The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aller RC. 2014. Sedimentary diagenesis, depositional environments, and benthic fluxes. Treatise on Geochemistry 8 The Oceans and Marine Geochemistry MJ Mottl, H Elderfield 293–334 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  2. Aller RC, Blair NE, Brunskill GJ. 2008. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea). J. Geophys. Res. 113:F01S09 [Google Scholar]
  3. Aller RC, Madrid V, Chistoserdov A, Aller JY, Heilbrun C. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record. Geochim. Cosmochim. Acta 74:4671–92 [Google Scholar]
  4. Amrani A, Said-Ahamed W, Lewan MD, Aizenshtat Z. 2006. Experiments on δ34S mixing between organic and inorganic sulfur species during thermal maturation. Geochim. Cosmochim. Acta 70:5146–61 [Google Scholar]
  5. Banner JL, Hanson GN. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54:3123–37 [Google Scholar]
  6. Berner RA. 1984. Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta 48:605–15 [Google Scholar]
  7. Berner RA. 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65:685–94 [Google Scholar]
  8. Berner RA, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta 47:855–62 [Google Scholar]
  9. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–36 [Google Scholar]
  10. Böttcher ME, Thamdrup B. 2001. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochim. Cosmochim. Acta 65:1573–81 [Google Scholar]
  11. Böttcher ME, Thamdrup B, Vennemann TW. 2001. Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim. Cosmochim. Acta 65:1601–9 [Google Scholar]
  12. Bowring SA, Grotzinger JP, Condon DJ, Ramezani J, Newall M. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307:1097–145 [Google Scholar]
  13. Bradley AS, Leavitt WD, Johnston DT. 2011. Revisiting the dissimilatory sulfate reduction network. Geobiology 9:446–57 [Google Scholar]
  14. Brand U, Veizer J. 1980. Chemical diagenesis of a multicomponent carbonate system. 1: Trace elements. J. Sediment. Petrol. 50:1219–36 [Google Scholar]
  15. Brennan ST, Lowenstein TK, Horita J. 2004. Seawater chemistry and the advent of biocalcification. Geology 32:473–76 [Google Scholar]
  16. Brunner B, Bernasconi SM. 2005. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta 69:4759–71 [Google Scholar]
  17. Bryant DA, Frigaard NU. 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14:488–96 [Google Scholar]
  18. Burdett JW, Arthur MA, Richardson M. 1989. A Neogene seawater sulfate isotope age curve from calcareous pelagic microfossils. Earth Planet. Sci. Lett. 94:189–98 [Google Scholar]
  19. Canfield DE. 1991. Sulfate reduction in deep-sea sediments. Am. J. Sci. 291:177–88 [Google Scholar]
  20. Canfield DE. 2001a. Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43:607–36 [Google Scholar]
  21. Canfield DE. 2001b. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65:1117–24 [Google Scholar]
  22. Canfield DE. 2004. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304:839–61 [Google Scholar]
  23. Canfield DE, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS 106:8123–27 [Google Scholar]
  24. Canfield DE, Farquhar J, Zerkle AL. 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38:415–18 [Google Scholar]
  25. Canfield DE, Poulton SW, Narbonne GM. 2007. Late Neoproterozoic deep ocean oxygenation and the rise of animal life. Science 315:92–95 [Google Scholar]
  26. Canfield DE, Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–32 [Google Scholar]
  27. Canfield DE, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–75 [Google Scholar]
  28. Canfield DE, Thamdrup B. 1996. Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol. Ecol. 19:95–103 [Google Scholar]
  29. Chambers LA, Trudinger PA. 1975. Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction?. J. Bacteriol. 123:36–40 [Google Scholar]
  30. Chambers LA, Trudinger PA, Smith JW, Burns MS. 1975. Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Can. J. Microbiol. 21:1602–7 [Google Scholar]
  31. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28:199–260 [Google Scholar]
