1932

Abstract

Broadband ocean-bottom seismographs (BBOBSs) were first developed in the 1980s and have since been used to explore the structure of Earth's interior beneath oceanic regions—for example, mid-oceanic ridges, subduction zones, hot spots, and the oceanic lithosphere-asthenosphere boundary. The best approach for broadband seismic observations in oceanic regions is that of a borehole seismic observatory attached to the ocean-floor cable, which is realized in several near-coast networks. Considering the high cost of such networks, there is still a need to develop autonomous BBOBSs with a better signal-to-noise ratio for temporary observations of focused scientific targets far from the coast.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054818
2014-05-30
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-060313-054818.html?itemId=/content/journals/10.1146/annurev-earth-060313-054818&mimeType=html&fmt=ahah

Literature Cited

  1. Anchieta MC, Wolfe CJ, Pavlis GL, Vernon FL, Eakins JA. et al. 2011. Seismicity around the Hawaiian Islands recorded by the PLUME seismometer networks: insight into faulting near Maui, Molokai, and Oahu. Bull. Seismol. Soc. Am. 101:1742–58 [Google Scholar]
  2. Araki E, Kawaguchi K, Kaneko S, Kaneda Y. 2008. Design of deep ocean submarine cable observation network for earthquakes and tsunamis. OCEANS 2008: MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, April 8–11 Piscataway, NJ: IEEE doi: 10.1109/OCEANSKOBE.2008.4531071 [Google Scholar]
  3. Araki E, Shinohara M, Sacks S, Linde A, Kanazawa T. et al. 2004. Improvement of seismic observation in the ocean by use of seafloor boreholes. Bull. Seismol. Soc. Am. 94:678–90 [Google Scholar]
  4. Barruol G, Bosch G, Clouard V, Debayle E, Doin MP. et al. 2002. PLUME investigates South Pacific superswell. Eos Trans. AGU 83:511–14 [Google Scholar]
  5. Barruol G, Suetsugu D, Shiobara H, Sugioka H, Tanaka S. et al. 2009. Mapping upper mantle flow beneath French Polynesia from broadband ocean bottom seismic observations. Geophys. Res. Lett. 36:L14301 [Google Scholar]
  6. Beauduin R, Montagner J-P, Karczewski J-F. 1996. Time evolution of broadband seismic noise during the French Pilot Experiment OFM/SISMOBS. Geophys. Res. Lett. 23:2995–98 [Google Scholar]
  7. Blackman DK, Orcutt JA, Forsyth DW. 1995. Recording teleseismic earthquakes using ocean-bottom seismographs at mid-oceanic ridges. J. Geophys. Res. 85:1648–64 [Google Scholar]
  8. Collins JA, Vernon FL, Orcutt JA, Stephen RA, Peal KR. et al. 2001. Broadband seismology in the oceans: lessons from the Ocean Seismic Network Pilot Experiment. Geophys. Res. Lett. 28:49–52 [Google Scholar]
  9. Crawford WC, Webb SC. 2000. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data. Bull. Seismol. Soc. Am. 90:952–63 [Google Scholar]
  10. Crawford WC, Webb SC, Hildebrand JA. 1991. Seafloor compliance observed by long-period pressure and displacement measurements. J. Geophys. Res. 96:B1016151–60 [Google Scholar]
  11. Ewing M, Vine A. 1938. Deep-sea measurements without wires or cables. Eos Trans. AGU 19:248 [Google Scholar]
  12. Fischer KM, Ford HA, Abt DL, Rychert CA. 2010. The lithosphere-asthenosphere boundary. Annu. Rev. Earth Planet. Sci. 38:551–75 [Google Scholar]
  13. Forsyth DW, Harmon N, Scheirer DS, Duncan RA. 2006. Distribution of recent volcanism and the morphology of seamounts and ridges in the GLIMPSE study area: implications for the lithospheric cracking hypothesis for the origin of intraplate, non–hot spot volcanic chains. J. Geophys. Res. 111:B11407 [Google Scholar]
  14. Forsyth DW, Webb SC, Dorman LM, Shen Y. 1998. Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise. Science 280:1235–38 [Google Scholar]
  15. Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slab in the upper and lower mantle transition region. Rev. Geophys. 39:291–323 [Google Scholar]
  16. Geissler WH, Matias L, Stich D, Carrilho F, Jokat W. et al. 2010. Focal mechanisms for sub-crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment. Geophys. Res. Lett. 37:L18309 [Google Scholar]
