Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60–80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to alignment of hcp (hexagonal close-packed) iron crystals, aligned either during solidification or by deformation afterward. The existence of hemispherical variations used to be controversial, but there is now strong evidence from both seismic body wave and normal mode observations, showing stronger anisotropy, less attenuation, and a lower isotropic velocity in the western hemisphere. Two mechanisms have been proposed to explain the hemispherical pattern: either () inner core translation, wherein one hemisphere is melting and the other is solidifying, or () thermochemical convection in the outer core, leading to different solidification conditions at the inner core boundary. Neither is (yet) able to explain all seismically observed features, and a combination of different mechanisms is probably required.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alboussière T, Deguen R, Melzani M. 2010. Melting-induced stratification above the Earth's inner core due to convective translation. Nature 466:744–47 [Google Scholar]
  2. Andrews J, Deuss A, Woodhouse J. 2006. Coupled normal-mode sensitivity to inner-core shear velocity and attenuation. Geophys. J. Int. 167:204–12 [Google Scholar]
  3. Aubert J, Amit H, Hulot G, Olson P. 2008. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity. Nature 454:758–61 [Google Scholar]
  4. Aubert J, Dumberry M. 2011. Steady and fluctuating inner core rotation in numerical geodynamo models. Geophys. J. Int. 184:162–70 [Google Scholar]
  5. Aurnou J, Brito D, Olson P. 1998. Anomalous rotation of the inner core and the toroidal magnetic field. J. Geophys. Res. 103:B59721–38 [Google Scholar]
  6. Beghein C, Trampert J. 2003. Robust normal mode constraints on inner-core anisotropy from model space search. Science 299:552–55 [Google Scholar]
  7. Belonoshko AB, Ahuja R, Johansson B. 2003. Stability of the body-centred-cubic phase of iron in the Earth's inner core. Nature 424:1032–34 [Google Scholar]
  8. Bergman M. 1997. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 389:60–63 [Google Scholar]
  9. Bergman MI, Lewis DJ, Myint IH, Slivka L, Karato S, Abreu A. 2010. Grain growth and loss of texture during annealing of alloys, and the translation of Earth's inner core. Geophys. Res. Lett. 37:1–6 [Google Scholar]
  10. Bhattacharyya J, Shearer P, Masters G. 1993. Inner core attenuation from short-period PKP(BC) versus PKP(DF) waveforms. Geophys. J. Int. 114:1–11 [Google Scholar]
  11. Birch F. 1940. The alpha-gamma transformation of iron at high pressures, and the problem of the Earth's magnetism. Am. J. Sci. 238:192 [Google Scholar]
  12. Birch F. 1952. Elasticity and constitution of the Earth's interior. J. Geophys. Res. 57:227–86 [Google Scholar]
  13. Buffett BA. 1997. Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388:571–73 [Google Scholar]
  14. Buffett BA. 2009. Onset and orientation of convection in the inner core. Geophys. J. Int. 179:711–19 [Google Scholar]
  15. Buffett BA, Huppert HE, Lister JR, Woods AW. 1992. Analytical models for solidification of the Earth's core. Nature 356:329–31 [Google Scholar]
  16. Buffett BA, Wenk H-R. 2001. Texturing of the Earth's inner core by Maxwell stresses. Nature 413:60–63 [Google Scholar]
  17. Bullen KE. 1946. A hypothesis on compressibility at pressures of the order of a million atmospheres. Nature 157:405 [Google Scholar]
