Dynamic triggering of earthquakes by seismic waves is a robustly observed phenomenon with well-documented examples from over 30 major earthquakes. We are now in a position to use dynamic triggering as a natural experiment to probe the reaction of faults to the known stresses from seismic waves. We show here that dynamic triggering can be used to investigate the distribution of stresses required for failure on faults. In some regions, faults appear to be uniformly distributed over their loading cycles with equal numbers at all possible stresses from failure. Regions under tectonic extension, at the interface between locked and creeping faults, or subject to anthropogenic forcing are most prone to triggered failure. Predictions of future seismicity rates based on seismic wave amplitudes are theoretically possible and may provide similar results to purely stochastic prediction schemes. The underlying mechanisms of dynamic triggering are still unknown. The prolonged triggered sequences require a multistage process such as shear failure from rate-state friction coupled to aseismic creep or continued triggering through a secondary cascade. Permeability enhancement leading to drainage or pore pressure redistribution on faults is an alternative possibility.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aharonov E, Sparks D. 2002. Shear profiles and localization in simulations of granular materials. Phys. Rev. E 65:051302 [Google Scholar]
  2. Aiken C, Peng Z, Chao K. 2013. Tremors along the Queen Charlotte Margin triggered by large teleseismic earthquakes. Geophys. Res. Lett. 40:829–34 [Google Scholar]
  3. Atkinson BK. 1984. Subcritical crack growth in geological materials. J. Geophys. Res. 89:4077–114 [Google Scholar]
  4. Beeler NM, Lockner DA. 2003. Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence. J. Geophys. Res. 108:B82391 [Google Scholar]
  5. Brodsky EE. 2006. Long-range triggered earthquakes that continue after the wave train passes. Geophys. Res. Lett. 33:L15313 [Google Scholar]
  6. Brodsky EE. 2011. The spatial density of foreshocks. Geophys. Res. Lett. 38:L10305 [Google Scholar]
  7. Brodsky EE, Prejean S. 2005. New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera. J. Geophys. Res. 110:B04302 [Google Scholar]
  8. Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 108:B82390 [Google Scholar]
  9. Brodsky EE, Sturtevant B, Kanamori H. 1998. Earthquakes, volcanoes, and rectified diffusion. J. Geophys. Res. 103:B1023827–38 [Google Scholar]
  10. Cochran ES, Vidale JE, Tanaka S. 2004. Earth tides can trigger shallow thrust fault earthquakes. Science 306:1164–66 [Google Scholar]
  11. Dieterich JH. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84:2161 [Google Scholar]
  12. Dieterich JH. 1992. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics 211:115–34 [Google Scholar]
  13. Dieterich JH. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99:B22601–18 [Google Scholar]
  14. Elkhoury JE, Brodsky EE, Agnew DC. 2006. Seismic waves increase permeability. Nature 441:1135–38 [Google Scholar]
  15. Elkhoury JE, Niemeijer A, Brodsky EE, Marone C. 2011. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock. J. Geophys. Res. 116:B02311 [Google Scholar]
  16. Felzer KR, Abercrombie R, Ekström G. 2004. A common origin for aftershocks, foreshocks, and multiplets. Bull. Seismol. Soc. Am. 94:88 [Google Scholar]
  17. Felzer KR, Brodsky EE. 2005. Testing the stress shadow hypothesis. J. Geophys. Res. 110:B05S09 [Google Scholar]
  18. Felzer KR, Brodsky EE. 2006. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 441:735–38 [Google Scholar]
  19. Freed AM. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33:335–367 [Google Scholar]
  20. Frohlich C, Davis S. 1985. Identification of aftershocks of deep earthquakes by a new ratios method. Geophys. Res. Lett. 12:713–16 [Google Scholar]
  21. Gomberg J. 2001. The failure of earthquake failure models. J. Geophys. Res. 106:B816253–63 [Google Scholar]