  17. Harmon N, Forsyth DW, Lamm R, Webb SC. 2007. P and S wave delays beneath intraplate volcanic ridges and gravity lineations near the East Pacific Rise. J. Geophys. Res. 112:B03309 [Google Scholar]
  18. Harmon N, Forsyth DW, Weeraratne DS, Yang Y, Webb SC. 2011. Mantle heterogeneity and off axis volcanism on young Pacific lithosphere. Earth Planet. Sci. Lett. 311:306–15 [Google Scholar]
  19. Isse T, Shiobara H, Fukao Y, Mochizuki K, Kanazawa T. et al. 2004. Rayleigh wave phase velocity measurements across the Philippine sea from a broad-band OBS array. Geophys. J. Int. 158:257–66 [Google Scholar]
  20. Isse T, Shiobara H, Montagner J-P, Sugioka H, Ito A. et al. 2010. Anisotropic structures of the upper mantle beneath the northern Philippine Sea region from Rayleigh and Love wave tomography. Phys. Earth Planet. Inter. 183:33–43 [Google Scholar]
  21. Isse T, Shiobara H, Tamura Y, Suetsugu D, Yoshizawa K. et al. 2009. Seismic structure of the upper mantle beneath the Philippine Sea from seafloor and land observation: implications for mantle convection and magma genesis in the Izu-Bonin-Mariana subduction zone. Earth Planet. Sci. Lett. 278:107–19 [Google Scholar]
  22. Isse T, Yoshizawa K, Shiobara H, Shinohara M, Nakahigashi K. et al. 2006a. Three-dimensional shear wave structure beneath the Philippine Sea from land and ocean bottom broadband seismograms. J. Geophys. Res. 111:B06310 [Google Scholar]
  23. Isse T, Suetsugu D, Shiobara H, Sugioka H, Yoshizawa K. et al. 2006b. Shear wave speed structure beneath the South Pacific superswell using broadband data from ocean floor and islands. Geophys. Res. Lett. 33:L16303 [Google Scholar]
  24. Ito A, Sugioka H, Suetsugu D, Shiobara H, Kanazawa T, Fukao Y. 2012. Detection of small earthquakes along the Pacific-Antarctic Ridge from T-waves recorded by abyssal ocean-bottom observatories. Mar. Geophys. Res. 33:229–38 [Google Scholar]
  25. Jokat W, Kollofrath J, Geissler WH, Jensen L. 2012. Crustal thickness and earthquake distribution south of the Logachev Seamount, Knipovich Ridge. Geophys. Res. Lett. 39:L08302 [Google Scholar]
  26. Kanazawa T, Mochizuki M, Shiobara H. 2001. Broadband seismometer for a long-term observation on the sea floor. Proceedings of the OHP/ION Joint Symposium on Long-Term Observations in the Oceans: Current Status and Perspectives for the Future, Jan. 21–27, Yamanashi Prefecture, Japan Abstr. OP-05. http://eri-ndc.eri.u-tokyo.ac.jp/OHP-sympo2/forERI/pub/abst/o2001117/index.html [Google Scholar]
  27. Kasahara J, Utada H, Sato T, Kinoshita H. 1998. Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program. Phys. Earth Planet. Inter. 108:113–27 [Google Scholar]
  28. Kawakatsu H, Yamamoto M. 2007. Volcano seismology. Earthquake Seismology H Kanamori 389–420 Treatise Geophys. 4 Amsterdam: Elsevier [Google Scholar]
  29. Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T. et al. 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 324:499–502 [Google Scholar]
  30. Kumar P, Kawakatsu H, Shinohara M, Kanazawa T, Araki E, Suyehiro K. 2011. P and S receiver function analysis of seafloor borehole broadband seismic data. J. Geophys. Res. 116:B12308 [Google Scholar]
  31. Larson RL. 1991. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19:547–50 [Google Scholar]
  32. Laske G, Collins JA, Wolfe CJ, Solomon SC, Detrick RS. et al. 2009. Probing the Hawaiian hot spot with new broadband ocean bottom instruments. Eos Trans. AGU 90:362–63 [Google Scholar]
  33. Laske G, Markee A, Orcutt JA, Wolfe CJ, Collins JA. et al. 2011. Asymmetric shallow mantle structure beneath the Hawaiian Swell—evidence from Rayleigh waves recorded by the PLUME network. Geophys. J. Int. 187:1725–42 [Google Scholar]
  34. MARGINS Steering Committee 1998. Program focuses on attention on continental margins. Eos Trans. AGU 79:137–43 [Google Scholar]
  35. MELT Seismic Team 1998. Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280:1215–18 [Google Scholar]
  36. Montagner J-P, Karczewski J-F, Romanowicz B, Bouaricha S, Lognonné P. et al. 1994. The French Pilot Experiment OFM-SISMOBS: first scientific results on noise level and event detection. Phys. Earth Planet. Inter. 84:321–36 [Google Scholar]
