1932

Abstract

Archean sulfide and sulfate minerals commonly exhibit anomalous ratios among four stable sulfur isotopes, 32S, 33S, 34S, and 36S. These anomalous relationships, referred to as sulfur mass-independent fractionation (S-MIF), provide strong evidence for an early anoxic atmosphere. Correlated variations among three isotope ratios (δ33S, δ34S, and δ36S) can be observed in rocks throughout the Archean and are a key clue toward identifying the source reaction of S-MIF. Studies to investigate the origin of Archean S-MIF so far have primarily focused on the photochemistry of sulfur dioxide (SO). Photolysis of SO at wavelengths <220 nm and photoexcitation at 240–340 nm both yield large-magnitude S-MIF. Proposed mechanisms of S-MIF include isotopologue-dependent self-shielding, cross-sectional amplitudes, and vibronic coupling during intersystem crossing. This review discusses the emerging picture of the physical origins of S-MIF and their implications for the chemistry of the early Earth's atmosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012324
2017-08-30
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-060115-012324.html?itemId=/content/journals/10.1146/annurev-earth-060115-012324&mimeType=html&fmt=ahah

Literature Cited

  1. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B. et al. 2007. A whiff of oxygen before the great oxidation event?. Science 317:1903–6 [Google Scholar]
  2. Bao H, Campbell DA, Bockheim JG, Thiemens MH. 2000. Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions. Nature 407:499–502 [Google Scholar]
  3. Bekker A, Holland H, Wang P-L, Rumble D, Stein H. et al. 2004. Dating the rise of atmospheric oxygen. Nature 427:117–20 [Google Scholar]
  4. Berkner LV, Marshall L. 1965. On the origin and rise of oxygen concentration in the Earth's atmosphere. J. Atmos. Sci. 22:225–61 [Google Scholar]
  5. Bigeleisen J. 1998. Second-order correction to the Bigeleisen–Mayer equation due to the nuclear field shift. PNAS 95:4808–9 [Google Scholar]
  6. Bigeleisen J, Mayer MG. 1947. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15:261–67 [Google Scholar]
  7. Button A. 1976. Transvaal and Hamersley Basins: review of basin development and mineral deposits. Miner. Sci. Eng. 8:262–93 [Google Scholar]
  8. Cates NL, Mojzsis SJ. 2006. Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim. Cosmochim. Acta 70:4229–57 [Google Scholar]
  9. Claire MW, Kasting JF, Domagal-Goldman SD, Stüeken EE, Buick R, Meadows VS. 2014. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 141:365–80 [Google Scholar]
  10. Clayton RN, Grossman L, Mayeda TK. 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–88 [Google Scholar]
  11. Clerbaux C, Colin R. 1994. A reinvestigation of the B3ΣX3Σ transition of the SO radical. J. Mol. Spectrosc 165:334–48 [Google Scholar]
  12. Colman JJ, Xu X, Thiemens MH, Trogler WC. 1996. Photopolymerization and mass-independent sulfur isotope fractionations in carbon disulfide. Science 273:774–76 [Google Scholar]
  13. Coplen TB. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25:2538–60 [Google Scholar]
  14. Danielache SO, Eskebjerg C, Johnson MS, Ueno Y, Yoshida N. 2008. High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide: ultraviolet absorption cross sections and isotope effects. J. Geophys. Res. D 113:D17314 [Google Scholar]
  15. Danielache SO, Hattori S, Johnson MS, Ueno Y, Nanbu S, Yoshida N. 2012. Photoabsorption cross‐section measurements of 32S, 33S, 34S, and 36S sulfur dioxide for the B1B1X1A1 absorption band. J. Geophys. Res. D 117:D24301 [Google Scholar]
  16. Danielache SO, Tomoya S, Kondorsky A, Tokue I, Nanbu S. 2014. Nonadiabatic calculations of ultraviolet absorption cross section of sulfur monoxide: isotopic effects on the photodissociation reaction. J. Chem. Phys. 140:044319 [Google Scholar]
  17. Deines P. 2003. A note on intra-elemental isotope effects and the interpretation of non-mass-dependent isotope variations. Chem. Geol. 199:179–82 [Google Scholar]
  18. Ding T, Valkiers S, Kipphardt H, De Bievre P, Taylor P. et al. 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65:2433–37 [Google Scholar]