  18. Bullen KE. 1951. Theoretical amplitudes of the seismic phase PKJKP. Geophys. Suppl. MNRAS 6:163–67 [Google Scholar]
  19. Cao A, Masson Y, Romanowicz B. 2007. Short wavelength topography on the inner-core boundary. Proc. Natl. Acad. Sci. USA 104:31–35 [Google Scholar]
  20. Cao A, Romanowicz B. 2004. Hemispherical transition of seismic attenuation at the top of the Earth's inner core. Earth Planet. Sci. Lett. 228:243–53 [Google Scholar]
  21. Cao A, Romanowicz B. 2007. Test of the innermost inner core models using broadband PKIKP travel time residuals. Geophys. Res. Lett. 34:L08303 [Google Scholar]
  22. Cao A, Romanowicz B, Takeuchi N. 2005. An observation of PKJKP: inferences on inner core shear properties. Science 308:1453–55 [Google Scholar]
  23. Collier J, Helffrich G. 2001. Estimate of inner core rotation rate from United Kingdom regional seismic network data and consequences for inner core dynamical behaviour. Earth Planet. Sci. Lett. 193:523–37 [Google Scholar]
  24. Cormier VF. 2007. Texture of the uppermost inner core from forward- and back-scattered seismic waves. Earth Planet. Sci. Lett. 258:442–53 [Google Scholar]
  25. Cormier VF, Attanayake J, He K. 2011. Inner core freezing and melting: constraints from seismic body waves. Phys. Earth Planet. Inter. 188:163–72 [Google Scholar]
  26. Cormier VF, Li X. 2002. Frequency-dependent seismic attenuation in the inner core. 2. A scattering and fabric interpretation. J. Geophys. Res. 107:B122362 [Google Scholar]
  27. Cormier VF, Stroujkova A. 2005. Waveform search for the innermost inner core. Earth Planet. Sci. Lett. 236:96–105 [Google Scholar]
  28. Côté AS, Vočadlo L, Brodholt JP. 2008. Light elements in the core: effects of impurities on the phase diagram of iron. Geophys. Res. Lett. 35:L05306 [Google Scholar]
  29. Cottaar S, Buffett B. 2012. Convection in the Earth's inner core. Phys. Earth Planet. Inter. 198–199:67–78 [Google Scholar]
  30. Creager KC. 1992. Anisotropy of the inner core from differential travel-times of the phases PKP and PKIKP. Nature 356:309–14 [Google Scholar]
  31. Creager KC. 1997. Inner core rotation rate from small-scale heterogeneity and time-varying travel times. Science 278:1284–88 [Google Scholar]
  32. Creager KC. 1999. Large-scale variations in inner core anisotropy. J. Geophys. Res. 104:B1023127–39 [Google Scholar]
  33. Creager KC. 2000. Inner core anisotropy and rotation. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale S Karato, A Forte, R Liebermann, G Masters, L Stixrude 89–114 Geophys. Monogr. Ser. 117 Washington, DC: AGU [Google Scholar]
  34. Dahlen FA, Tromp J. 1998. Theoretical Global Seismology. Princeton, NJ: Princeton Univ. Press [Google Scholar]
  35. Deguen R. 2012. Structure and dynamics of Earth's inner core. Earth Planet. Sci. Lett. 333–34:211–25 [Google Scholar]
  36. Deguen R, Cardin P, Merkel S, Lebensohn RA. 2011. Texturing in Earth's inner core due to preferential growth in its equatorial belt. Phys. Earth Planet. Inter. 188:173–84 [Google Scholar]
  37. Deuss A. 2008. Normal mode constraints on shear and compressional wave velocity of the Earth's inner core. Earth Planet. Sci. Lett. 268:364–75 [Google Scholar]
  38. Deuss A, Irving JCE, Woodhouse JH. 2010. Regional variation of inner core anisotropy from seismic normal mode observations. Science 328:1018–20 [Google Scholar]
