1932

Abstract

The largest mountain belt in Central Asia (∼9 million km2) is called the Altaids. It was assembled between ∼750 and ∼130 Ma ago around the western and southern margins of the Siberian Craton, partly on an older collisional system (the “Urbaykalides”). Geological, geophysical, and geochemical data—mostly high-resolution U-Pb ages—document the growth of only three arc systems in Central and Northwest Asia during this time period, an interval throughout which there were no major arc or continental collisions in the area. While the Altaids were being constructed as a Turkic-type orogen, continental crust grew in them by 1/3 of the global total. The Altaids thus added some 3 million km2 to the continental crust over a period of 0.6 billion years, typical of Phanerozoic crustal growth rates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054826
2018-05-30
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/earth/46/1/annurev-earth-060313-054826.html?itemId=/content/journals/10.1146/annurev-earth-060313-054826&mimeType=html&fmt=ahah

Literature Cited

  1. Aoki K, Isozaki Y, Yamamoto S, Maki K, Yokoyama T, Hirata T 2012. Tectonic erosion in a Pacific-type orogen: detrital zircon response to Cretaceous tectonics in Japan. Geology 40:1087–90
    [Google Scholar]
  2. Argand E 1924. La tectonique de l'Asie. Compte-Rendu du XIIIe Congrès Géologique International 1922171–372 Liège, Belg.: Vaillant-Carmanne
    [Google Scholar]
  3. Badarch G, Jahn B 1999. IGCP-420. Continental Growth in the Phanerozoic: Evidence from Central Asia. Second International Workshop Abstracts and Field Excursion Guidebook (Geotraverse Through a Terrane Collage in Southern Khangay), July 25–Aug. 3, Ulaanbaatar, Mongolia. Rennes, Fr.: Géosci. Rennes
    [Google Scholar]
  4. Beliakov SL 1994. Strukturnie kompleksi ossadochnogo tsechla Timano-Pechorskogo Regiona. See Leonov et al. 2004 134–44
    [Google Scholar]
  5. Bindeman IN, Vinogradov VI, Valley JW, Wooden JL, Natal'in BA 2002. Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of zircons from Sredinny and Ganal massifs. J. Geol. 110:271–89
    [Google Scholar]
  6. Bogolopeva OK, Gee DG 2004. Early Palaeozoic unconformity across the Timanides, NW Russia. See Gee & Pease 2004 145–57
    [Google Scholar]
  7. Brown RL, Journeay JM 1987. Tectonic denudation of the Shuswap metamorphic terrane of southeastern British Columbia. Geology 15:142–46
    [Google Scholar]
  8. Churkin M Jr., Soleimani G, Carter C, Robinson R 1981. Geology of the Soviet Arctic: Kola Peninsula to Lena River. The Ocean Basins and Margins, Vol. 5: The Arctic Ocean AEM Nairn, M Churkin Jr., FG Stehli 331–75 New York: Plenum Press
    [Google Scholar]
  9. Coleman RG 1994. Reconstruction of the Paleo-Asian Ocean. Proc. 29th Int. Geol. Congr. Pt. B Utrecht, Neth.: VSP
    [Google Scholar]
  10. Dickinson WR 2004. Evolution of the North American Cordillera. Annu. Rev. Earth Planet. Sci. 32:13–45
    [Google Scholar]
  11. Dobretsov NL, Jahn B, Vladimirov AG 2001. IGCP-420. Continental Growth in the Phanerozoic: Evidence from Central Asia. Third International Workshop Abstracts, Aug. 6–16, Novosibirsk, Russia. Novosibirsk, Russ.: Dep. “Geo,” Publ. House Sib. Branch Russ. Acad. Sci.
    [Google Scholar]
  12. Dobretsov NL, Vladimirov AG 2001. IGCP-420. Continental Growth in the Phanerozoic: Evidence from Central Asia. Third International Workshop Field Excursion Guidebook (Geology, Magmatism, and Metamorphism of the Western Part of Altai Sayan Fold Region), Aug. 6–16, Novosibirsk, Russia. Novosibirsk, Russ.: Dep. “Geo,” Publ. House Sib. Branch Russ. Acad. Sci.