  19. Eiler J, Cartigny P, Hofmann AE, Piasecki A. 2013. Non-canonical mass laws in equilibrium isotopic fractionations: evidence from the vapor pressure isotope effect of SF6. Geochim. Cosmochim. Acta 107:205–19 [Google Scholar]
  20. Endo Y, Danielache SO, Ueno Y, Hattori S, Johnson MS. et al. 2015. Photoabsorption cross‐section measurements of 32S, 33S, 34S and 36S sulfur dioxide from 190 to 220 nm. J. Geophys. Res. Atmos. 120:2546–57 [Google Scholar]
  21. Endo Y, Ueno Y, Aoyama S, Danielache SO. 2016. Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere. Earth Planet. Sci. Lett. 453:9–22 [Google Scholar]
  22. Farquhar J, Bao H, Thiemens M. 2000a. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58 [Google Scholar]
  23. Farquhar J, Cliff J, Zerkle AL, Kamyshny A, Poulton SW. et al. 2013. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. PNAS 110:17638–43 [Google Scholar]
  24. Farquhar J, Johnston DT, Wing BA. 2007a. Implications of conservation of mass effects on mass-dependent isotope fractionations: influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction. Geochim. Cosmochim. Acta 71:5862–75 [Google Scholar]
  25. Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE. et al. 2003. Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36 [Google Scholar]
  26. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A. et al. 2007b. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–9 [Google Scholar]
  27. Farquhar J, Savarino J, Airieau S, Thiemens MH. 2001. Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. E 106:32829–39 [Google Scholar]
  28. Farquhar J, Savarino J, Jackson TL, Thiemens MH. 2000b. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature 404:50–52 [Google Scholar]
  29. Farquhar J, Wing BA. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213:1–13 [Google Scholar]
  30. Francisco JS, Lyons JR, Williams IH. 2005. High-level ab initio studies of the structure, vibrational spectra, and energetics of S3. J. Chem. Phys. 123:54302 [Google Scholar]
  31. Franz HB, Danielache SO, Farquhar J, Wing BA. 2013. Mass-independent fractionation of sulfur isotopes during broadband SO2 photolysis: comparison between 16O- and 18O-rich SO2. Chem. Geol. 362:56–65 [Google Scholar]
  32. Gao X, Thiemens MH. 1991. Systematic study of sulfur isotopic composition in iron meteorites and the occurrence of excess 33S and 36S. Geochim. Cosmochim. Acta 55:2671–79 [Google Scholar]
  33. Green M, Western C. 1996. A deperturbation analysis of the B3Σu(v′= 0–6) and the B3Πu (v′ = 2–12) states of S2. J. Chem. Phys 104:848–64 [Google Scholar]
  34. Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J. et al. 2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402 [Google Scholar]
  35. Guy BM, Ono S, Gutzmer J, Kaufman AJ, Lin Y. et al. 2012. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Res 216–19:208–31 [Google Scholar]
  36. Halevy I, Johnston DT, Schrag DP. 2010. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329:204–7 [Google Scholar]
  37. Hattori S, Danielache SO, Johnson MS, Schmidt JA, Kjaergaard HG. et al. 2011. Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications. Atmos. Chem. Phys. 11:10293–303 [Google Scholar]
  38. Hattori S, Schmidt JA, Johnson MS, Danielache SO, Yamada A. et al. 2013. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. PNAS 110:17656–61 [Google Scholar]
  39. Hoering TC. 1989. The isotopic composition of bedded barites from the Archeann of southern India. Geol. Soc. India 34:461–66 [Google Scholar]
  40. Holland HD. 1984. The Chemical Evolution of the Atmosphere and Oceans Princeton, NJ: Princeton Univ. Press [Google Scholar]
  41. Hoy A, Brand J. 1978. Asymmetric structure and force field of the 1B2 (1A′) state of sulphur dioxide. Mol. Phys 36:1409–20 [Google Scholar]
  42. Hulston J, Thode H. 1965. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res. 70:3475–84 [Google Scholar]
  43. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW. 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. PNAS 110:11238–43 [Google Scholar]
  44. Johnston DT. 2011. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. Earth-Sci. Rev. 106:161–83 [Google Scholar]
  45. Johnston DT, Farquhar J, Canfield DE. 2007. Sulfur isotope insights into microbial sulfate reduction: when microbes meet models. Geochim. Cosmochim. Acta 71:3929–47 [Google Scholar]
