastern United States: a test of coordinated stasis. Paleobiology 23:420–43 [Google Scholar]
  98. Patzkowsky ME, Holland SM. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on the diversity of regional ecosystems. Paleobiology 33:295–309 [Google Scholar]
  99. Patzkowsky ME, Holland SM. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space Chicago: Univ. Chicago Press [Google Scholar]
  100. Patzkowsky ME, Holland SM. 2016. Biotic invasion, niche stability, and the assembly of regional biotas in deep time: comparison between faunal provinces. Paleobiology 42:359–79 [Google Scholar]
  101. Payne JL, Clapham ME. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111 [Google Scholar]
  102. Pearman PB, Guisan A, Broennimann O, Randin CF. 2008. Niche dynamics in space and time. Trends Ecol. Evol. 23:149–58 [Google Scholar]
  103. Peters SE. 2007. The problem with the Paleozoic. Paleobiology 33:165–81 [Google Scholar]
  104. Powell MG. 2009. The latitudinal diversity gradient of brachiopods over the past 530 million years. J. Geol. 117:585–94 [Google Scholar]
  105. Powell MG, Kowalewski M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331–34 [Google Scholar]
  106. Powell MG, Moore BR, Smith TJ. 2015. Origination, extinction, invasion, and extirpation components of the brachiopod latitudinal biodiversity gradient through the Phanerozoic Eon. Paleobiology 41:330–41 [Google Scholar]
  107. Rabosky DL. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816–24 [Google Scholar]
  108. Rabosky DL, Hurlbert AH. 2015. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185:572–83 [Google Scholar]
  109. Raup DM. 1972. Taxonomic diversity during the Phanerozoic. Science 177:1065–71 [Google Scholar]
  110. Raup DM. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17:37–48 [Google Scholar]
  111. Raup DM. 1992. Large-body impact and extinction in the Phanerozoic. Paleobiology 18:80–88 [Google Scholar]
  112. Raup DM. 1996. Extinction models. Evolutionary Paleobiology D Jablonski, DH Erwin, JH Lipps 419–33 Chicago: Univ. Chicago Press [Google Scholar]
  113. Raup DM, Sepkoski JJ Jr.. 1982. Mass extinctions in the marine fossil record. Science 215:1501–2 [Google Scholar]
  114. Raup DM, Sepkoski JJ Jr.. 1986. Periodic extinctions of families and genera. Science 231:833–36 [Google Scholar]
  115. Redman CM, Leighton LR, Schellenberg SA, Gale CN, Nielsen JL. et al. 2007. Influence of spatiotemporal scale on the interpretation of paleocommunity structure: lateral variation in the Imperial Formation of California. Palaios 22:630–41 [Google Scholar]
  116. Ricklefs RE. 1987. Community diversity: relative roles of local and regional processes. Science 235:167–71 [Google Scholar]
  117. Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7:1–15 [Google Scholar]
  118. Ricklefs RE. 2006. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87:S3–13 [Google Scholar]
  119. Ricklefs RE. 2008. Disintegration of the ecological community. Am. Nat. 172:741–50 [Google Scholar]
  120. Ricklefs RE, Jenkins DG. 2011. Biogeography and ecology: towards the integration of two disciplines. Philos. Trans. R Soc. B 366:2438–48 [Google Scholar]
  121. Rosenzweig ML, McCord RD. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202–13 [Google Scholar]
  122. Roy K, Valentine JW, Jablonski D, Kidwell SM. 1996. Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends Ecol. Evol. 11:458–63 [Google Scholar]
  123. Saupe EE, Hendricks JR, Portell RW, Dowsett HJ, Haywood A. et al. 2014. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R Soc. B 281:20141995 [Google Scholar]
  124. Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ. et al. 2015. Niche breadth and geographic range size as determinants of species survival on geological time scales. Glob. Ecol. Biogeogr. 24:1159–69 [Google Scholar]
  125. Sax DF, Gaines SD, Brown JH. 2002. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am. Nat. 160:766–83 [Google Scholar]
  126. Schueth JD, Bralower TJ, Jiang S, Patzkowsky ME. 2015. The role of regional survivor incumbency in the evolutionary recovery of calcareous nannoplankton from the Cretaceous/Paleogene (K/Pg) mass extinction. Paleobiology 41:661–79 [Google Scholar]
  127. Sepkoski D. 2012. Rereading the Fossil Record: The Growth of Paleobiology as an Evolutionary Discipline Chicago: Univ. Chicago Press [Google Scholar]
  128. Sepkoski D, Ruse M. 2009. The Paleobiological Revolution: Essays on the Growth of Modern Paleontology Chicago: Univ. Chicago Press [Google Scholar]
