Although carbon dioxide emissions are by far the most important mediator of anthropogenic climate disruption, a number of shorter-lived substances with atmospheric lifetimes of under a few decades also contribute significantly to the radiative forcing that drives climate change. In recent years, the argument that early and aggressive mitigation of the emission of these substances or their precursors forms an essential part of any climate protection strategy has gained a considerable following. There is often an implication that such control can in some way make up for the current inaction on carbon dioxide emissions. The prime targets for mitigation, known collectively as short-lived climate pollution (SLCP), are methane, hydrofluo-rocarbons, black carbon, and ozone. A re-examination of the issues shows that the benefits of early SLCP mitigation have been greatly exaggerated, largely because of inadequacies in the methodologies used to compare the climate effects of short-lived substances with those of CO, which causes nearly irreversible climate change persisting millennia after emissions cease. Eventual mitigation of SLCP can make a useful contribution to climate protection, but there is little to be gained by implementing SLCP mitigation before stringent carbon dioxide controls are in place and have caused annual emissions to approach zero. Any earlier implementation of SLCP mitigation that substitutes to any significant extent for carbon dioxide mitigation will lead to a climate irreversibly warmer than will a strategy with delayed SLCP mitigation. SLCP mitigation does not buy time for implementation of stringent controls on CO emissions.

[Erratum, Closure]

An erratum has been published for this article:
Short-Lived Climate Pollution

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA. et al. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–66 doi: 10.1038/nature08019 [Google Scholar]
  2. Allen MR, Stocker TF. 2014. Impact of delay in reducing carbon dioxide emissions. Nat. Clim. Change 4:23–26 doi: 10.1038/nclimate2077 [Google Scholar]
  3. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L. et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37:117–34 doi: 10.1146/annurev.earth.031208.100206 [Google Scholar]
  4. Archer D, Kheshgi H, Maier-Reimer E. 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett. 24:405–8 doi: 10.1029/97GL00168 [Google Scholar]
  5. Armour KC, Roe GH. 2011. Climate commitment in an uncertain world. Geophys. Res. Lett. 38:L01707 doi: 10.1029/2010GL045850 [Google Scholar]
  6. Ban-Weiss GA, Cao L, Bala G, Caldeira K. 2012. Dependence of climate forcing and response on the altitude of black carbon aerosols. Clim. Dyn. 38:897–911 doi: 10.1007/s00382-011-1052-y [Google Scholar]
  7. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T. et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118:5380–552 doi:10.1002/jgrd.50171 [Google Scholar]
  8. Bowerman NHA, Frame DJ, Huntingford C, Lowe JA, Smith SM, Allen MR. 2013. The role of short-lived climate pollutants in meeting temperature goals. Nat. Clim. Change 3:1021–24 doi: 10.1038/nclimate2034 [Google Scholar]
  9. Caldeira K, Kasting JF. 1993. Insensitivity of global warming potentials to carbon-dioxide emission scenarios. Nature 366:251–53 doi: 10.1038/366251a0 [Google Scholar]
  10. Cathles LM. 2012. Assessing the greenhouse impact of natural gas. Geochem. Geophys. Geosyst. 13:Q06013 doi: 10.1029/2012GC004032 [Google Scholar]
  11. Cess RD, Potter GL, Chan SJ, Gates WL. 1985. The climatic effects of large injections of atmospheric smoke and dust: a study of climate feedback mechanisms with one- and three-dimensional climate models. J. Geophys. Res. 90:D72937–50 doi: 10.1029/JD090iD07p12937 [Google Scholar]
  12. Daniel JS, Solomon S, Sanford TJ, McFarland M, Fuglestvedt JS, Friedlingstein P. 2011. Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Clim. Change 111:241–48 doi: 10.1007/s10584-011-0136-3 [Google Scholar]
  13. Davidson EA. 2012. Representative concentration pathways and mitigation scenarios for nitrous oxide. Environ. Res. Lett. 7:024005 doi: 10.1088/1748-9326/7/2/024005 [Google Scholar]
  14. DeAngelo B. 2011. An assessment of emissions and mitigation options for black carbon for the Arctic Council; technical report of the Arctic Council Task Force on Short-Lived Climate Forcers. Arctic Counc., Tromsø, Nor. http://library.arcticportal.org/1210/1/ACTF_Report_22July2011.pdf