    [Google Scholar]
  13. Emelyanov EM, Litvin VM, Levchenko VA, Martynova GP 1971. The geology of the Barents Sea Rep. Inst. Geol. Sci. 70/14 Nat. Environ. Res. Counc. London:
    [Google Scholar]
  14. Fossum BJ, Schmidt WJ, Jenkins DA, Bogatsky VI, Rappoport BI 2001. New frontiers for hydrocarbon production in the Timan-Pechora Basin, Russia. Petroleum Provinces of the Twenty-First Century MW Downey, JC Threet, WA Morgan 259–79 Am. Assoc. Pet. Geol. Mem. 74 Tulsa, OK: Am. Assoc. Pet. Geol.
    [Google Scholar]
  15. Gee DG, Pease V 2004. The Neoproterozoic Timanide Orogen of Eastern Baltica Geol. Soc. Lond. Mem. 30 London: Geol. Soc. Lond.
    [Google Scholar]
  16. Grazhdankin D 2004. Late Neoproterozoic sedimentation in the Timan foreland. See Gee & Pease 2004 37–46
    [Google Scholar]
  17. Gustavson Assoc 1992 Gustavson Assoc. 1992. Petroleum Geology and Exploration Potential in the Former Soviet Republics Boulder, CO: Gustavson Assoc.
    [Google Scholar]
  18. Hall R 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20:353–431
    [Google Scholar]
  19. Hambrey MJ 1988. Late Proterozoic stratigraphy of the Barents Shelf. Geological Evolution of the Barents Shelf Region WB Harland, EK Dowdeswell 49–72 London: Graham & Trotman
    [Google Scholar]
  20. Hendrix MS, Davis GA 2001. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation Geol. Soc. Am. Mem. 194 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  21. Jahn B, Griffin WL, Windley BF 2000. Continental growth in the Phanerozoic: evidence from Central Asia. Tectonophysics 328:vii–x
    [Google Scholar]
  22. Khain VE 1985. Geology of the USSR: Old Cratons and Paleozoic Fold Belts Berlin: Gebrüder Borntraeger
    [Google Scholar]
  23. Khomentovsky VV 1996. Event base of the Neoproterozoic stratigraphic chart of Siberia and China. Russ. Geol. Geophys. 37:43–56
    [Google Scholar]
  24. Khomentovsky VV 2002. Baikalian of Siberia (850–650 Ma). Russ. Geol. Geophys. 43:313–33
    [Google Scholar]
  25. Khomentovsky VV 2007. The Upper Riphean of the Yenisei Range. Russ. Geol. Geophys. 48:711–20
    [Google Scholar]
  26. Korago EA, Kovaleva GN, Lopatin BG, Orgo VV 2004. The Precambrian rocks of Novaya Zemlya. See Gee & Pease 2004 135–43
    [Google Scholar]
  27. Kostiuchenko SL 1994. Struktura i tektonicheskaya model Zemnoi kori Timano-Pechorskogo Basseina po resultatam kompleknogo geologo-geofizicheskogo izucheniya. See Leonov et al. 1994 12–33
    [Google Scholar]
  28. Kröner A 2015. The Central Asian Orogenic Belt: Geology, Evolution, Tectonics, and Models Stuttgart, Ger.: Borntraeger Sci. Publ.
    [Google Scholar]
  29. Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R et al. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–25
    [Google Scholar]
  30. Lamb SH 1987. A model for tectonic rotations about a vertical axis. Earth Planet. Sci. Lett. 84:75–86
    [Google Scholar]
  31. Larionov AN, Andreichev VA, Gee DG 2004. The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite. See Gee & Pease 2004 69–74
    [Google Scholar]
  32. Le Pichon X, Şengör AMC, Kende J, İmren C, Henry P et al. 2016. Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of the North Anatolian Fault. Can. J. Earth Sci. 53:1416–39
    [Google Scholar]
  33. Leonov YG, Antipov MP, Morozov AF, Solodilov LN 1994. Tektonika i Magmatizm Vostochno-Evropeiskoi Platformi Moskow: KMK Ltd. (with extensive English summary and figure captions)
    [Google Scholar]
  34. Lindquist S 1999. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system Open-File Rep. 99-50-G US Geol. Surv. Reston, VA:
    [Google Scholar]
  35. Liu DY, Natal'in BA, Jian P, Kröner A, Wang T 2007. IGCP-480. Structural and Tectonic Correlation Across the Central Asian Orogenic Collage: Implications for Continental Growth and Intracontinental Deformation. Third International Workshop Abstracts and Field Excursion Guidebook, Aug. 6–15, Beijing and Inner Mongolia, China. Beijing: SHRIMP Cent., Inst. Geol., Chin. Acad. Geol. Sci.