  32. Copper P. 1999. Brachiopods during and after the Late Ordovician mass extinctions on Anticosti Island, E Canada. Acta Univ. Carol. Geol. 43:207–9 [Google Scholar]
  33. Crowe S, Paris G, Katsev S, Jones C, Kim ST. et al. 2014. Sulfate was a trace constituent of Archean seawater. Science 346:735–39 [Google Scholar]
  34. Cypionka H. 1995. Solute transport and cell energetics. Sulfate-Reducing Bacteria L Barton 151–84 New York: Plenum [Google Scholar]
  35. Cypionka H. 2000. Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54:827–48 [Google Scholar]
  36. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J. et al. 2005. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J. Bacteriol. 187:1392–404 [Google Scholar]
  37. Des Marais DJ, Strauss H, Summons RE, Hayes JM. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359:605–9 [Google Scholar]
  38. Desrochers A, Farley C, Achab A, Asselin E, Riva JF. 2010. A far-field record of the end Ordovician glaciation: the Ellis Bay Formation, Anticosti Island, Eastern Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296:248–63 [Google Scholar]
  39. Drake J, Akagi J. 1977. Characterization of a novel thiosulfate-forming enzyme isolated from Desulfovibrio vulgaris. J. Bacteriol. 132:132–38 [Google Scholar]
  40. Farquhar J, Wing B. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213:1–13A detailed overview of minor isotope fractionation and the Archean sulfur cycle. [Google Scholar]
  41. Fike DA, Finke N, Zha J, Blake G, Hoehler TM, Orphan VJ. 2009. The effect of sulfate concentration on (sub)millimeter-scale sulfide δ34S in hypersaline cyanobacterial mats over the diurnal cycle. Geochim. Cosmochim. Acta 73:6187–204 [Google Scholar]
  42. Fike DA, Gammon CL, Ziebis W, Orphan VJ. 2008. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J. 2:749–59 [Google Scholar]
  43. Fike DA, Grotzinger JP. 2008. A paired sulfate–pyrite δ34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle. Geochim. Cosmochim. Acta 72:2636–48 [Google Scholar]
  44. Fike DA, Grotzinger JP. 2010. Reconstructing biogenic pyrite burial in evaporite basins: an example from the Ara Group, Sultanate of Oman. Geology 38:371–74 [Google Scholar]
  45. Fike DA, Grotzinger JP, Pratt LM, Summons RE. 2006. Oxidation of the Ediacaran ocean. Nature 444:744–47 [Google Scholar]
  46. Fike DA, Jones DS. 2012. Micron-scale analysis of carbonate-associated sulfate by secondary ionization mass spectrometry: insights into spatial variability in δ34S Presented at AGU Fall Meet., Dec. 3–7, San Francisco. Abstr. B24E-05 [Google Scholar]
  47. Finnegan S, Bergmann K, Eiler JM, Jones DS, Fike DA. et al. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331:903–6 [Google Scholar]
  48. Finnegan S, Fike DA, Jones DS, Fischer WW. 2012. A temperature-dependent positive feedback on the magnitude of carbon isotope excursions. Geosci. Can. 39:122–31 [Google Scholar]
  49. Finster K. 2008. Microbiological disproportionation of inorganic sulfur compounds. J. Sulfur Chem. 29:281–92 [Google Scholar]
  50. Fischer WW, Fike DA, Johnson JE, Raub TD, Guan Y, Kirschvink JL. 2014. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. PNAS 111:5468–73 [Google Scholar]
  51. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. 2005. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8:253–59 [Google Scholar]
  52. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl. Environ. Microbiol. 67:2873–82 [Google Scholar]
  53. Fry B, Gest H, Hayes JM. 1984. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum. FEMS Microbiol. Lett. 22:283–87 [Google Scholar]
  54. Fry B, Gest H, Hayes JM. 1985. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium Chromatium vinosum. FEMS Microbiol. Lett. 27:227–32 [Google Scholar]
  55. Fry B, Ruf W, Gest H, Hayes JM. 1988. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chem. Geol. 73:205–10 [Google Scholar]
  56. Gao J, Fike DA, Aller RC. 2013. Enriched pyrite δ34S signals in modern tropical deltaic muds Presented at AGU Fall Meet., Dec. 9–13, San Francisco. Abstr. B31A-0352 [Google Scholar]
