1932

Abstract

It has been known for decades that atmospheric escape is important for the evolution of terrestrial planets in the Solar System, although exactly how atmospheric escape changes the atmospheres of these bodies is still hotly debated. Rapidly increasing numbers of exoplanet observations provide new targets against which atmospheric escape models are tested. In this review we summarize recent studies related to atmospheric escape from exoplanets. The most important conclusions are that () escape can significantly influence the volatile contents of low-mass exoplanets (with mass lower than those of Uranus and Neptune) and the atmosphere and climate evolution histories of Solar System terrestrial planets; () models including detailed physics and chemistry in planetary upper atmospheres will be important for the interpretation of existing and future observations of exoplanets; and () fluid models considering 2D or 3D planetary upper atmospheres and particle models for planetary exospheres will be important not only for comparisons with observations but also for order of magnitude estimates of atmospheric escape rates. Our understanding of how escape shapes planetary atmospheres and influences the climate of low-mass planets can be expected to advance substantially in the coming decade.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054834
2015-05-30
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060313-054834.html?itemId=/content/journals/10.1146/annurev-earth-060313-054834&mimeType=html&fmt=ahah

Literature Cited

  1. Baraffe I, Selsis F, Chabrier G, Barman TS, Allard F. et al. 2004. The effect of evaporation on the evolution of close-in giant planets. Astron. Astrophys. 419:L13 [Google Scholar]
  2. Beauge C, Nesvorny D. 2013. Emerging trends in a period-radius distribution of close-in planets. Astrophys. J. 763:12 [Google Scholar]
  3. Bourrier V, Lecavelier des Etangs A. 2013. 3D model of hydrogen atmospheric escape from HD209458b and HD189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557:A124 [Google Scholar]
  4. Bourrier V, Lecavelier des Etangs A, Dupuy H, Ehrenreich D, Vidal-Madjar A. et al. 2013. Atmospheric escape from HD189733b observed in HI Lyman-α: detailed analysis of HST/STIS September 2011 observations. Astron. Astrophys. 551:A63 [Google Scholar]
  5. Bourrier V, Lecavelier des Etangs A, Vidal-Madjar A. 2014. Modeling magnesium escape from HD209458b atmosphere. Astron. Astrophys. 565:A105 [Google Scholar]
  6. Budaj J. 2013. Light-curve analysis of KIC 12557548b: an extrasolar planet with a comet-like tail. Astron. Astrophys. 557:A72 [Google Scholar]
  7. Chamberlain JW. 1963. Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11:901–60 [Google Scholar]
  8. Chassefière E. 1996. Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101:E1126039–56 [Google Scholar]
  9. Chassefière E. 1997. Loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126:229–32 [Google Scholar]
  10. Chiang E, Laughlin G. 2013. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431:3444–55 [Google Scholar]
  11. Ciardi DR, Fabrycky DC, Ford EB, Gautier TN III, Howell SB. et al. 2013. On the relative sizes of planets within Kepler multiple-candidate systems. Astrophys. J. 763:41 [Google Scholar]
  12. Cohen O, Glocer A. 2013. Ambipolar electric field, photoelectrons, and their role in atmospheric escape from hot Jupiters. Astrophys. J. Lett. 753:L4 [Google Scholar]
  13. Croll B, Rappaport S, DeVore J, Gilliland RL, Crepp JR. et al. 2014. Multiwavelength observations of the candidate disintegrating sub-Mercury KIC 12557548b. Astrophys. J. 786:100 [Google Scholar]
  14. Erkaev NV, Kulikov YN, Lammer H, Selsis F, Langmayr D. et al. 2007. Roche lobe effects on the atmospheric loss from “hot Jupiters.”. Astron. Astrophys. 472:329–34 [Google Scholar]
  15. Erkaev NV, Lammer H, Odert P, Kulikov YN, Kislyakova KG. et al. 2013. XUV-exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I. Atmospheric expansion and thermal escape. Astrobiology 13:1011–29 [Google Scholar]