  39. Deuss A, Ritsema J, van Heijst H. 2011. Splitting function measurements for Earth's longest period normal modes using recent large earthquakes. Geophys. Res. Lett. 38:L04303 [Google Scholar]
  40. Deuss A, Ritsema J, van Heijst H. 2013. A new catalogue of normal-mode splitting function measurements up to 10 mHz. Geophys. J. Int. 193:920–37 [Google Scholar]
  41. Deuss A, Woodhouse J. 2001. Theoretical free-oscillation spectra: the importance of wide band coupling. Geophys. J. Int. 146:833–42 [Google Scholar]
  42. Deuss A, Woodhouse J, Paulssen H, Trampert J. 2000. The observation of inner core shear waves. Geophys. J. Int. 142:67–73 [Google Scholar]
  43. Doornbos DJ. 1974. The anelasticity of the inner core. Geophys. J. R. Astron. Soc. 38:397–415 [Google Scholar]
  44. Dubrovinsky L, Dubrovinskaia N, Narygina O, Kantor I, Kuznetzov A. et al. 2007. Body-centered cubic iron-nickel alloy in Earth's core. Science 316:1880–83 [Google Scholar]
  45. Dumberry M. 2010. Gravitationally driven inner core differential rotation. Earth Planet. Sci. Lett. 297:387–94 [Google Scholar]
  46. Dumberry M, Mound J. 2010. Inner core-mantle gravitational locking and the super-rotation of the inner core. Geophys. J. Int. 181:806–17 [Google Scholar]
  47. Durek JJ, Romanowicz B. 1999. Inner core anisotropy inferred by direct inversion of normal mode spectra. Geophys. J. Int. 139:599–622 [Google Scholar]
  48. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25:297–356 [Google Scholar]
  49. Dziewonski AM, Gilbert F. 1971. Solidity of the inner core of the Earth inferred from normal mode observations. Nature 234:465–66 [Google Scholar]
  50. Fearn D, Loper D, Roberts P. 1981. Structure of the Earth's inner core. Nature 292:232–33 [Google Scholar]
  51. Gannarelli C, Alfè D, Gillan M. 2005. The axial ratio of hcp iron at the conditions of the Earth's inner core. Phys. Earth Planet. Inter. 152:67–77 [Google Scholar]
  52. Garcia R. 2002. Constraints on upper inner-core structure from waveform inversion of core phases. Geophys. J. Int. 150:651–64 [Google Scholar]
  53. Garcia R, Souriau A. 2000. Inner core anisotropy and heterogeneity level. Geophys. Res. Lett. 27:3121–24 [Google Scholar]
  54. Garcia R, Tkalčić H, Chevrot S. 2006. A new global PKP data set to study Earth's core and deep mantle. Phys. Earth Planet. Inter. 159:15–31 [Google Scholar]
  55. Geballe ZM, Lasbleis M, Cormier VF, Day EA. 2013. Sharp hemisphere boundaries in a translating inner core. Geophys. Res. Lett. 40:1719–23 [Google Scholar]
  56. Glatzmaier G, Roberts PH. 1995. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91:63–75 [Google Scholar]
  57. Gubbins D. 1981. Rotation of the inner core. J. Geophys. Res. 86:B1211695–99 [Google Scholar]
  58. Gubbins D, Alfè D, Masters G, Price D, Gillan M. 2003. Can the Earth's dynamo run on heat alone?. Geophys. J. Int. 155:609–22 [Google Scholar]
  59. Gubbins D, Sreenivasan B, Mound J, Rost S. 2011. Melting of the Earth's inner core. Nature 473:361–63 [Google Scholar]
  60. He X, Tromp J. 1996. Normal-mode constraints on the structure of the Earth. J. Geophys. Res. 101:B920053–82 [Google Scholar]
  61. Irving JCE, Deuss A. 2011a. Hemispherical structure in inner core velocity anisotropy. J. Geophys. Res. 116:B04307 [Google Scholar]
  62. Irving JCE, Deuss A. 2011b. Stratified anisotropic structure at the top of Earth's inner core: a normal mode study. Phys. Earth Planet. Inter. 186:59–69 [Google Scholar]