    [Google Scholar]
  36. Lorenz H, Pystin AM, Olovyanishnikov VG, Gee DG 2004. Neoproterozoic high-grade metamorphism of the Kanin Peninsula, Timanide Orogen, northern Russia. See Gee & Pease 2004 59–68
    [Google Scholar]
  37. Maslov AV 2004. Riphean and Vendian sedimentary sequences of the Timanides and Uralides, the eastern periphery of the East European Craton. See Gee & Pease 2004 19–35
    [Google Scholar]
  38. McKenzie D, Jackson J 1983. The relationship between strain rates, crustal thickening, palaeomagnetism, finite strain and fault movements in a deforming zone. Earth Planet. Sci. Lett. 65:182–202
    [Google Scholar]
  39. McKenzie D, Jackson J 1986. A block model of distributed deformation in faulting. J. Geol. Soc. Lond. 143:349–53
    [Google Scholar]
  40. Mitrofanov FP, Kozakov IK 1993. Precambrian in younger fold belts. Precambrian Geology of the USSR DV Rundquist, FP Mitrofanov 443–98 Dev. Precambrian Geol. 9 Amsterdam: Elsevier
    [Google Scholar]
  41. Nozhkin AD, Turkina OM, Bibikova EV, Terleev AA, Khomentovsky VV 1999. Riphean granite-gneiss domes of the Yenisey Ridge: geological structure and U-Pb isotopic age. Russ. Geol. Geophys. 40:1284–92
    [Google Scholar]
  42. Okulitch AV 1984. The role of the Shuswap Metamorphic Complex in cordilleran tectonism: a review. Can. J. Earth Sci. 21:1171–93
    [Google Scholar]
  43. Pease V, Dovzhikova E, Beliakova L, Gee DG 2004. Late Neoproterozoic granitoid magmatism in the basement to the Pechora Basin, NW Russia: Geochemical constraints indicate westward subduction beneath NE Baltica. See Gee & Pease 2004 75–85
    [Google Scholar]
  44. Pfiffner OA 2010. Geologie der Alpen Bern, Switz.: Haupt Verlag, 2nd ed..
    [Google Scholar]
  45. Puchkov V 2002. Paleozoic evolution of the east European continental margin involved in the Uralide orogeny. Mountain Building in the Uralides—Pangea to the Present D Brown, C Juhlin, V Puchkov 9–31 Geophys. Monogr. 132 Washington, DC: Am. Geophys. U.
    [Google Scholar]
  46. Ramsay W 1911. Beiträge zur Geologie der Halbinsel Kanin Helsinki: J. Simelii Arvingars Boktryckeriaktiebolag
    [Google Scholar]
  47. Roberts D, Olovyanishnikov V 2004. Structural and tectonic development of the Timanide orogen. See Gee & Pease 2004 47–57
    [Google Scholar]
  48. Roberts D, Siedlecka A, Olovyanishnikov VG 2004. Neoproterozoic, passive margin, sedimentary systems of the Kanin Peninsula, and northern and central Timan, NW Russia. See Gee & Pease 2004 5–17
    [Google Scholar]
  49. Russ. Acad. Sci. 2010. International Workshop on Geodynamic Evolution, Tectonics and Magmatism of the Central Asian Orogenic Belt, June 29–30, Novosibirsk, Russia Novosibirsk, Russ.: Publ. House Sib. Branch Russ. Acad. Sci.
    [Google Scholar]
  50. Ruzhentsev SV, Samygin SG 1979. Tectonic evolution of the South Uralian ophiolites. Ophiolites of the Canadian Appalachians and the Soviet Urals: Contribution to IGCP Project 39 J Malpas, RW Talkington 115–25 St. John's, Can.: Dep. Geol., Mem. Univ. Nfld.
    [Google Scholar]
  51. Şengör AMC 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia Geol. Soc. Am. Spec. Pap. 195 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  52. Şengör AMC 1998. Die Tethys: vor hundert Jahren und heute. Mitt. Österreichischen Geol. Ges. 89:5–176
    [Google Scholar]
  53. Şengör AMC, Atayman S 2009. The Permian Extinction and the Tethys: An Exercise in Global Geology Geol. Soc. Am. Spec. Pap. 448 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  54. Şengör AMC, Natal'in BA 1996.a Palaeotectonics of Asia: fragments of a synthesis. The Tectonic Evolution of Asia A Yin, M Harrison 486–640 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  55. Şengör AMC, Natal'in BA 1996.b Turkic-type orogeny and its role in the making of the continental crust. Annu. Rev. Earth Planet. Sci. 24:263–337
    [Google Scholar]
  56. Şengör AMC, Natal'in BA 2004. Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags. Precambrian Ophiolites and Related Rocks TM Kusky 675–726 Dev. Precambrian Geol. 13 Amsterdam: Elsevier
    [Google Scholar]
  57. Şengör AMC, Natal'in BA 2005. Tectonics of the Altaids: an example of a Turkic-type orogen. Earth Structure—An Introduction to Structural Geology and Tectonics BA van der Pluijm, S Marshak 535–546 New York: W.W. Norton & Co, 2nd ed..