  16. Fortney JJ, Mordasini C, Nettelmann N, Kempton EM, Greene TP, Zahnle K. 2013. A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775:80 [Google Scholar]
  17. Fressin F, Torres G, Charbonneau D, Bryson ST. 2013. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766:81–100 [Google Scholar]
  18. García Muñoz A. 2007. Physical and chemical aeronomy of HD209458b. Planet. Space Sci. 55:1426–55 [Google Scholar]
  19. Guo JH. 2011. Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophys. J. 733:98–107 [Google Scholar]
  20. Guo JH. 2013. Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophys. J. 766:102 [Google Scholar]
  21. Halevy I, Head JW. 2014. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7:865–68 [Google Scholar]
  22. Holstrom M, Ekenback A, Selsis F, Lammer H, Wurz P. 2008. Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD209458b. Nature 451:970–72 [Google Scholar]
  23. Howard AW, Marcy GW, Bryson ST, Jenkins JM, Rowe JF. et al. 2012. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. 201:15–39 [Google Scholar]
  24. Huitson CM, Sing DK, Vidal-Madjar A, Ballester GE, Lecavelier des Etangs A et al. 2012. Temperature–pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating. Mon. Not. R. Astron. Soc. 422:2477–88 [Google Scholar]
  25. Jin S, Mordasini C, Parmentier V, van Boekel R, Henning T, Ji J. 2014. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. Astrophys. J. 795:65–87 [Google Scholar]
  26. Kasting JF. 1991. CO2 condensation and the climate of early Mars. Icarus 94:1–13 [Google Scholar]
  27. Kasting JF, Pollack JB. 1983. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53:479–508 [Google Scholar]
  28. Kawahara H, Hirano T, Kurosaki K, Ito Y, Ikoma M. 2013. Starspots–transit depth relation of the evaporating planet candidate KIC 12557548b. Astrophys. J. Lett. 776:L6 [Google Scholar]
  29. Khodachenko ML, Alexeev I, Belenkaya E, Lammer H, Grießmeier JM. et al. 2012. Magnetospheres of “hot Jupiters”: the importance of magnetodisks in shaping a magnetospheric obstacle. Astrophys. J. 744:70 [Google Scholar]
  30. Kislyakova KG, Johnstone CP, Odert P, Erkaev NV, Lammer H. et al. 2014. Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths.”. Astron. Astrophys. 562:A116 [Google Scholar]
  31. Kite ES, Williams J, Lucas A, Aharonson O. 2014. Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7:335–39 [Google Scholar]
  32. Koskinen TT, Harris MJ, Yelle RV, Lavvas P. 2013a. The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere. Icarus 226:1678–94 [Google Scholar]
  33. Koskinen TT, Yelle RV, Harris MJ, Lavvas P. 2013b. The escape of heavy atoms from the ionosphere of HD209458b. II. Interpretation of the observations. Icarus 226:1695–708 [Google Scholar]
  34. Kumar S, Hunten DM, Pollack JB. 1983. Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55:369–89 [Google Scholar]
  35. Kuramoto K, Umemoto T, Ishiwatari M. 2013. Effective hydrodynamic hydrogen escape from an early Earth atmosphere inferred from high-accuracy numerical simulation. Earth Planet. Sci. Lett. 375:312–18 [Google Scholar]
  36. Kurokawa H, Nakamoto T. 2014. Mass-loss evolution of close-in exoplanets: evaporation of hot Jupiters and the effect on population. Astrophys. J. 783:54 [Google Scholar]
  37. Kurosaki K, Ikoma M, Hori Y. 2014. Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. Astron. Astrophys. 562:A80 [Google Scholar]
  38. Lammer H, Erkaev NV, Odert P, Kislyakova KG, Leitzinger M, Khodachenko ML. 2013. Probing the blow-off criteria of hydrogen-rich ‘super-Earths.’. Mon. Not. R. Astron. Soc. 430:1247–56 [Google Scholar]
  39. Lammer H, Stokl A, Erkaev NV, Dorfi EA, Odert P. et al. 2014. Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439:3225–38 [Google Scholar]
  40. Lecavelier des Etangs A. 2007. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461:1185–93 [Google Scholar]
  41. Lecavelier des Etangs A, Vidal-Madjar A, McConnell JC, Hébrard G. 2004. Atmospheric escape from hot Jupiters. Astron. Astrophys. 418:L1–4 [Google Scholar]