  46. Johnston DT, Farquhar J, Wing BA, Kaufman AJ, Canfield DE, Habicht KS. 2005. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 305:645–60 [Google Scholar]
  47. Kaiser J, Röckmann T, Brenninkmeijer CA. 2004. Contribution of mass‐dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide. J. Geophys. Res. D 109:D03305 [Google Scholar]
  48. Kasting JF. 1993. Earth's early atmosphere. Science 259:920–26 [Google Scholar]
  49. Kasting JF, Donahue T. 1980. The evolution of atmospheric ozone. J. Geophys. Res. C 85:3255–63 [Google Scholar]
  50. Kasting JF, Zahnle K, Pinto J, Young A. 1989. Sulfur, ultraviolet radiation, and the early evolution of life. Orig. Life Evol. Biosphere 19:95–108 [Google Scholar]
  51. Katagiri H, Sako T, Hishikawa A, Yazaki T, Onda K. et al. 1997. Experimental and theoretical exploration of photodissociation of SO2 via the 1B2 state: identification of the dissociation pathway. J. Mol. Struct. 413:589–614 [Google Scholar]
  52. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW. et al. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–3 [Google Scholar]
  53. Kłos J, Alexander MH, Kumar P, Poirier B, Jiang B, Guo H. 2016. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground 1A1 and excited 1B2 (21A′) states of SO2. J. Chem. Phys 144:174301 [Google Scholar]
  54. Knappenberger K, Castleman A. 2004. Photodissociation of sulfur dioxide: the state revisited. J. Phys. Chem. A 108:9–14 [Google Scholar]
  55. Kump LR. 2008. The rise of atmospheric oxygen. Nature 451:277–78 [Google Scholar]
  56. Kurzweil F, Claire M, Thomazo C, Peters M, Hannington M, Strauss H. 2013. Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366:17–26 [Google Scholar]
  57. Lin Y, Sim M, Ono S. 2011. Multiple-sulfur isotope effects during photolysis of carbonyl sulfide. Atmos. Chem. Phys. 11:10283–92 [Google Scholar]
  58. Liu C-P, Elliott NL, Western CM, Lee Y-P, Colin R. 2006. The B3Σ state of the SO radical. J. Mol. Spectrosc. 238:213–23 [Google Scholar]
  59. Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE. 2016. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Sci. Adv. 2:e1600134 [Google Scholar]
  60. Lyons JR. 2007. Mass‐independent fractionation of sulfur isotopes by isotope‐selective photodissociation of SO2. Geophys. Res. Lett. 34:L22811 [Google Scholar]
  61. Lyons JR. 2008. Photolysis of long-lived predissociative molecules as a source of mass-independent isotope fractionation: the example of SO2. Adv. Quantum Chem. 55:57–74 [Google Scholar]
  62. Lyons JR. 2009. Atmospherically-derived mass-independent sulfur isotope signatures, and incorporation into sediments. Chem. Geol. 267:164–74 [Google Scholar]
  63. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  64. Manatt SL, Lane AL. 1993. A compilation of the absorption cross-sections of SO2 from 106 to 403 nm. J. Quant. Spectrosc. Radiat. Transf. 50:267–76 [Google Scholar]
  65. Martin EV. 1932. The band spectrum of sulphur monoxide. Phys. Rev. 41:167–93 [Google Scholar]
  66. Masterson AL, Farquhar J, Wing BA. 2011. Sulfur mass-independent fractionation patterns in the broadband UV photolysis of sulfur dioxide: pressure and third body effects. Earth Planet. Sci. Lett. 306:253–60 [Google Scholar]
  67. Mauersberger K. 1987. Ozone isotope measurements in the stratosphere. Geophys. Res. Lett. 14:80–83 [Google Scholar]
  68. Michalski G, Böhlke J, Thiemens M. 2004. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta 68:4023–38 [Google Scholar]
  69. Miller CE, Yung YL. 2000. Photo‐induced isotopic fractionation. J. Geophys. Res. D 105:29039–51 [Google Scholar]
  70. Miller MF. 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66:1881–89 [Google Scholar]
  71. Molina L, Lamb J, Molina M. 1981. Temperature dependent UV absorption cross sections for carbonyl sulfide. Geophys. Res. Lett. 8:1008–11 [Google Scholar]
  72. Montinaro A, Strauss H, Mason PR, Roerdink D, Münker C. et al. 2015. Paleoarchean sulfur cycling: multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. Precambrian Res 267:311–22 [Google Scholar]