  37. Obayashi M, Yoshimitsu J, Nolet G, Fukao Y, Shiobara H. et al. 2013. Finite frequency whole mantle P wave tomography: improvement of subducted slab images. Geophys. Res. Lett. 405652–57 [Google Scholar]
  38. Peterson J. 1993. Observations and modeling of seismic background noise USGS Open File Rep. 93-322, Albuquerque, NM [Google Scholar]
  39. Pozgay SH, Wiens DA, Conder JA, Shiobara H, Sugioka H. 2009. Seismic attenuation tomography of the Mariana subduction system: implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochem. Geophys. Geosyst. 10:Q04X05 [Google Scholar]
  40. Pyle ML, Wiens DA, Weeraratne DS, Shore PJ, Shiobara H, Sugioka H. 2010. Shear velocity structure of the Mariana mantle wedge from Rayleigh wave phase velocities. J. Geophys. Res. 115:B11304 [Google Scholar]
  41. Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH. 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184:1223–36 [Google Scholar]
  42. Romanowicz B, Stakes D, Montagner J-P, Taris P, Urhammer R. et al. 1998. MOISE: a pilot experiment towards long term sea-floor geophysical observatories. Earth Planets Space 50:927–37 [Google Scholar]
  43. Sandwell DT, Winterer EL, Mammerickx J, Duncan RA, Lynch MA. et al. 1995. Evidence for diffuse extension of the Pacific Plate from Pukapuka ridges and cross-grain gravity lineations. J. Geophys. Res. 100:B815087–99 [Google Scholar]
  44. Scherwath M, Spence G, Obana K, Kodaira S, Wang K. et al. 2011. Seafloor seismometers monitor northern Cascadia earthquakes. Eos Trans. AGU 92:421–22 [Google Scholar]
  45. Shimamura H, Asada T, Kumazawa M. 1977. High shear velocity layer in the upper mantle of the Western Pacific. Nature 269:680–82 [Google Scholar]
  46. Shinohara M, Araki E, Kanazawa T, Suyehiro K, Mochizuki M. et al. 2006. Deep-sea borehole seismological observatories in the Western Pacific: temporal variation of seismic noise level and event detection. Ann. Geophys. 49:625–41 [Google Scholar]
  47. Shinohara M, Yamada T, Nakahigashi K, Sakai S, Mochizuki K. et al. 2011. Aftershock observation of the 2011 off the Pacific coast of Tohoku Earthquake by using ocean bottom seismometer network. Earth Planets Space 63:835–40 [Google Scholar]
  48. Shinohara M, Suyehiro K, Shiobara H. 2012. Marine seismic observation. IASPEI New Manual of Seismological Observatory Practice (NMSOP-2) P Bormann, Chapter 7.5. Potsdam: GFZ German Res. Cent. Geosci. doi: 10.2312/GFZ.NMSOP-2_ch7 [Google Scholar]
  49. Shiobara H, Baba K, Utada H, Fukao Y. 2009. Ocean bottom array probes stagnant slab beneath the Philippine Sea. Eos Trans. AGU 90:70–71 [Google Scholar]
  50. Shiobara H, Isse T, Takeo A, Sugioka H, Ito A, Utada H. 2012. The first practical observation of the BBOBS-NX in the Normal Oceanic Mantle project Presented at AGU Fall Meet., Dec. 3–7, San Francisco [Google Scholar]
  51. Shiobara H, Kanazawa T. 2009. Development of a light weight and autonomous sensor system for ocean bottom seismometer. Zisin 2 61:137–44 [Google Scholar]
  52. Shiobara H, Kanazawa T, Isse T. 2013. New step for broadband seismic observation on the seafloor: BBOBS-NX. IEEE J. Ocean. Eng. 38:396–405 [Google Scholar]
  53. Shiobara H, Sugioka H, Mochizuki K, Oki S, Kanazawa T. et al. 2010. Double seismic zone in the North Mariana region revealed by long-term ocean bottom array observation. Geophys. J. Int. 183:1455–69 [Google Scholar]
  54. Shito A, Shiobara H, Sugioka H, Ito A, Takei Y. et al. 2009. Physical properties of subducted slab and surrounding mantle in the Izu-Bonin subduction zone based on broadband ocean bottom seismometer data. J. Geophys. Res. 114:B03308 [Google Scholar]
  55. Shito A, Suetsugu D, Furumura T, Sugioka H, Ito A. 2013. Small-scale heterogeneities in the oceanic lithosphere inferred from guided waves. Geophys. Res. Lett. 40:1–5 [Google Scholar]
  56. Suetsugu D, Inoue T, Obayashi M, Yamada A, Shiobara H. et al. 2010. Depths of the 410-km and 660-km discontinuities in and around the stagnant slab beneath the Philippine Sea: Is water stored in the stagnant slab?. Phys. Earth Planet. Inter. 183:270–79 [Google Scholar]