  42. Linsky JL, Yang H, France K, Froning CS, Green JC. et al. 2010. Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. J. 717:1291–99 [Google Scholar]
  43. Lopez ED, Fortney JJ. 2013. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776:2 [Google Scholar]
  44. Lopez ED, Fortney JJ, Miller N. 2012. How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761:59 [Google Scholar]
  45. Luger R, Barnes R. 2014. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–43 [Google Scholar]
  46. Manga M, Patel A, Dufek J, Kite ES. 2012. Wet surface and dense atmosphere on early Mars suggested by bomb sag at Home Plate, Mars. Geophys. Res. Lett. 39:L01202 [Google Scholar]
  47. Mazeh T, Zucker S, Pont F. 2005. An intriguing correlation between the masses and periods of the transiting planets. Mon. Not. R. Astron. Soc. 356:955–57 [Google Scholar]
  48. Murray-Clay RA, Chiang EI, Murray N. 2009. Atmospheric escape from hot Jupiters. Astrophys. J. 693:23–42 [Google Scholar]
  49. Öpik EJ, Singer SF. 1961. Distribution of density in a planetary exosphere. II. Phys. Fluids 4:221–33 [Google Scholar]
  50. Owen JE, Ercolano B, Clarke CJ, Alexander RD. 2010. Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs. Mon. Not. R. Astron. Soc. 401:1415–28 [Google Scholar]
  51. Owen JE, Jackson AP. 2012. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425:2931–47 [Google Scholar]
  52. Owen JE, Wu Y. 2013. Kepler planets: a tale of evaporation. Astrophys. J. 775:105 [Google Scholar]
  53. Parker EN. 1964. Dynamical properties of stellar coronas and stellar winds. I. Integration of the momentum equation. Astrophys. J. 139:72 [Google Scholar]
  54. Penz T, Erkaev NV, Kulikov YN, Langmayr D, Lammer H. et al. 2008. Mass loss from “hot Jupiters”—implications for CoRoT discoveries. Part II. Long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56:1260–72 [Google Scholar]
  55. Perez-Becker D, Chiang E. 2013. Catastrophic evaporation of rocky planets. Mon. Not. R. Astron. Soc. 433:2294–309 [Google Scholar]
  56. Petigura EA, Marcy GW, Howard AW. 2013. A plateau in the planet population below twice the size of Earth. Astrophys. J. 770:69 [Google Scholar]
  57. Poppenhaeger K, Czesla S, Schröter S, Lalitha S, Kashyap V, Schmitt JHMM. 2012. The high-energy environment in the super-Earth system CoRoT-7. Astron. Astrophys. 541:A26 [Google Scholar]
  58. Poppenhaeger K, Schmitt JHMM, Wolk SJ. 2013. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773:62 [Google Scholar]
  59. Ramirez RM, Kaltenegger L. 2014. The habitable zones of pre-main-sequence stars. Astrophys. J. Lett. 797:L25 [Google Scholar]
  60. Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Warming early Mars with CO2 and H2. Nat. Geosci. 7:59–63 [Google Scholar]
  61. Rappaport S, Levine A, Chiang E, El Mellah I, Jenkins J. et al. 2012. Possible disintegrating short-period super-Mercury orbiting KIC 12557548. Astrophys. J. 752:1 [Google Scholar]
  62. Schneiter EM, Velázquez PF, Esquivel A, Rage AC. 2007. Three-dimensional hydrodynamical simulation of the exoplanet HD209458b. Astrophys. J. Lett. 671:L57–60 [Google Scholar]
  63. Southworth J, Wheatley PJ, Sams G. 2007. A method for the direct determination of the surface gravities of transiting extrasolar planets. Mon. Not. R. Astron. Soc. 379:L11 [Google Scholar]
  64. Steffen JH, Farr WM. 2013. A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. Astrophys. J. Lett. 774:L12 [Google Scholar]
  65. Stone JM, Proga D. 2009. Anisotropic winds from close-in extrasolar planets. Astrophys. J. 694:205–13 [Google Scholar]
  66. Szabo GM, Kiss LL. 2011. A short-period censor of sub-Jupiter mass exoplanets with low density. Astrophys. J. Lett. 727:L44 [Google Scholar]
  67. Tanaka YA, Suzuki TK, Inutsuka S. 2014. Atmospheric escape by magnetically driven wind from gaseous planets. Astrophys. J. 792:18–27 [Google Scholar]
  68. Tian F. 2013. Conservation of total escape from hydrodynamic planetary atmospheres. Earth Planet. Sci. Lett 379:104–7 [Google Scholar]