  57. Garrels RM, Lerman A. 1981. Phanerozoic cycles of sedimentary carbon and sulfur. PNAS 78:4652–56 [Google Scholar]
  58. Ghosh W, Dam B. 2009. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol. Rev. 33:999–1043 [Google Scholar]
  59. Gill BC, Lyons TW, Saltzman MR. 2007. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256:156–73 [Google Scholar]
  60. Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature 469:80–83 [Google Scholar]
  61. Gomes ML, Hurtgen MT. 2013. Sulfur isotope systematics of a euxinic, low-sulfate lake: evaluating the importance of the reservoir effect in modern and ancient oceans. Geology 41:663–66 [Google Scholar]
  62. Gorjan P, Kaiho K, Fike DA, Xu C. 2012. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: global correlation and environmental event interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 337–38:14–22 [Google Scholar]
  63. Grotzinger JP, Kasting JF. 1993. New constraints on Precambrian ocean composition. J. Geol. 101:235–43 [Google Scholar]
  64. Grotzinger JP, Miller R. 2008. The Nama Group. The Geology of Namibia RM Miller 13229–72 Windhoek: Geol. Surv. Namib. [Google Scholar]
  65. Guo Q, Strauss H, Kaufman AJ, Schroeder S, Gutzmer J. et al. 2009. Reconstructing Earth's surface oxidation across the Archean–Proterozoic transition. Geology 37:399–402 [Google Scholar]
  66. Habicht KS, Canfield DE. 1996. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382:342–43 [Google Scholar]
  67. Habicht KS, Canfield DE. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta 61:5351–61 [Google Scholar]
  68. Habicht KS, Canfield DE, Rethmeier J. 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochim. Cosmochim. Acta 62:2585–95 [Google Scholar]
  69. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE. 2002. Calibration of sulfate levels in the Archean ocean. Science 298:2372–74 [Google Scholar]
  70. Halevy I, Peters SE, Fischer WW. 2012. Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337:331–34 [Google Scholar]
  71. Hannington MD. 2014. Volcanogenic massive sulfide deposits. Treatise on Geochemistry 13 Geochemistry of Mineral Deposits SD Scott 463–88 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  72. Harrison A, Thode H. 1958. Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Trans. Faraday Soc. 54:84–92The first detailed investigation into isotopic fractionation during microbial sulfate reduction. [Google Scholar]
  73. Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL. et al. 2011. Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J. Bacteriol. 193:4268–69 [Google Scholar]
  74. Hayes JM, Waldbauer JR. 2006. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361:931–50 [Google Scholar]
  75. Hoehler TM, Alperin MJ, Albert DB, Martens CS. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8:451–63 [Google Scholar]
  76. Holland HD. 1973. Systematics of isotopic composition of sulfur in oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochim. Cosmochim. Acta 37:2605–16The first attempt to quantitatively track sulfur fluxes using isotopes. [Google Scholar]
  77. Holser WT. 1977. Catastrophic chemical events in the history of the ocean. Nature 267:403–8The generation of an early (evaporite-based) δ34.SSO4 curve for the evolution of Phanerozoic seawater. [Google Scholar]
  78. Horita J, Zimmermann H, Holland HD. 2002. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66:3733–56 [Google Scholar]
  79. Hurtgen MT, Halverson GP, Arthur MA, Hoffman PF. 2006. Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: evidence for a syn-glacial sulfidic deep ocean. Earth Planet. Sci. Lett. 245:551–70 [Google Scholar]
  80. Hurtgen MT, Pruss SB, Knoll AH. 2009. Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: an example from the Port au Port Group, western Newfoundland, Canada. Earth Planet. Sci. Lett. 281:288–97 [Google Scholar]
  81. Johnston DT. 2011. Multiple sulfur isotopes and the evolution of the Earth's surface sulfur cycle. Earth Sci. Rev. 106:161–83 [Google Scholar]