  22. Gomberg J, Beeler NM, Blanpied ML, Bodin P. 1998. Earthquake triggering by transient and static deformations. J. Geophys. Res. 103:B1024411–26 [Google Scholar]
  23. Gomberg J, Bodin P, Larson K, Dragert H. 2004. Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake. Nature 427:621–24 [Google Scholar]
  24. Gomberg J, Davis S. 1996. Stress/strain changes and triggered seismicity at The Geysers, California. J. Geophys. Res. 101:B1733–49 [Google Scholar]
  25. Gomberg J, Felzer K. 2008. A model of earthquake triggering probabilities and application to dynamic deformations constrained by ground motion observations. J. Geophys. Res. 113:B10317 [Google Scholar]
  26. Gomberg J, Reasenberg P, Bodin P, Harris R. 2001. Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Nature 411:462–66 [Google Scholar]
  27. Gu J-C, Rice JR, Ruina AL, Tse ST. 1984. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32:167–96 [Google Scholar]
  28. Hammerschmidt S, Davis EE, Kopf A. 2013. Fluid pressure and temperature transients detected at the Nankai Trough Megasplay Fault: results from the SmartPlug borehole observatory. Tectonophysics 600:116–33 [Google Scholar]
  29. Harrington RM, Brodsky EE. 2006. The absence of remotely triggered seismicity in Japan. Bull. Seismol. Soc. Am. 96:871–78 [Google Scholar]
  30. Helmstetter A, Kagan Y, Jackson D. 2005. Importance of small earthquakes for stress transfers and earthquake triggering. J. Geophys. Res. 110:B05S08 [Google Scholar]
  31. Hill DP. 2008. Dynamic stresses, Coulomb failure, and remote triggering. Bull. Seismol. Soc. Am. 98:66–92 [Google Scholar]
  32. Hill DP, Johnston MJ, Langbein JO, Bilham R. 1995. Response of Long Valley caldera to the Mw = 7.3 Landers, California, earthquake. J. Geophys. Res. 100:B712985–3005 [Google Scholar]
  33. Hill DP, Prejean SG. 2007. Dynamic triggering. Earthquake Seismology H Kanamori 257–91 Treatise Geophys. 4 Amsterdam: Elsevier [Google Scholar]
  34. Hill DP, Reasenberg PA, Michael A, Arabaz WJ, Beroza G. et al. 1993. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science 260:1617–23 [Google Scholar]
  35. Ichihara M, Brodsky EE. 2006. A limit on the effect of rectified diffusion in volcanic systems. Geophys. Res. Lett. 33:L02316 [Google Scholar]
  36. Itaba S, Ando R. 2011. A slow slip event triggered by teleseismic surface waves. Geophys. Res. Lett. 38:L21306 [Google Scholar]
  37. Jaeger HM, Nagel SR, Behringer RP. 1996. Granular solids, liquids, and gases. Rev. Mod. Phys. 68:1259–73 [Google Scholar]
  38. Johnson HP, Dziak RP, Fisher CR, Fox CG, Pruis MJ. 2001. Earthquakes' impact on hydrothermal systems may be far-reaching. Eos Trans. AGU 82:233–36 [Google Scholar]
  39. Johnson PA, Savage H, Knuth M, Gomberg J, Marone C. 2008. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes. Nature 451:57–60 [Google Scholar]
  40. Kanamori H, Brodsky EE. 2001. The physics of earthquakes. Phys. Today 54:34 [Google Scholar]
  41. Kanamori H, Brodsky EE. 2004. The physics of earthquakes. Rep. Prog. Phys. 67:1429 [Google Scholar]
  42. Kwiatek G, Plenkers K, Nakatani M, Yabe Y. 2010. Frequency-magnitude characteristics down to magnitude-4.4 for induced seismicity recorded at Mponeng Gold Mine, South Africa. Bull. Seismol. Soc. Am. 100:1165–73 [Google Scholar]
  43. Lambert A, Kao H, Rogers G, Courtier N. 2009. Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone. J. Geophys. Res. 114:B00A08 [Google Scholar]
  44. Linde AT, Sacks IS, Johnston MJS, Hill DP, Bilham RG. 1994. Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature 371:408–10 [Google Scholar]
  45. Lohman RB, McGuire JJ. 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. 112:B04405 [Google Scholar]
  46. Manga M, Beresnev I, Brodsky EE, Elkhoury JE, Elsworth D. et al. 2012. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50:RG2004 [Google Scholar]
  47. Manga M, Brodsky E. 2006. Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34:263–91 [Google Scholar]