  63. Irving JCE, Deuss A, Woodhouse JH. 2009. Normal mode coupling due to hemispherical anisotropic structure in Earth's inner core. Geophys. J. Int. 178:962–75 [Google Scholar]
  64. Ishii M, Dziewonski A. 2002. The innermost inner core of the Earth: evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl. Acad. Sci. USA 99:14026–30 [Google Scholar]
  65. Ishii M, Dziewonski A. 2003. Distinct seismic anisotropy at the centre of the Earth. Phys. Earth Planet. Inter. 140:203–17 [Google Scholar]
  66. Ishii M, Dziewonski AM, Tromp J, Ekström G. 2002a. Joint inversion of normal mode and body wave data for inner core anisotropy. 2. Possible complexities. J. Geophys. Res. 107:B122380 [Google Scholar]
  67. Ishii M, Tromp J, Dziewonski AM, Ekström G. 2002b. Joint inversion of normal mode and body wave data for inner core anisotropy. 1. Laterally homogeneous anisotropy. J. Geophys. Res. 107:B122379 [Google Scholar]
  68. Isse T, Nakanishi I. 2002. Inner-core anisotropy beneath Australia and differential rotation. Geophys. J. Int. 151:255–63 [Google Scholar]
  69. Ivan M, Marza V, Caixeta D, Arraes T. 2006. Uppermost inner core attenuation from PKP data observed at some South American seismological stations. Geophys. J. Int. 164:441–48 [Google Scholar]
  70. Jeanloz R, Wenk H-R. 1988. Convection and anisotropy of the inner core. Geophys. Res. Lett. 15:72–75 [Google Scholar]
  71. Jephcoat A, Olsen P. 1987. Is the inner core of the Earth pure iron?. Nature 325:332–35 [Google Scholar]
  72. Julian BR, Davies D, Sheppard RM. 1972. PKJKP. Nature 235:317–18 [Google Scholar]
  73. Karato S. 1993. Inner core anisotropy due to the magnetic field–induced preferred orientation of iron. Science 262:1708–11 [Google Scholar]
  74. Karato S. 1999. Seismic anisotropy of Earth's inner core caused by Maxwell stress–induced flow. Nature 402:871–73 [Google Scholar]
  75. Kazama T, Kawakatsu H, Takeuchi N. 2008. Depth-dependent attenuation structure of the inner core inferred from short-period Hi-net data. Phys. Earth Planet. Inter. 167:155–60 [Google Scholar]
  76. Koot L, Dumberry M. 2011. Viscosity of the Earth's inner core: constraints from nutation observations. Earth Planet. Sci. Lett. 308:343–49 [Google Scholar]
  77. Koper KD, Dombrovskaya M. 2005. Seismic properties of the inner core boundary from PKiKP/P amplitude ratios. Earth Planet. Sci. Lett. 237:680–94 [Google Scholar]
  78. Koper KD, Pyle M. 2004. Observations of PKiKP/PcP amplitude ratios and implications for earth structure at the boundaries of the liquid core. J. Geophys. Res. 109:B03301 [Google Scholar]
  79. Krasnoshchekov DN, Kaazik PB, Ovtchinnikov VM. 2005. Seismological evidence for mosaic structure of the surface of the Earth's inner core. Nature 435:483–87 [Google Scholar]
  80. Laske G, Masters G. 1999. Limits on differential rotation of the inner core from an analysis of the Earth's free oscillations. Nature 402:66–69 [Google Scholar]
  81. Laske G, Masters G. 2003. The Earth's free oscillations and the differential rotation of the inner core. Earth's Core: Dynamics, Structure, Rotation V Dehant, KC Creager, S Karato, S Zatman 5–22 AGU Geodyn. Ser. 31 Washington, DC: AGU [Google Scholar]
  82. Lehmann I. 1936. P′. Publ. Bur. Cent. Seismol. Int. A 14:87–115 [Google Scholar]
  83. Li A, Richards P. 2003. Using earthquake doublets to study inner core rotation and seismicity catalog precision. Geochem. Geophys. Geosyst. 4:1072 [Google Scholar]