  82. Johnston DT, Farquhar J, Wing BA, Kaufman AJ, Canfield DE, Habicht KS. 2005a. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 305:645–60 [Google Scholar]
  83. Johnston DT, Wing BA, Farquhar J, Kaufman AJ, Strauss H. et al. 2005b. Active microbial sulfur disproportionation in the Mesoproterozoic. Science 310:1477–79 [Google Scholar]
  84. Jones DS, Fike DA. 2013. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S. Earth Planet. Sci. Lett. 363:144–55 [Google Scholar]
  85. Jones DS, Fike DA, Finnegan S, Fischer WW, Schrag DP, McCay D. 2011. Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada). Geol. Soc. Am. Bull. 123:1645–64 [Google Scholar]
  86. Jørgensen BB. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–45 [Google Scholar]
  87. Jørgensen BB, Postgate JR. 1982. Ecology of the bacteria of the sulfur cycle with special reference to anoxic–oxic interface environments. Philos. Trans. R. Soc. B 298:543–61 [Google Scholar]
  88. Kah LC, Lyons TW, Chesley JT. 2001. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambrian Res. 111:203–34 [Google Scholar]
  89. Kah LC, Lyons TW, Frank TD. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–38 [Google Scholar]
  90. Kamber BS, Whitehouse MJ. 2007. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5:5–17 [Google Scholar]
  91. Kampschulte A, Strauss H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 204:255–86 [Google Scholar]
  92. Kaplan IR, Rittenberg SC. 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34:195–212A comprehensive look into both the reductive and oxidative sides of the sulfur cycle. [Google Scholar]
  93. Kaufman AJ, Corsetti FA, Varni MA. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem. Geol. 237:47–63 [Google Scholar]
  94. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H. et al. 2007. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901 [Google Scholar]
  95. Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63:311–34 [Google Scholar]
  96. Kobayashi K, Takahashi E, Ishimoto M. 1972. Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfite reductase, desulfoviridin. J. Biochem. 72:879–87 [Google Scholar]
  97. Kohn MJ, Riciputi LR, Stakes D, Orange DL. 1998. Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization. Am. Mineral. 83:1454–68 [Google Scholar]
  98. Kurtz AC, Kump LR, Arthur MA, Zachos JC, Paytan A. 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18:1090 [Google Scholar]
  99. Leavitt WD, Halevy I, Bradley AS, Johnston DT. 2013a. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. PNAS 110:11244–49 [Google Scholar]
  100. Leavitt WD, Pereira IC, Bradley AS, Guo W, Johnston DT. 2013b. Enzymatic constraints on the global S cycle: the fractionation factors of Dsr. Mineral. Mag. 77:1560 (Abstr.) [Google Scholar]
  101. Li C, Love GD, Lyons TW, Fike DA, Sessions AL, Chu X. 2010. A new stratified redox model for the Ediacaran ocean. Science 328:80–83 [Google Scholar]
  102. Long DGF. 1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Anticosti Island, Québec. Palaeogeogr. Palaeoclimatol. Palaeoecol. 104:49–59 [Google Scholar]
  103. Lowenstein TK, Hardie LA, Timofeeff MN, Demicco RV. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31:857–60 [Google Scholar]
  104. Loyd SJ, Marenco PJ, Hagadorn JW, Lyons TW, Kaufman AJ. et al. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: insights from carbonates of northwestern Mexico and eastern California. Earth Planet. Sci. Lett. 339–40:79–94 [Google Scholar]
  105. Macfarlane AW, Shimizu N. 1991. SIMS measurements of δ34S in sulfide minerals from adjacent vein and stratabound ores. Geochim. Cosmochim. Acta 55:525–41 [Google Scholar]
  106. Michaels GB, Davidson JT, Peck HD. 1970. A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate reductase from Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun. 39:321–28 [Google Scholar]
  107. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G. et al. 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–46 [Google Scholar]
  108. Nakagawa M, Ueno Y, Hattori S, Umemura M, Yagi A. et al. 2012. Seasonal change in microbial sulfur cycling in monomictic Lake Fukami-ike, Japan. Limnol. Oceanogr. 57:974–88 [Google Scholar]