  73. Morino Y, Kikuchi Y, Saito S, Hirota E. 1964. Equilibrium structure and potential function of sulfur dioxide from the microwave spectrum in the excited vibrational state. J. Mol. Spectrosc. 13:95–118 [Google Scholar]
  74. Muskatel B, Remacle F, Thiemens MH, Levine R. 2011. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere. PNAS 108:6020–25 [Google Scholar]
  75. Nelson D, Trendall A, De Laeter J, Grobler N, Fletcher I. 1992. A comparative study of the geochemical and isotopic systematics of late Archaean flood basalts from the Pilbara and Kaapvaal Cratons. Precambrian Res 54:231–56 [Google Scholar]
  76. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE. 2006. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–11 [Google Scholar]
  77. Okabe H. 1978. Photochemistry of Small Molecules New York: Wiley [Google Scholar]
  78. Okazaki A, Ebata T, Mikami N. 1997. Degenerate four-wave mixing and photofragment yield spectroscopic study of jet-cooled SO2 in the 1B2 state: internal conversion followed by dissociation in the state. J. Chem. Phys. 107:8752–58 [Google Scholar]
  79. Ono S, Beukes N, Rumble D. 2009a. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res 169:48–57 [Google Scholar]
  80. Ono S, Beukes NJ, Rumble D, Fogel ML. 2006a. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. S. Afr. J. Geol. 109:97–108 [Google Scholar]
  81. Ono S, Eigenbrode JL, Pavlov AA. 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213:15–30 [Google Scholar]
  82. Ono S, Kaufman AJ, Farquhar J. 2009b. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res 169:58–67 [Google Scholar]
  83. Ono S, Shanks WC, Rouxel OJ, Rumble D. 2007. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim. Cosmochim. Acta 71:1170–82 [Google Scholar]
  84. Ono S, Whitehill AR, Lyons JR. 2013. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis. J. Geophys. Res. Atmos. 118:2444–54 [Google Scholar]
  85. Ono S, Wing B, Johnston D, Farquhar J, Rumble D. 2006b. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70:2238–52 [Google Scholar]
  86. Ono S, Wing B, Rumble D, Farquhar J. 2006c. High precision analysis of all four stable isotopes of sulfur (32S, 33S, 34S and 36S) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography–mass spectrometry. Chem. Geol. 225:30–39 [Google Scholar]
  87. Oommen TV. 1970. Spectra and reactions of elemental sulfur PhD Thesis Univ. Wash., Seattle [Google Scholar]
  88. Papineau D, Mojzsis SJ, Schmitt AK. 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255:188–212 [Google Scholar]
  89. Park GB, Womack CC, Whitehill AR, Jiang J, Ono S, Field RW. 2015. Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the 1B2 state of SO2. J. Chem. Phys. 142:144201 [Google Scholar]
  90. Pavlov A, Kasting J. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41 [Google Scholar]
  91. Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ. 2007. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–37 [Google Scholar]
  92. Philippot P, Van Zuilen M, Rollion-Bard C. 2012. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nat. Geosci. 5:668–74 [Google Scholar]
  93. Phillips LF. 1981. Absolute absorption cross sections for SO between 190 and 235 nm. J. Phys. Chem. 85:3994–4000 [Google Scholar]
  94. Ran H, Xie D, Guo H. 2007. Theoretical studies of 1B2 absorption spectra of SO2 isotopomers. Chem. Phys. Lett 439:280–83 [Google Scholar]
  95. Rees CE, Thode HG. 1977. A 33S anomaly in the Allende meteorite. Geochim. Cosmochim. Acta 41:1679–82 [Google Scholar]
  96. Richet P, Bottinga Y, Janoy M. 1977. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5:65–110 [Google Scholar]
  97. Sako T, Hishikawa A, Yamanouchi K. 1998. Vibrational propensity in the predissociation rate of SO2(1B2) by two types of nodal patterns in vibrational wavefunctions. Chem. Phys. Lett. 294:571–78 [Google Scholar]
  98. Savarino J, Romero A, Cole‐Dai J, Bekki S, Thiemens M. 2003. UV induced mass‐independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30:2131 [Google Scholar]
  99. Schauble EA. 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim. Cosmochim. Acta 71:2170–89 [Google Scholar]
  100. Schmidt JA, Johnson MS, Hattori S, Yoshida N, Nanbu S, Schinke R. 2013. OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere. Atmos. Chem. Phys. 13:1511–20 [Google Scholar]