  69. Tian F, Chassefière E, Leblanc F, Brain DA. 2013. Atmosphere escape and climate evolution of terrestrial planets. Comparative Climatology of Terrestrial Planets SJ Mackwell, AA Simon-Miller, JW Harder, MA Bullock 567–81 Tucson: Univ. Ariz. Press [Google Scholar]
  70. Tian F, Ida S. 2015. Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8:177–80 [Google Scholar]
  71. Tian F, Kasting JF, Liu H, Roble RG. 2008a. Hydrodynamic planetary thermosphere model. 1. Response of the Earth's thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res 113:E05008 [Google Scholar]
  72. Tian F, Kasting JF, Solomon SC. 2009. Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett 36:L02205 [Google Scholar]
  73. Tian F, Solomon SC, Qian L, Lei J, Roble RG. 2008b. Hydrodynamic planetary thermosphere model. 2. Coupling of an electron transport/energy deposition model. J. Geophys. Res 113:E05008 [Google Scholar]
  74. Tian F, Toon OB, Pavlov AA, DeSterck H. 2005a. A hydrogen-rich early Earth atmosphere. Science 308:1014–17 [Google Scholar]
  75. Tian F, Toon OB, Pavlov AA, DeSterck H. 2005b. Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621:1049–60 [Google Scholar]
  76. Trammell GB, Arras P, Li ZY. 2011. Hot Jupiter magnetospheres. Astrophys. J. 728:152–75 [Google Scholar]
  77. Valsecchi F, Rasio FA, Steffen JH. 2014. From hot Jupiters to super-Earths via Roche lobe overflow. Astrophys. J. Lett. 793:L3 [Google Scholar]
  78. van Werkhoven TIM, Brogi M, Snellen IAG, Keller CU. 2014. Analysis and interpretation of 15 quarters of Kepler data of the disintegrating planet KIC 12557548 b. Astron. Astrophys. 561:A3 [Google Scholar]
  79. Vidal-Madjar A, Désert JM, Lecavelier des Etangs A, Hébrard G, Ballester GE. et al. 2004. Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD209458b. Astrophys. J. Lett. 604:L69–72 [Google Scholar]
  80. Vidal-Madjar A, Huitson CM, Bourrier V, Désert JM, Ballester G. et al. 2013. Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560:A54 [Google Scholar]
  81. Vidal-Madjar A, Lecavelier des Etangs A, Désert JM, Ballester GE, Ferlet R. et al. 2003. An extended upper atmosphere around the extrasolar giant planet HD209458b. Nature 422:143–46 [Google Scholar]
  82. Villarreal D'Angelo C, Schneiter M, Costa A, Velázquez P, Raga A, Esquivel A. 2014. On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study. Mon. Not. R. Astron. Soc. 438:1654–62 [Google Scholar]
  83. Volkov AN, Johnson RE. 2013. Thermal escape in the hydrodynamic regime: reconsideration of Parker's isentropic theory based on results of kinetic simulations. Astrophys. J. 765:90 [Google Scholar]
  84. Volkov AN, Johnson RE, Tucker OJ, Erwin JT. 2011a. Thermally driven atmospheric escape: transition from hydrodynamic escape to Jeans escape. Astrophys. J. Lett. 729:L24–28 [Google Scholar]
  85. Volkov AN, Tucker OJ, Erwin JT, Johnson RE. 2011b. Kinetic simulations of thermal escape from a single component atmosphere. Phys. Fluids 23:066601 [Google Scholar]
  86. Watson AJ, Donahue TM, Walker JCG. 1981. The dynamics of a rapidly escaping atmosphere—the evolution of Earth and Venus. Icarus 48:150–66 [Google Scholar]
  87. Weiss LM, Marcy GW. 2013. The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. 768:14 [Google Scholar]
  88. Wordsworth R, Pierrehumbert R. 2013. Hydrogen–nitrogen greenhouse warming in Earth's early atmosphere. Science 339:64–67 [Google Scholar]
  89. Wu Y, Lithwick Y. 2013. Density and eccentricity of Kepler planets. Astrophys. J. 772:74 [Google Scholar]
  90. Yang J, Boué G, Fabrycky DC, Abbot DS. 2014. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787:L2 [Google Scholar]
  91. Yelle RV. 2004. Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170:167–79 Corrigendum; 2006. Icarus 183:508 [Google Scholar]
  92. Youdin AN. 2011. The exoplanet census: a general method applied to Kepler. Astrophys. J. 742:38 [Google Scholar]
  93. Zhao J, Tian F. 2015. Photochemical escape of oxygen from early Mars. Icarus 250:447–81 [Google Scholar]
/content/journals/10.1146/annurev-earth-060313-054834
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error