  109. Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IAC, Archer M. 2008. The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 283:34141–49 [Google Scholar]
  110. Ono S, Beukes NJ, Rumble D. 2008. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res. 169:48–57 [Google Scholar]
  111. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–87 [Google Scholar]
  112. Paris G, Adkins JF, Sessions AL, Webb SM, Fischer WW. 2014a. Neoarchean carbonate–associated sulfate records positive δ33S anomalies. Science 346:739–41 [Google Scholar]
  113. Paris G, Fehrenbacher JS, Sessions AL, Spero HJ, Adkins JF. 2014b. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells. Geochem. Geophys. Geosyst. 15:1452–61 [Google Scholar]
  114. Paris G, Sessions AL, Subhas AV, Adkins JF. 2013. MC-ICP-MS measurement of δ34S and δ33S in small amounts of dissolved sulfate. Chem. Geol. 345:50–61 [Google Scholar]
  115. Parnell J, Boyce AJ, Mark D, Bowden SA, Spinks S. 2010. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature 468:290–93 [Google Scholar]
  116. Paytan A, Kastner M, Campbell D, Thiemens MH. 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–62 [Google Scholar]
  117. Paytan A, Kastner M, Campbell D, Thiemens MH. 2004. Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–65 [Google Scholar]
  118. Paytan A, Mearon S, Cobb K, Kastner M. 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology 30:747–50 [Google Scholar]
  119. Peck H. 1962. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev. 26:67–94 [Google Scholar]
  120. Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ. 2007. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–37 [Google Scholar]
  121. Raab M, Spiro B. 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chem. Geol. 86:323–33 [Google Scholar]
  122. Rabus R, Hansen TA, Widdel F. 2013. Dissimilatory sulfate- and sulfur-reducing prokaryotes. The Prokaryotes: Prokaryotic Physiology and Biochemistry E Rosenberg, EF DeLong, E Stackenbrandt, S Lory, F Thompson 309–404 Berlin: Springer-Verlag [Google Scholar]
  123. Raven MR, Adkins JF, Werne JP, Lyons TW, Sessions AL. 2015. Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments. Org. Geochem. 80:53–59 [Google Scholar]
  124. Rees CE. 1973. Steady-state model for sulfur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta 37:1141–62 [Google Scholar]
  125. Rickard D. 1995. Kinetics of FeS precipitation. Part 1: Competing reaction mechanisms. Geochim. Cosmochim. Acta 59:4367–79 [Google Scholar]
  126. Rickard D, Luther GW. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the mechanism. Geochim. Cosmochim. Acta 61:135–47 [Google Scholar]
  127. Ries JB, Fike DA, Pratt LM, Lyons TW, Grotzinger JP. 2009. Super-heavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, Southern Namibia: a consequence of low seawater sulfate at the dawn of animal life. Geology 37:743–46 [Google Scholar]
  128. Rohrssen M, Love GD, Fischer WW, Finnegan S, Fike DA. 2013. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnatian glaciation. Geology 41:127–30 [Google Scholar]
  129. Rose CV, Fike DA. 2013. Deciphering Earth history: mapping the spatial distribution and speciation of sulfur in Ordovician carbonates.. Presented at Midwest Geobiol. Symp., Sept. 28, Indianapolis, IN
  130. Sass H, Steuber J, Kroder M, Kroneck P, Cypionka H. 1992. Formation of thionates by fresh-water and marine strains of sulfate-reducing bacteria. Arch. Microbiol. 158:418–21 [Google Scholar]
  131. Saylor BZ, Grotzinger JP, Germs GJB. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), Southwestern Namibia. Precambrian Res. 73:153–71 [Google Scholar]
  132. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW. et al. 2008. Tracing stepwise oxygenation of the Proterozoic biosphere. Nature 452:456–59 [Google Scholar]
  133. Shen Y, Buick R, Canfield DE. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81 [Google Scholar]