  101. Schmidt JA, Johnson MS, McBane GC, Schinke R. 2012. Communication: multi-state analysis of the OCS ultraviolet absorption including vibrational structure. J. Chem. Phys. 136:131101 [Google Scholar]
  102. Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R. 2009. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279:383–91 [Google Scholar]
  103. Thiemens MH, Heidenreich JE. 1983. The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–75 [Google Scholar]
  104. Thiemens MH, Jackson T, Mauersberger K, Schueler B, Morton J. 1991. Oxygen isotope fractionation in stratospheric CO2. Geophys. Res. Lett. 18:669–72 [Google Scholar]
  105. Thiemens MH, Shaheen R. 2013. Mass independent isotopic composition of terrestrial and extraterrestrial materials. Treatise on Geochemistry, Vol. 5: The Atmosphere HD Holland, KK Turekian 151–77 Amsterdam: Elsevier [Google Scholar]
  106. Thomassot E, O'Neil J, Francis D, Cartigny P, Wing BA. 2015. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec). PNAS 112:707–12 [Google Scholar]
  107. Thomazo C, Ader M, Farquhar J, Philippot P. 2009. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279:65–75 [Google Scholar]
  108. Tokue I, Nanbu S. 2010. Theoretical studies of absorption cross sections for the 1B2-1A1 system of sulfur dioxide and isotope effects. J. Chem. Phys 132:024301 [Google Scholar]
  109. Ueno Y, Ono S, Rumble D, Maruyama S. 2008. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72:5675–91 [Google Scholar]
  110. Urey HC. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947:562–81 [Google Scholar]
  111. Ustinov V, Grinenko V, Ivanov S. 1988. Sulfur isotope effect in the photolysis of SO2. Russ. Chem. Bull. 37:1052 [Google Scholar]
  112. Wacey D, Noffke N, Cliff J, Barley ME, Farquhar J. 2015. Micro-scale quadruple sulfur isotope analysis of pyrite from the ∼3480 Ma Dresser Formation: new insights into sulfur cycling on the early Earth. Precambrian Res 258:24–35 [Google Scholar]
  113. Walker JC, Brimblecombe P. 1985. Iron and sulfur in the pre-biologic ocean. Precambrian Res 28:205–22 [Google Scholar]
  114. Whitehill AR, Jiang B, Guo H, Ono S. 2015. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols. Atmos. Chem. Phys. 15:1843–64 [Google Scholar]
  115. Whitehill AR, Ono S. 2012. Excitation band dependence of sulfur isotope mass-independent fractionation during photochemistry of sulfur dioxide using broadband light sources. Geochim. Cosmochim. Acta 94:238–53 [Google Scholar]
  116. Whitehill AR, Xie C, Hu X, Xie D, Guo H, Ono S. 2013. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early Earth's atmosphere. PNAS 110:17697–702 [Google Scholar]
  117. Williford KH, Ushikubo T, Lepot K, Kitajima K, Hallmann C. et al. 2016. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates. Geobiology 14:105–28 [Google Scholar]
  118. Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, Valley JW. 2011. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim. Cosmochim. Acta 75:5686–705 [Google Scholar]
  119. Yamanouchi K, Okunishi M, Endo Y, Tsuchiya S. 1995. Laser induced fluorescence spectroscopy of the 1B2-1A1 band of jet-cooled SO2: rotational and vibrational analyses in the 235–210 nm region. J. Mol. Struct. 352:541–59 [Google Scholar]
  120. Zahnle K, Claire M, Catling D. 2006. The loss of mass‐independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–83 [Google Scholar]
  121. Zegers TE, de Wit MJ, Dann J, White SH. 1998. Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–59 [Google Scholar]
  122. Zerkle AL, Claire MW, Domagal-Goldman SD, Farquhar J, Poulton SW. 2012. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5:359–63 [Google Scholar]
  123. Zhelezinskaia I, Kaufman AJ, Farquhar J, Cliff J. 2014. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346:742–44 [Google Scholar]
  124. Zmolek P, Xu X, Jackson T, Thiemens MH, Trogler WC. 1999. Large mass independent sulfur isotope fractionations during the photopolymerization of 12CS2 and 13CS2. J. Phys. Chem. A 103:2477–80 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012324
Loading
/content/journals/10.1146/annurev-earth-060115-012324
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error