  15. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ. 2009. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J. Clim. 22:2501–11 doi: 10.1175/2008JCLI2554.1 [Google Scholar]
  16. Flanner MG. 2013. Arctic climate sensitivity to local black carbon. J. Geophys. Res. Atmos. 118:1840–51 doi: 10.1002/jgrd.50176 [Google Scholar]
  17. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R. et al. 2007. Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis et al. Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  18. Frölicher TK, Winton M, Sarmiento JL. 2014. Continued global warming after CO2 emissions stoppage. Nat. Clim. Change 4:40–44 doi: 10.1038/nclimate2060 [Google Scholar]
  19. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A. et al. 2005. Efficacy of climate forcings. J. Geophys. Res. 110:D18104 doi: 10.1029/2005JD005776 [Google Scholar]
  20. Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK. 2010. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23:2418–27 doi: 10.1175/2009JCLI3466.1 [Google Scholar]
  21. Int. Energy Agency (IEA) 2009. World Energy Outlook 2009 Paris: OECD/IEA
  22. Jackson SC. 2009. Parallel pursuit of near-term and long-term climate mitigation. Science 326:526–27 doi: 10.1126/science.1177042 [Google Scholar]
  23. Jacobson MZ. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res. 107:D194410 doi: 10.1029/2001JD001376.0 [Google Scholar]
  24. Keeling CD, Bacastow RB. 1977. Impact of industrial gases on climate. Energy and Climate: Studies in Geophysics Natl. Res. Counc. 72–95 Washington, DC: Natl. Acad. Press [Google Scholar]
  25. Lauder AR, Enting IG, Carter JO, Clisby N, Cowie AL. et al. 2013. Offsetting methane emissions—an alternative to emission equivalence metrics. Int. J. Greenh. Gas Control 12:419–29 doi: 10.1016/j.ijggc.2012.11.028 [Google Scholar]
  26. Manne AS, Richels RG. 2001. An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–77 doi: 10.1038/35070541 [Google Scholar]
  27. Manning M, Reisinger A. 2011. Broader perspectives for comparing different greenhouse gases. Philos. Trans. R. Soc. A 369:1891–905 doi: 10.1098/rsta.2010.0349 [Google Scholar]
  28. Matthews HD, Caldeira K. 2008. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35 L04705 doi: 10.1029/2007GL032388 [Google Scholar]
  29. Matthews HD, Gillett NP, Stott PA, Zickfeld K. 2009. The proportionality of global warming to cumulative carbon emissions. Nature 459:829–32 doi: 10.1038/nature08047 [Google Scholar]
  30. Matthews HD, Weaver AJ. 2010. Committed climate warming. Nat. Geosci. 3:142–43 doi: 10.1038/ngeo813 [Google Scholar]
  31. Meehl GA, Arblaster JM, Collins WD. 2008. Effects of black carbon aerosols on the Indian Monsoon. J. Clim. 21:2869–82 doi: 10.1175/2007JCLI1777.1 [Google Scholar]
  32. Ming Y, Ramaswamy V, Persad G. 2010. Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett. 37:L13701 doi: 10.1029/2010GL042895 [Google Scholar]
  33. Natl. Res. Counc. (NRC) 2011. Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia Washington, DC: Natl. Acad. Press
  34. O'Neill BC. 2000. The jury is still out on global warming potentials. Clim. Change 44:427–43 doi: 10.1023/A:1005582929198 [Google Scholar]
  35. Penner JE, Prather MJ, Isaksen ISA, Fuglestvedt JS, Klimont Z, Stevenson DS. 2010. Short-lived uncertainty?. Nat. Geosci. 3:587–88 doi: 10.1038/ngeo932 [Google Scholar]
  36. Pierrehumbert RT. 2010. Principles of Planetary Climate New York: Cambridge Univ. Press
  37. Ramanathan V, Feng Y. 2008. On avoiding dangerous anthropogenic interference with the climate system. Proc. Natl. Acad. Sci. USA 105:14245–50 doi: 10.1073/pnas.0803838105 [Google Scholar]
  38. Ramanathan V, Xu Y. 2010. The Copenhagen Accord for limiting global warming: criteria, constraints, and available avenues. Proc. Natl. Acad. Sci. USA 107:8055–62 doi: 10.1073/pnas.1002293107 [Google Scholar]
  39. Riahi K, Grübler A, Nakicenovic N. 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74:887–935 doi: 10.1016/j.techfore.2006.05.026 [Google Scholar]
  40. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. 2009. Improved attribution of climate forcing to emissions. Science 326:716–18 doi: 10.1126/science.1174760 [Google Scholar]
  41. Shine KP. 2009. The global warming potential—the need for an interdisciplinary retrial. Clim. Change 96:467–72 doi: 10.1007/s10584-009-9647-6 [Google Scholar]