    [Google Scholar]
  58. Şengör AMC, Natal'in BA 2007. Eduard Suess and the Altaids: What is in a name. ? In Magmatism and Metallogeny of the Altai and Adjacent Large Igneous Provinces with an Introductory Essay on the Altaids R Seltmann, A Borisenko, G Fedoseev 185–294 London: Cent. Russ. Cent. EurAsian Mineral Stud. (CERCAMS)
    [Google Scholar]
  59. Şengör AMC, Natal'in BA, Burtman VS 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307
    [Google Scholar]
  60. Şengör AMC, Natal'in BA, Sunal G, van der Voo R 2014.a A new look at the Altaids: a superorogenic complex in northern and central Asia as a factory of continental crust. Part I. Geological data compilation (exclusive of palaeomagnetic observations). Aust. J. Earth Sci. 107:1169–232
    [Google Scholar]
  61. Şengör AMC, Natal'in BA, van der Voo R, Sunal G 2014.b A new look at the Altaids: a superorogenic complex in northern and central Asia as a factory of continental crust. Part II. Palaeomagnetic data, reconstructions, crustal growth and global sea-level. Aust. J. Earth Sci. 107:2131–81
    [Google Scholar]
  62. Şengör AMC, Okuroğulları AH 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics. Eclogae Geol. Helv. 84:535–97
    [Google Scholar]
  63. Shatsky NS 1932. Osnovniye cherti tektoniki Sibirskoi Platformi. Byulleten Mosk. Obshchestva Ispyt. Přír. Otd. Geol. 10:476–509
    [Google Scholar]
  64. Siedlecka A 1975. Late Precambrian stratigraphy and structure of the north-eastern margin of the Fennoscandian Shield (east Finnmark-Timan region). Norg. Geol. Unders. 316:313–48
    [Google Scholar]
  65. Siedlecka A, Roberts D, Nystuen JP, Olovyanishnikov VG 2004. Northeastern and northwestern margins of Baltica in Neoproterozoic time: evidence from the Timanian and Caledonian orogens. See Gee & Pease 2004 169–90
    [Google Scholar]
  66. Sklyarov EV 2005. Structural and Tectonic Correlation Across the Central Asia Orogenic Collage: North-Eastern Segment, Project IGCP-480 Irkutsk, Russ.: Inst. Earth's Crust, Publ. House Sib. Branch Russ. Acad. Sci.
    [Google Scholar]
  67. Sobornov KO 1994. Stroenie Kosiu-Rogovskoi Vpadini Polyarnii Ural. See Leonov et al. 1994 145–54
    [Google Scholar]
  68. Suess E 1883. Das Antlitz der Erde Ia Prague: F. Tempsky
    [Google Scholar]
  69. Suess E 1885. Das Antlitz der Erde Ib Prague: F. Tempsky
    [Google Scholar]
  70. Suess E 1901. Das Antlitz der Erde III/1 Prague: F. Tempsky
    [Google Scholar]
  71. Swirydczuk K, Rapoport BI, Lesnichy VF, Quadir JA 2003. Yuzhno Khilchuyu field, Timan-Pechora Basin, Russia. Giant Oil and Gas Fields of the Decade 1990–1999 MT Halbouty 251–74 Am. Assoc. Pet. Geol. Mem. 78 Tulsa, OK: Am. Assoc. Pet. Geol.
    [Google Scholar]
  72. Termier P 1911. Les problèmes de la géologie tectonique dans la Méditerranée occidentale. Rev. Gen. Sci. Pure Appl. 1911:225–34
    [Google Scholar]
  73. Tomurhuu D, Natal'in B, Ya A, Khishigsuren S, Erdenesaikhan G 2006. ICGP-480. Structural and Tectonic Correlation Across the Central Asian Orogenic Collage: Implications for Continental Growth and Intracontinental Deformation. Second International Workshop Abstracts and Excursion Guidebook, July 27–Aug. 7, Ulaanbaatar, Mongolia. Ulaanbaatar, Mong.: Inst. Geol. Min. Res. Mong. Acad. Sci.