  129. Sepkoski JJ Jr.. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298–303 [Google Scholar]
  130. Sepkoski JJ Jr.. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223–51 [Google Scholar]
  131. Sepkoski JJ Jr.. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222–51 [Google Scholar]
  132. Sepkoski JJ Jr.. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53 [Google Scholar]
  133. Sepkoski JJ Jr.. 1987. Environmental trends in extinction during the Paleozoic. Science 235:64–66 [Google Scholar]
  134. Sepkoski JJ Jr.. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:58–77 [Google Scholar]
  135. Sepkoski JJ Jr.. 1992. Phylogenetic and ecologic patterns in the Phanerozoic history of marine biodiversity. Systematics, Ecology, and the Biodiversity Crisis N Eldredge 77–100 New York: Columbia Univ. Press [Google Scholar]
  136. Sepkoski JJ Jr., Bambach RK, Raup DM, Valentine JW. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435–37 [Google Scholar]
  137. Sepkoski JJ Jr., Miller AI. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Phanerozoic Diversity Patterns JW Valentine 153–90 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  138. Sepkoski JJ Jr., Sheehan PM. 1983. Diversification, faunal change, and community replacement during the Ordovician radiation. Biotic Interactions in Recent and Fossil Benthic Communities MJS Tevesz, PL McCall 673–718 New York: Plenum [Google Scholar]
  139. Sessa JA, Bralower TJ, Patzkowsky ME, Handley JC, Ivany LC. 2012. Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U.S. Gulf Coastal Plain. Paleobiology 38:218–39 [Google Scholar]
  140. Sole RV, Montoya JM, Erwin DH. 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philos. Trans. R Soc. B 357:697–707 [Google Scholar]
  141. Srivastava DS. 1999. Using local-regional richness plots to test for species saturation: pitfalls and potentials. J. Anim. Ecol. 68:1–16 [Google Scholar]
  142. Stanley SM. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:17–36 [Google Scholar]
  143. Stebbins GL. 1974. Flowering Plants: Evolution Above the Species Level Cambridge, MA: Harvard Univ. Press [Google Scholar]
  144. Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. PNAS 101:10854–61 [Google Scholar]
  145. Todd JA, Jackson JBC, Johnson KG, Fortunato HM, Heitz A. et al. 2001. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proc. R Soc. B 269:571–77 [Google Scholar]
  146. Tomasovych A, Kidwell SM. 2009. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:119–45 [Google Scholar]
  147. Valentine JW. 1969. Niche diversity and niche size patterns in marine fossils. J. Paleontol. 43:905–15 [Google Scholar]
  148. Valentine JW. 1989. How good was the fossil record? Clues from the California Pleistocene. Paleobiology 15:83–94 [Google Scholar]
  149. Valentine JW, Foin TC, Peart D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4:55–66 [Google Scholar]
  150. Valentine JW, Jablonski D. 1993. Fossil communities: compositional variation at many time scales. Species Diversity in Ecological Communities: Historical and Geographical Perspectives RE Ricklefs, D Schluter 341–49 Chicago: Univ. Chicago Press [Google Scholar]
  151. Vermeij G. 1991. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281–307 [Google Scholar]
  152. Westrop SR. 1996. Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobite faunas of North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:33–46 [Google Scholar]
  153. Whittaker RH. 1967. Gradient analysis of vegetation. Biol. Rev. 42:207–64 [Google Scholar]
  154. Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–96 [Google Scholar]
  155. Witman JD, Roy K. 2009. Marine Macroecology Chicago: Univ. Chicago Press [Google Scholar]
  156. Wright DF, Stigall AL. 2013. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLOS ONE 8:e68353 [Google Scholar]
  157. Ziegler AM. 1965. Silurian marine communities and their environmental significance. Nature 207:270–72 [Google Scholar]
  158. Ziegler AM, Cocks RM, Bambach RK. 1968. The composition and structure of Lower Silurian marine communities. Lethaia 1:1–27 [Google Scholar]
  159. Zuschin M, Harzhauser M, Hengst B, Mandic O, Roetzel R. 2014. Long-term ecosystem stability in an early Miocene estuary. Geology 42:7–10 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012317
Loading
/content/journals/10.1146/annurev-earth-060115-012317
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error