  42. Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RBS, Stuber N. 2007. Comparing the climate effect of emissions of short- and long-lived climate agents. Philos. Trans. R. Soc. A 365:1903–14 doi: 10.1098/rsta.2007.2050 [Google Scholar]
  43. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N. 2005. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68:281–302 doi: 10.1007/s10584-005-1146-9 [Google Scholar]
  44. Shoemaker JK, Schrag DP. 2013. The danger of overvaluing methane's influence on future climate change. Clim. Change 120:903–14 doi: 10.1007/s10584-013-0861-x [Google Scholar]
  45. Shoemaker JK, Schrag DP, Molina MJ, Ramanathan V. 2013. What role for short-lived climate pollutants in mitigation policy?. Science 342:1323–24 doi: 10.1126/science.1240162 [Google Scholar]
  46. Smith SJ, Mizrahi A. 2014. Near-term climate mitigation by short-lived forcers. Proc. Natl. Acad. Sci. USA 11014202–6 doi: 10.1073/pnas.1308470110
  47. Smith SJ, Wigley TML. 2000a. Global warming potentials. 1. Climatic implications of emissions reductions. Clim. Change 44:445–57 doi: 10.1023/A:1005584914078 [Google Scholar]
  48. Smith SJ, Wigley TML. 2000b. Global warming potentials. 2. Accuracy. Clim. Change 44:459–69 doi: 10.1023/A:1005537014987 [Google Scholar]
  49. Smith SM, Lowe JA, Bowerman NHN, Gohar LK, Huntingford C, Allen MR. 2012. Equivalence of greenhouse-gas emissions for peak temperature limits. Nat. Clim. Change 2:535–38 doi: 10.1038/nclimate1496 [Google Scholar]
  50. Soden BJ, Held IM. 2006. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Clim. 19:3354–60 doi: 10.1175/JCLI3799.1 [Google Scholar]
  51. Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner GK. et al. 2010. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl. Acad. Sci. USA 107:18354–59 doi: 10.1073/pnas.1006282107 [Google Scholar]
  52. Solomon S, Pierrehumbert RT, Matthews D, Daniel JS, Friedlingstein P. 2012. Atmospheric composition, irreversible climate change, and mitigation policy. Climate Science for Serving Society: Research, Modelling and Prediction Priorities J Hurrell, G Asrar 415–36 Dordrecht, Neth.: Springer [Google Scholar]
  53. Solomon S, Plattner GK, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106:1704–9 doi: 10.1073/pnas.0812721106 [Google Scholar]
  54. UN Environ. Programme (UNEP) 2011. Near-term climate protection and clean air benefits: actions for controlling short-lived climate forcers UNEP Synth. Rep., UNEP, Nairobi. http://www.unep.org/publications/ebooks/slcf/
  55. US Environ. Prot. Agency (EPA) 2012. Report to Congress on black carbon EPA-450/R-12-001, US EPA, Washington, DC. http://www.epa.gov/blackcarbon/
  56. US State Dept 2012. The Climate and Clean Air Coalition to Reduce Short Lived Climate Pollutants Fact Sheet, US State Dept., Washington, DC, Feb. 16. http://www.state.gov/r/pa/prs/ps/2012/02/184055.htm
  57. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A. et al. 2011. The representative concentration pathways: an overview. Clim. Change 109:5–21 doi: 10.1007/s10584-011-0148-z [Google Scholar]
  58. Velders GJM, Fahey DW, Daniel JS, McFarland M, Andersen SO. 2009. The large contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci. USA 106:10949–54 doi: 10.1073/pnas.0902817106 [Google Scholar]
  59. Victor DG, Kennel CF, Ramanathan V. 2012. The climate threat we can beat: what it is and how to deal with it. Foreign Aff. 91:112–21 [Google Scholar]
  60. Walker JCG, Kasting JF. 1992. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Glob. Planet. Change 97:151–89 doi: 10.1016/0921-8181(92)90009-Y [Google Scholar]
  61. White House 2013. The President's Climate Action Plan Washington, DC: Exec. Office Pres http://www.whitehouse.gov/sites/default/files/image/president27sclimateactionplan.pdf
  62. Winton M, Takahashi K, Held IM. 2010. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23:2333–44 doi: 10.1175/2009JCLI3139.1 [Google Scholar]
  63. World Bank 2013. Cutting short-lived climate pollutants: a win-win for development and climate World Bank, Washington, DC, Sept. 3. http://www.worldbank.org/en/news/feature/2013/09/03/cutting-short-lived-climate-pollutants-win-win-health-climate
  64. Zickfeld K, Eby M, Weaver AJ, Alexander K, Crespin E. et al. 2013. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26:5782–809 doi: 10.1175/JCLI-D-12-00584.1 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error