  84. Li X, Cormier V. 2002. Frequency-dependent seismic attenuation in the inner core. 1. A viscoelastic interpretation. J. Geophys. Res. 107:B122361 [Google Scholar]
  85. Lindner D, Song X, Ma P, Christensen DH. 2010. Inner core rotation and its variability from nonparametric modeling. J. Geophys. Res. 115:B04307 [Google Scholar]
  86. Lythgoe K, Deuss A, Rudge J, Neufeld J. 2013. Earth's inner core: innermost inner core or hemispherical variations?. Earth Planet. Sci. Lett. 385:181–89 [Google Scholar]
  87. Mäkinen A, Deuss A. 2011. Global seismic body-wave observations of temporal variations in the Earth's inner core, and implications for its differential rotation. Geophys. J. Int. 187:355–70 [Google Scholar]
  88. Mäkinen A, Deuss A. 2013. Normal mode splitting function measurements of anelasticity and attenuation in the Earth's inner core. Geophys. J. Int. 194:401–16 [Google Scholar]
  89. Masters G, Gubbins D. 2003. On the resolution of density within the Earth. Phys. Earth Planet. Inter. 140:159–67 [Google Scholar]
  90. Masters G, Laske G, Gilbert F. 2000. Autoregressive estimation of the splitting matrix of free-oscillation multiplets. Geophys. J. Int. 141:25–42 [Google Scholar]
  91. McSweeney TJ, Creager KC, Merrill RT. 1997. Depth extent of inner-core anisotropy and implications for geomagnetism. Phys. Earth Planet. Inter. 101:131–56 [Google Scholar]
  92. Monnereau M, Calvet M, Margerin L, Souriau A. 2010. Lopsided growth of Earth's inner core. Science 328:1014–17 [Google Scholar]
  93. Mooney WD, Laske G, Masters G. 1998. CRUST5.1: a global crustal model at 5° × 5°. J. Geophys. Res. 103:B1727–47 [Google Scholar]
  94. Morelli A, Dziewonski AM, Woodhouse JH. 1986. Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett. 13:1545–48 [Google Scholar]
  95. Nimmo F. 2007. Energetics of the core. Treatise on Geophysics 8 Core Dynamics P Olson 31–66 New York: Elsevier [Google Scholar]
  96. Niu F, Chen Q-F. 2008. Seismic evidence for distinct anisotropy in the innermost inner core. Nat. Geosci. 1:692–96 [Google Scholar]
  97. Niu F, Wen L. 2001. Hemispherical variations in seismic velocity at the top of the Earth's inner core. Nature 410:1081–84 [Google Scholar]
  98. Niu F, Wen L. 2002. Seismic anisotropy in the top 400 km of the inner core beneath the “eastern” hemisphere. Geophys. Res. Lett. 29:1611 [Google Scholar]
  99. Okal EA, Cansi Y. 1998. Detection of PKJKP at intermediate periods by progressive multi-channel correlation. Earth Planet. Sci. Lett. 164:23–30 [Google Scholar]
  100. Oldham RD. 1906. The constitution of the interior of the Earth, as revealed by earthquakes. Q. J. Geol. Soc. 62:456–75 [Google Scholar]
  101. Oreshin S, Vinnik L. 2004. Heterogeneity and anisotropy of seismic attenuation in the inner core. Geophys. Res. Lett. 31:L02613 [Google Scholar]
  102. Ouzounis A, Creager K. 2001. Isotropy overlying anisotropy at the top of the inner core. Geophys. Res. Lett. 28:4331–34 [Google Scholar]
  103. Poupinet G, Pillet R, Sourriau A. 1983. Possible heterogeneity of the Earth's core deduced from PKIKP travel times. Nature 305:204–6 [Google Scholar]
  104. Poupinet G, Souriau A, Coutant O. 2000. The existence of an inner core super-rotation questioned by teleseismic doublets. Phys. Earth Planet. Inter. 118:77–88 [Google Scholar]
  105. Pozzo M, Davies C, Gubbins D, Alfè D. 2012. Thermal and electrical conductivity of iron at Earth's core conditions. Nature 485:355–58 [Google Scholar]