    [Google Scholar]
  74. van der Voo R, Levashova NM, Skrinnik LI, Kara TV, Bazhenov ML 2006. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan. Tectonophysics 426:335–60
    [Google Scholar]
  75. van der Voo R, Spakman W, Bijwaard H 1999. Mesozoic subducted slabs under Siberia. Nature 397:246–48
    [Google Scholar]
  76. van der Voo R, van Hinsbergen DJJ, Domeier M, Spakman W, Torsvik T 2015. Latest Jurassic–earliest Cretaceous closure of the Mongol-Okhotsk Ocean: a paleomagnetic and seismological-tomographic analysis. Late Jurassic Margin of Laurasia—A Record of Faulting Accommodating Plate Rotation TH Anderson, AN Didenko, CL Johnson, AI Khanchuk, JH MacDonald Jr. 589–606 Geol. Soc. Am. Spec. Pap. 513 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  77. Vernikovskaya AE, Vernikovsky VA, Sal'nikova EB, Datsenko VM, Kotov AB et al. 2002. Yeruda and Cherimba granitoids (Yenisei Ridge) as indicators of Neoproterozoic collisions. Russ. Geol. Geophys. 43:259–72
    [Google Scholar]
  78. Vernikovsky VA, Kazansky AY, Matushkin NY, Metelkin DV, Sovetov JK 2009. The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: geological, structural, sedimentological, geochronological, and paleomagnetic data. Russ. Geol. Geophys. 50:380–93
    [Google Scholar]
  79. Vernikovsky VA, Vernikovskaya AE 2006. Tectonics and evolution of granitoid magmatism in the Yenisei Ridge. Russ. Geol. Geophys. 47:35–52
    [Google Scholar]
  80. Vernikovsky VA, Vernikovskaya AE, Kotov AB, Sal'nikova EB, Kovach VP 2003. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge. Tectonophysics 375:147–68
    [Google Scholar]
  81. Vernikovsky VA, Vernikovskaya AE, Pease VL, Gee DG 2004. Neoproterozoic orogeny along the margins of Siberia. See Gee & Pease 2004 223–47
    [Google Scholar]
  82. Vernikovsky VA, Vernikovskaya AE, Wingate MTD, Popov NV, Kovach VP 2007. The 880–864 Ma granites of the Yenisey Ridge, western Siberian margin: geochemistry, SHRIMP geochronology, and tectonic implications. Precambrian Res 154:175–91
    [Google Scholar]
  83. Wartes MA, Carroll AR, Greene TJ 2002. Permian sedimentary record of the Turpan-Hami basin and adjacent regions, northwest China: constraints on postamalgamation tectonic evolution. Geol. Soc. Am. Bull. 114:131–52
    [Google Scholar]
  84. Windley B 1992. Proterozoic collisional and accretionary orogens. Proterozoic Crustal Evolution KC Condie 419–46 Dev. Precambrian Geol. 10 Amsterdam: Elsevier
    [Google Scholar]
  85. Wu F, Wilde SA, Jahn B 2002. Continental Growth in the Phanerozoic: Evidence from Central Asia. Fourth International Workshop Abstracts and Excursion Guidebook, Aug. 5–14, Changchun, China
    [Google Scholar]
  86. Xiao WJ, Kröner A, Windley BF 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. Int. J. Earth Sci. 98:6, Spec. Issue Berlin: Springer
    [Google Scholar]
  87. Xiao WJ, Windley BF, Sun S, Li JL, Huang BC et al. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 43:477–507
    [Google Scholar]
  88. Yarmolyuk VV, Kovalenko VI, Sal'nikova EB, Nikiforov AV, Kotov AB, Vladykin NV 2005. Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of Siberian craton. Dokl. Akad. Nauk SSSR 404:1031–36
    [Google Scholar]
  89. Zonenshain LP, Kuzmin MI, Natapov LM 1990. Geology of the USSR: A Plate-Tectonic Synthesis Geodyn. Ser. 21 Washington, DC: Am. Geophys. Union
    [Google Scholar]
/content/journals/10.1146/annurev-earth-060313-054826
Loading
/content/journals/10.1146/annurev-earth-060313-054826
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error