  134. Shields G, Stille P, Brasier MD, Atudorei NV. 1997. Stratified oceans and oxygenation of the late Precambrian environment: a postglacial geochemical record from the Neoproterozoic of W Mongolia. Terra Nova 9:218–22 [Google Scholar]
  135. Sim MS, Bosak T, Ono S. 2011a. Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77 [Google Scholar]
  136. Sim MS, Ono S, Bosak T. 2012. Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction. Appl. Environ. Microbiol. 78:8368–76 [Google Scholar]
  137. Sim MS, Ono S, Donovan K, Templer SP, Bosak T. 2011b. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochim. Cosmochim. Acta 75:4244–59 [Google Scholar]
  138. Staudt WJ, Reeder RJ, Schoonen MAA. 1994. Surface structural controls on compositional zoning of SO42−and SeO42− in synthetic calcite single crystals. Geochim. Cosmochim. Acta 58:2087–98 [Google Scholar]
  139. Staudt WJ, Schoonen MAA. 1995. Sulfate incorporation into sedimentary carbonates. ACS Symp. Ser. 612:332–45 [Google Scholar]
  140. Strauss H. 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132:97–118 [Google Scholar]
  141. Takano B. 1995. Geochemical implications of sulfate in sedimentary carbonates. Chem. Geol. 49:393–403 [Google Scholar]
  142. Tarpgaard IH, Røy H, Jørgensen BB. 2011. Concurrent low- and high-affinity sulfate reduction kinetics in marine sediment. Geochim. Cosmochim. Acta 75:2997–3010 [Google Scholar]
  143. Timofeeff MN, Lowenstein TK, da Silva MAM, Harris NB. 2006. Secular variation in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites. Geochim. Cosmochim. Acta 70:1977–94 [Google Scholar]
  144. Troelsen H, Jørgensen BB. 1982. Seasonal dynamics of elemental sulfur in two coastal sediments. Estuar. Coast. Shelf Sci. 15:255–66 [Google Scholar]
  145. Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC. 2014. The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim. Biophys. Acta 1837:1148–64A summary of our best current understanding of how sulfate reduction works at the biochemical level. [Google Scholar]
  146. Visscher PT, Reid RP, Bebout BM. 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–22 [Google Scholar]
  147. Wang K, Orth CJ, Attrep M, Chatterton BDE, Wang X, Li JJ. 1993. The great latest Ordovician extinction on the South China Plate: chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 104:61–79 [Google Scholar]
  148. Whitehouse MJ, Kamber BS, Fedo CM, Lepland A. 2005. Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland. Chem. Geol. 222:112–31 [Google Scholar]
  149. Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA. et al. 2014. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ. Microbiol. 16:3398–415 [Google Scholar]
  150. Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, Valley JW. 2011. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim. Cosmochim. Acta 75:5686–705 [Google Scholar]
  151. Wing BA, Halevy I. 2014. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration. PNAS 111:18116–25 [Google Scholar]
  152. Winterholler B, Hoppe P, Andreae MO, Foley S. 2006. Measurement of sulfur isotope ratios in micrometer-sized samples by NanoSIMS. Appl. Surf. Sci. 252:7128–31 [Google Scholar]
  153. Wortmann UG, Chernyavsky BM. 2007. Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling. Nature 446:654–56 [Google Scholar]
  154. Wortmann UG, Paytan A. 2012. Rapid variability of seawater chemistry over the past 130 million years. Science 337:334–36 [Google Scholar]
  155. Xiao S, Schiffbauer JD, McFadden KA, Hunter J. 2010. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth Planet. Sci. Lett. 297:481–95 [Google Scholar]
  156. Yan D, Chen D, Wang Q, Wang J, Wang Z. 2009. Carbon and sulfur isotopic anomalies across the Ordovician–Silurian boundary on the Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297:32–39 [Google Scholar]
  157. Zerkle AL, Farquhar J, Johnston DT, Cox RP, Canfield DE. 2009. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim. Cosmochim. Acta 73:291–306 [Google Scholar]
  158. Zhelezinskaia I, Kaufman AJ, Farquhar J, Cliff J. 2014. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346:742–44 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error