  48. Manga M, Brodsky E, Boone M. 2003. Response of streamflow to multiple earthquakes. Geophys. Res. Lett. 30:1214 [Google Scholar]
  49. Melosh HJ. 1979. Acoustic fluidization: a new geologic process?. J. Geophys. Res. 84:B137513–20 [Google Scholar]
  50. Métivier L, de Viron O, Conrad CP, Renault S, Diament M, Patau G. 2009. Evidence of earthquake triggering by the solid Earth tides. Earth Planet. Sci. Lett. 278:370–75 [Google Scholar]
  51. Michael AJ. 2012. Do aftershock probabilities decay with time?. Seismol. Res. Lett. 83:630–32 [Google Scholar]
  52. Miyazawa M, Mori J. 2006. Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra-Andaman earthquake. Geophys. Res. Lett. 33:5303 [Google Scholar]
  53. Moore JN, Adams MC, Anderson AJ. 2000. The fluid inclusion and mineralogic record of the transition from liquid- to vapor-dominated conditions in The Geysers geothermal system, California. Econ. Geol. 95:1719–37 [Google Scholar]
  54. Nakata R, Suda N, Tsuroka H. 2008. Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nat. Geosci. 1:676–78 [Google Scholar]
  55. Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83:9–27 [Google Scholar]
  56. Ogata Y. 2004. Space-time model for regional seismicity and detection of crustal stress changes. J. Geophys. Res. 109:B03308 [Google Scholar]
  57. Ogata Y. 2011. Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity. Earth Planets Space 63:217–29 [Google Scholar]
  58. Okubo PG, Wolfe CJ. 2008. Swarms of similar long-period earthquakes in the mantle beneath Mauna Loa Volcano. J. Volcanol. Geotherm. Res. 178:787–94 [Google Scholar]
  59. Parsons T, Kaven JO, Velasco AA, Gonzales-Huizar H. 2012. Unraveling the apparent magnitude threshold of remote earthquake triggering using full wavefield surface wave simulation. Geochem. Geophys. Geosyst. 13:Q06016 [Google Scholar]
  60. Parsons T, Velasco AA. 2011. Absence of remotely triggered large earthquakes beyond the mainshock region. Nat. Geosci. 4:312–16 [Google Scholar]
  61. Peng Z, Gomberg J. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3:599–607 [Google Scholar]
  62. Peng Z, Vidale JE, Creager KC, Rubinstein JL, Gomberg J, Bodin P. 2008. Strong tremor near Parkfield, CA, excited by the 2002 Denali Fault earthquake. Geophys. Res. Lett. 35:L23305 [Google Scholar]
  63. Peng Z, Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci. 2:877–81 [Google Scholar]
  64. Pollitz FF, Stein RS, Sevilgen V, Bürgmann R. 2012. The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature 490:250–53 [Google Scholar]
  65. Prejean SG, Hill DP. 2009. Dynamic triggering of earthquakes. Encyclopedia of Complexity and Systems Science R Meyers 2600–621 New York: Springer [Google Scholar]
  66. Raleigh CB, Healy JH, Bredehoeft JD. 1976. Experiment in earthquake control at Rangely, Colorado. Science 191:1230–37 [Google Scholar]
  67. Reasenberg PA, Jones LM. 1990. California aftershock hazard forecasts. Science 247:345–46 [Google Scholar]
  68. Reid HF. 1911. The elastic-rebound theory of earthquakes. Univ. Calif. Publ. Bull. Dep. Geol. 6:413–44 [Google Scholar]
  69. Rice JR, Ruina AL. 1983. Stability of steady frictional slipping. J. Appl. Mech. 50:343–49 [Google Scholar]
  70. Roeloffs E, Sneed M, Galloway D, Sorey M, Farrar C. et al. 2003. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California. J. Volcanol. Geotherm. Res. 127:269–303 [Google Scholar]
  71. Rubinstein JL, La Rocca M, Vidale JE, Creager KC, Wech AG. 2008. Tidal modulation of nonvolcanic tremor. Science 319:186 [Google Scholar]
  72. Rubinstein JL, Vidale JE, Gomberg J, Bodin P, Creager KC, Malone SD. 2007. Non-volcanic tremor driven by large transient shear stresses. Nature 448:579–82 [Google Scholar]
  73. Ruina A. 1983. Slip instability and state variable friction laws. J. Geophys. Res. 88:B1210359–70 [Google Scholar]
  74. Sánchez JJ. 2004. Intermediate-term declines in seismicity at Mt. Wrangell and Mt. Veniaminof volcanoes, Alaska, following the 3 November 2002 Mw 7.9 Denali fault earthquake. Bull. Seismol. Soc. Am. 94:S370–83 [Google Scholar]