  106. Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH. 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184:1223–36 [Google Scholar]
  107. Romanowicz B, Breger L. 2000. Anomalous splitting of free oscillations: a re-evaluation of possible interpretations. J. Geophys. Res. 105:B921559–78 [Google Scholar]
  108. Romanowicz B, Li X, Durek J. 1996. Anisotropy in the inner core: Could it be due to low-order convection?. Science 274:963–66 [Google Scholar]
  109. Sakai T, Ohtani E, Hirao N, Ohishi Y. 2011. Stability field of the hcp-structure for Fe, Fe-Ni, and Fe-Ni-Si alloys up to 3 Mbar. Geophys. Res. Lett. 38:L09302 [Google Scholar]
  110. Sharrock DS, Woodhouse JH. 1998. Investigation of time dependent inner core structure by the analysis of free oscillation spectra. Earth Planets Space 50:1013–18 [Google Scholar]
  111. Shearer PM. 1994. Constraints on inner-core anisotropy from PKP(DF) travel-times. J. Geophys. Res. 99:B1019647–59 [Google Scholar]
  112. Shearer PM, Rychert CA, Liu Q. 2011. On the visibility of the inner-core shear wave phase PKJKP at long periods. Geophys. J. Int. 185:1379–83 [Google Scholar]
  113. Shearer PM, Toy KM. 1991. PKP(BC) versus PKP(DF) differential travel-times and aspherical structure in the Earth's inner core. J. Geophys. Res. 96:B22233–47 [Google Scholar]
  114. Singh SC, Taylor MAJ, Montagner JP. 2000. On the presence of liquid in the Earth's inner core. Science 287:2471–72 [Google Scholar]
  115. Song X. 2000. Joint inversion for inner core rotation, inner core anisotropy, and mantle heterogeneity. J. Geophys. Res. 105:B47931–43 [Google Scholar]
  116. Song X, Dai W. 2008. Topography of Earth's inner core boundary from high-quality waveform doublets. Geophys. J. Int. 175:386–99 [Google Scholar]
  117. Song X, Helmberger DV. 1995. Depth dependence of anisotropy of Earth's inner core. J. Geophys. Res. 100:B69805–16 [Google Scholar]
  118. Song X, Helmberger DV. 1998. Seismic evidence for an inner core transition zone. Science 282:924–27 [Google Scholar]
  119. Song X, Li A. 2000. Support for differential inner core superrotation from earthquakes in Alaska recorded at South Pole station. J. Geophys. Res. 105:B1623–30 [Google Scholar]
  120. Song X, Poupinet G. 2007. Inner core rotation from event-pair analysis. Earth Planet. Sci. Lett. 261:259–66 [Google Scholar]
  121. Song X, Richards P. 1996. Seismological evidence for differential rotation of the Earth's inner core. Nature 382:221–24 [Google Scholar]
  122. Song X, Xu X. 2002. Inner core transition zone and anomalous PKP(DF) waveforms from polar paths. Geophys. Res. Lett. 29:1042 [Google Scholar]
  123. Souriau A. 1998. New seismological constraints on differential rotation of the inner core from Novaya Zemlya events recorded at DRV, Antarctica. Geophys. J. Int. 134:F1–5 [Google Scholar]
  124. Souriau A, Poupinet G. 2000. Inner core rotation: a test at the worldwide scale. Phys. Earth Planet. Inter. 118:13–27 [Google Scholar]
  125. Souriau A, Romanowicz B. 1996. Anisotropy in inner core attenuation: a new type of data to constrain the nature of the solid core. Geophys. Res. Lett. 23:1–4 [Google Scholar]
  126. Souriau A, Romanowicz B. 1997. Anisotropy in the inner core: relation between P-wave velocity and attenuation. Phys. Earth Planet. Inter. 101:33–47 [Google Scholar]
  127. Souriau A, Roudil P. 1995. Attenuation in the uppermost inner core from broad-band GEOSCOPE PKP data. Geophys. J. Int. 123:527–87 [Google Scholar]