  57. Suetsugu D, Isse T, Tanaka S, Obayashi M, Shiobara H. et al. 2009. South Pacific mantle plumes imaged by seismic observation on islands and seafloor. Geochem. Geophys. Geosyst. 10:Q11014 [Google Scholar]
  58. Suetsugu D, Shinohara M, Araki E, Kanazawa T, Suyehiro K. et al. 2005a. Mantle discontinuity depths beneath the west Philippine basin from receiver function analysis of deep-sea borehole and seafloor broadband waveforms. Bull. Seismol. Soc. Am. 95:1947–56 [Google Scholar]
  59. Suetsugu D, Shiobara H, Sugioka H, Barruol G, Schindele E. et al. 2005b. Proving South Pacific mantle plumes with ocean bottom seismographs. Eos Trans. AGU 86:429, 435 [Google Scholar]
  60. Suetsugu D, Shiobara H, Sugioka H, Fukao Y, Kanazawa T. 2007. Topography of the mantle discontinuities beneath the South Pacific superswell as inferred from broadband waveforms on seafloor. Phys. Earth Planet. Inter. 160:310–18 [Google Scholar]
  61. Sugioka H, Fukao Y, Kanazawa T. 2010. Evidence for infragravity wave–tide resonance in deep oceans. Nat. Commun. 1:1–7 [Google Scholar]
  62. Sugioka H, Okamoto T, Nakamura T, Ishihara Y, Ito A. et al. 2012. Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nat. Geosci. 5:414–18 [Google Scholar]
  63. Sutton GH, McDonald WG, Prentiss DD, Thanos S. 1965. Ocean-bottom seismic observatories. Proc. IEEE 53:1909–21 [Google Scholar]
  64. Suyehiro K, Kanazawa T, Hirata N, Shinohara M. 1995. Ocean downhole seismic project. J. Phys. Earth 43:599–618 [Google Scholar]
  65. Takeo A, Nishida K, Isse T, Kawakatsu H, Shiobara H. et al. 2013. Radially anisotropic structure beneath the Shikoku Basin from broadband surface wave analysis of ocean bottom seismometer records. J. Geophys. Res. Solid Earth 118:2878–92 [Google Scholar]
  66. Tanaka S, Obayashi M, Suetsugu D, Shiobara H, Sugioka H. et al. 2009a. P-wave tomography of the mantle beneath the South Pacific Superswell revealed by joint ocean floor and islands broadband seismic experiments. Phys. Earth Planet. Inter. 172:268–77 [Google Scholar]
  67. Tanaka S, Suetsugu D, Shiobara H, Sugioka H, Kanazawa T. et al. 2009b. On the vertical extent of the large low shear velocity province beneath the South Pacific Superswell. Geophys. Res. Lett. 36:L07305 [Google Scholar]
  68. Tibi R, Wiens DA, Shiobara H, Sugioka H, Shore PJ. 2006. Depth of the 660-km discontinuity near the Mariana slab from an array of ocean bottom seismographs. Geophys. Res. Lett. 33:L02313 [Google Scholar]
  69. Tibi R, Wiens DA, Shiobara H, Sugioka H, Yuan X. 2007. Double seismic discontinuities at the base of the mantle transition zone near the Mariana slab. Geophys. Res. Lett. 34:L16316 [Google Scholar]
  70. Toomey DR, Wilcock WSD, Conder JA, Forsyth DW, Blundy JD. et al. 2002. Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet. Sci. Lett. 200:287–95 [Google Scholar]
  71. Toomey DR, Wilcock WSD, Solomon SC, Hammond WC, Orcutt JA. 1998. Mantle seismic structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science 280:1224–27 [Google Scholar]
  72. Webb SC. 1988. Long-period acoustic and seismic measurements and ocean floor currents. IEEE J. Ocean. Eng. 13:263–70 [Google Scholar]
  73. Webb SC, Deaton TK, Lemire JC. 2001. A broadband ocean-bottom seismometer system based on a 1-Hz natural period geophone. Bull. Seismol. Soc. Am. 91:304–12 [Google Scholar]
  74. Weeraratne DS, Forsyth DW, Yang Y, Webb SC. 2007. Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific. J. Geophys. Res. 112:B06303 [Google Scholar]
  75. Wolfe CJ, Solomon SC. 1998. Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science 280:1230–32 [Google Scholar]
  76. Wolfe CJ, Solomon SC, Laske G, Collins JA, Detrick RS. et al. 2009. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326:1388–90 [Google Scholar]
  77. Wolfe CJ, Solomon SC, Laske G, Collins JA, Detrick RS. et al. 2011. Mantle P-wave velocity structure beneath the Hawaiian hotspot. Earth Planet. Sci. Lett. 303:267–80 [Google Scholar]
/content/journals/10.1146/annurev-earth-060313-054818
Loading
/content/journals/10.1146/annurev-earth-060313-054818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error