  75. Scholz CH. 1998. Earthquakes and friction laws. Nature 391:37–42 [Google Scholar]
  76. Scholz CH. 2002. Mechanics of Earthquakes and Faulting Cambridge, UK: Cambridge Univ. Press.
  77. Segall P, Rice JR. 1995. Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J. Geophys. Res. 100:B1122155–71 [Google Scholar]
  78. Shelly DR, Beroza GC, Ide S, Nakamula S. 2006. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–91 [Google Scholar]
  79. Shelly DR, Peng Z, Hill DP, Aiken C. 2011. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nat. Geosci. 4:384–88 [Google Scholar]
  80. Sornette D, Werner MJ. 2005. Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth's law, and observed aftershock sequences. J. Geophys. Res. 110:B08304 [Google Scholar]
  81. Stroup DF, Bohnenstiehl DR, Tolstoy M, Waldhauser F, Weekly RT. 2007. Pulse of the seafloor: tidal triggering of microearthquakes at 9°50′N East Pacific Rise. Geophys. Res. Lett. 34:L15301 [Google Scholar]
  82. Sturtevant B, Kanamori H, Brodsky EE. 1996. Seismic triggering by rectified diffusion in geothermal systems. J. Geophys. Res. 101:B1125269–82 [Google Scholar]
  83. Taira T, Silver PG, Niu F, Nadeau RM. 2009. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield. Nature 461:636–39 [Google Scholar]
  84. Tanaka S. 2010. Tidal triggering of earthquakes precursory to the recent Sumatra megathrust earthquakes of 26 December 2004 (Mw 9.0), 28 March 2005 (Mw 8.6), and 12 September 2007 (Mw 8.5). Geophys. Res. Lett. 37:L02301 [Google Scholar]
  85. Tanaka S. 2012. Tidal triggering of earthquakes prior to the 2011 Tohoku-Oki earthquake (Mw 9.1). Geophys. Res. Lett. 39:L00G26 [Google Scholar]
  86. Tape C, West M, Silwal V, Ruppert N. 2013. Earthquake nucleation and triggering on an optimally oriented fault. Earth Planet. Sci. Lett. 363:231–41 [Google Scholar]
  87. Thomas AM, Bürgmann R, Shelly DR, Beeler NM, Rudolph ML. 2012. Tidal triggering of low frequency earthquakes near Parkfield, California: implications for fault mechanics within the brittle-ductile transition. J. Geophys. Res. 117:B05301 [Google Scholar]
  88. Thomas AM, Nadeau RM, Bürgmann R. 2009. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault. Nature 462:1048–51 [Google Scholar]
  89. Tibi R, Wiens DA, Inoue H. 2003. Remote triggering of deep earthquakes in the 2002 Tonga sequences. Nature 424:921–25 [Google Scholar]
  90. Tordesillas A, Muthuswamy M. 2009. On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57:706–27 [Google Scholar]
  91. Townend J, Zoback MD. 2000. How faulting keeps the crust strong. Geology 28:399–402 [Google Scholar]
  92. van der Elst N, Brodsky EE. 2010. Connecting near-field and far-field earthquake triggering to dynamic strain. J. Geophys. Res. 115:B07311 [Google Scholar]
  93. van der Elst NJ, Brodsky EE, Lay T. 2013a. Remote triggering not evident near epicenters of impending great earthquakes. Bull. Seismol. Soc. Am. 103:1522–40 [Google Scholar]
  94. van der Elst NJ, Brodsky EE, Le Bas P-Y, Johnson PA. 2012. Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J. Geophys. Res. 117:B09314 [Google Scholar]
  95. van der Elst NJ, Savage HM, Keranen KM, Abers GA. 2013b. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States. Science 341:164–67 [Google Scholar]
  96. Velasco AA, Hernandez S, Parsons T, Pankow K. 2008. Global ubiquity of dynamic earthquake triggering. Nat. Geosci. 1:375–79 [Google Scholar]
  97. Wang C-Y, Manga M. 2010. Earthquakes and Water New York: Springer-Verlag
  98. West M, Sánchez JJ, McNutt SR. 2005. Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra earthquake. Science 308:1144–46 [Google Scholar]
  99. Wu C, Peng Z, Wang W, Chen Q-F. 2011. Dynamic triggering of shallow earthquakes near Beijing, China. Geophys. J. Int. 185:1321–34 [Google Scholar]
  100. Wyatt FK, Agnew DC, Gladwin M. 1994. Continuous measurements of crustal deformation for the 1992 Landers earthquake sequence. Bull. Seismol. Soc. Am. 84:768–79 [Google Scholar]
  101. Xue L, Li HB, Brodsky EE, Xu ZQ, Kano Y. et al. 2013. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 340:1555–59 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error