  128. Souriau A, Souriau M. 1989. Ellipticity and density at the inner core boundary from subcritical PKiKP and PcP data. Geophys. J. Int. 98:39–54 [Google Scholar]
  129. Steinle-Neumann G, Stixrude L, Cohen R, Gulseren O. 2001. Elasticity of iron at the temperature of the Earth's inner core. Nature 413:57–60 [Google Scholar]
  130. Stixrude L, Cohen RE. 1995. High-pressure elasticity of iron and anisotropy of Earth's inner core. Science 267:1972–75 [Google Scholar]
  131. Stixrude L, Wasserman E, Cohen R. 1997. Composition and temperature of Earth's inner core. J. Geophys. Res. 102:B1124729–39 [Google Scholar]
  132. Su WJ, Dziewonski AM. 1995. Inner-core anisotropy in three dimensions. J. Geophys. Res. 100:B69831–52 [Google Scholar]
  133. Su WJ, Dziewonski AM, Jeanloz R. 1996. Planet within a planet: rotation of the inner core of Earth. Science 274:1883–87 [Google Scholar]
  134. Sumita I, Olson P. 1999. A laboratory model for convection in Earth's core driven by a thermally heterogeneous mantle. Science 286:1547–49 [Google Scholar]
  135. Sun X, Song X. 2008. Tomographic inversion for three-dimensional anisotropy of Earth's inner core. Phys. Earth Planet. Inter. 167:53–70 [Google Scholar]
  136. Tanaka S. 2012. Depth extent of hemispherical inner core from PKP(DF) and PKP(Cdiff) for equatorial paths. Phys. Earth Planet. Inter. 210–211:50–62 [Google Scholar]
  137. Tanaka S, Hamaguchi H. 1997. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. J. Geophys. Res. 102:B22925–38 [Google Scholar]
  138. Tateno S, Hirose K, Komabayashi T, Ozawa H, Ohishi Y. 2012. The structure of Fe-Ni alloy in Earth's inner core. Geophys. Res. Lett. 39:L12305 [Google Scholar]
  139. Tateno S, Hirose K, Ohishi Y, Tatsumi Y. 2010. The structure of iron in Earth's inner core. Science 330:359–61 [Google Scholar]
  140. Tkalčić H. 2010. Large variations in travel times of mantle-sensitive seismic waves from the South Sandwich Islands: Is the Earth's inner core a conglomerate of anisotropic domains?. Geophys. Res. Lett. 37:L14312 [Google Scholar]
  141. Tkalčić H, Kennett BLN, Cormier VF. 2009. On the inner-outer core density contrast from PKiKP/PcP amplitude ratios and uncertainties caused by seismic noise. Geophys. J. Int. 179:425–43 [Google Scholar]
  142. Tkalčić H, Young M, Bodin T, Ngo S, Sambridge M. 2013. The shuffling rotation of the Earth's inner core revealed by earthquake doublets. Nat. Geosci. 6:497–502 [Google Scholar]
  143. Tomiyama K, Oda H. 2008. Estimation of inner-core rotation rate by using the Earth's free oscillation. Acta Geophys. 56:939–56 [Google Scholar]
  144. Tromp J. 1995. Normal-mode splitting due to inner-core anisotropy. Geophys. J. Int. 121:963–68 [Google Scholar]
  145. Tseng T, Huang B, Chin B. 2001. Depth-dependent attenuation in the uppermost inner core from the Taiwan short period seismic array PKP data. Geophys. Res. Lett. 28:459–62 [Google Scholar]
  146. Vidale JE, Dodge DA, Earle PS. 2000. Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering. Nature 405:445–48 [Google Scholar]
  147. Vidale JE, Earle PS. 2000. Fine-scale heterogeneity in the Earth's inner core. Nature 404:273–75 [Google Scholar]
  148. Vidale JE, Earle PS. 2005. Evidence for inner-core rotation from possible changes with time in PKP coda. Geophys. Res. Lett. 32:L01309 [Google Scholar]
  149. Vinnik L, Romanowicz B, Breger L. 1994. Anisotropy in the center of the inner-core. Geophys. Res. Lett. 21:1671–74 [Google Scholar]
  150. Vočadlo L, Alfè D, Gillan M, Price G. 2003a. The properties of iron under core conditions from first principles calculations. Phys. Earth Planet. Inter. 140:101–25 [Google Scholar]
  151. Vočadlo L, Alfè D, Gillan M, Wood I, Brodholt J, Price G. 2003b. Possible thermal and chemical stabilisation of body-centred-cubic iron in the Earth's core. Nature 424:536–39 [Google Scholar]
  152. Vočadlo L, Brodholt J, Alfè D, Gillan MJ, Price GD. 2000. Ab initio free energy calculations on the polymorphs of iron at core conditions. Phys. Earth Planet. Inter. 117:123–37 [Google Scholar]
  153. Vočadlo L, Dobson DP, Wood IG. 2009. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett. 288:534–38 [Google Scholar]
  154. Vočadlo L, Wood IG, Alfè D, Price G. 2008. Ab initio calculations on the free energy and high P-T elasticity of face-centred-cubic iron. Earth Planet. Sci. Lett. 268:444–49 [Google Scholar]
  155. Waszek L, Deuss A. 2011. Distinct layering in the hemispherical seismic velocity structure of Earth's upper inner core. J. Geophys. Res. 116:B12313 [Google Scholar]
  156. Waszek L, Deuss A. 2013. A low attenuation layer in Earth's uppermost inner core. Geophys. J. Int. 195:2005–15 [Google Scholar]
  157. Waszek L, Irving J, Deuss A. 2011. Reconciling the hemispherical structure of Earth's inner core with its super-rotation. Nat. Geosci. 4:264–67 [Google Scholar]
  158. Wen L, Niu F. 2002. Seismic velocity and attenuation structures in the top of the Earth's inner core. J. Geophys. Res. 107:B112273 [Google Scholar]
  159. Woodhouse JH, Deuss A. 2007. Earth's free oscillations. Treatise on Geophysics 1 Seismology and Structure of the Earth B Romanowicz, A Dziewonski 31–65 New York: Elsevier [Google Scholar]
  160. Woodhouse JH, Giardini D, Li X. 1986. Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett. 13:1549–52 [Google Scholar]
  161. Wookey J, Helffrich G. 2008. Inner-core shear-wave anisotropy and texture from an observation of PKJKP waves. Nature 454:873–76 [Google Scholar]
  162. Xu X, Song X. 2003. Evidence for inner core super-rotation from time-dependent differential PKP traveltimes observed at Beijing Seismic Network. Geophys. J. Int. 152:509–14 [Google Scholar]
  163. Yoshida SI, Sumita I, Kumazawa M. 1996. Growth model of the inner core coupled with the outer core dynamics and the resulting anisotropy. J. Geophys. Res. 101:B1228085–103 [Google Scholar]
  164. Yu W, Wen L. 2006a. Inner core attenuation anisotropy. Earth Planet. Sci. Lett. 245:581–94 [Google Scholar]
  165. Yu W, Wen L. 2006b. Seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths. J. Geophys. Res. 111:B07308 [Google Scholar]
  166. Yu W, Wen L. 2007. Complex seismic anisotropy in the top of the Earth's inner core beneath Africa. J. Geophys. Res. 112:B08304 [Google Scholar]
  167. Yu W, Wen L, Niu F. 2005. Seismic velocity structure in the Earth's outer core. J. Geophys. Res. 110:B02302 [Google Scholar]
  168. Zhang J, Richards PG, Schaff DP. 2008. Wide-scale detection of earthquake waveform doublets and further evidence for inner core super-rotation. Geophys. J. Int. 174:993–1006 [Google Scholar]
  169. Zhang J, Song X, Li Y, Richards P, Sun X, Waldhauser F. 2005. Inner core differential motion confirmed by earthquake waveform doublets. Science 309:1357–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error