Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alexander J, Barclay J, Sušnik J, Loughlin SC, Herd RA. et al. 2010. Sediment-charged flash floods on Montserrat—the influence of synchronous tephra fall and varying extent of vegetation damage. J. Volcanol. Geotherm. Res. 194:127–38 [Google Scholar]
  2. Anderson T, Flett JS. 1903. Report on the eruptions of Soufrière, in St. Vincent, in 1902, and on a visit to Montagne Pelée in Martinique—Part 1. Philos. Trans. R. Soc. A 200:353–553 [Google Scholar]
  3. Antos JA, Zobel DB. 2005. Plant responses in forests of the tephra-fall zone. See Dale et al. 2005 47–58
  4. Ayris PM, Delmelle P. 2012. The immediate environmental effects of tephra emission. Bull. Volcanol. 74:1905–36 [Google Scholar]
  5. Bacon CR. 1983. Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J. Volcanol. Geotherm. Res. 18:57–115 [Google Scholar]
  6. Bell JW, House PK. 2007. Did Plinian eruptions in California lead to debris flows in Nevada? An intriguing stratigraphic connection. Geology 35:219–22 [Google Scholar]
  7. Belousov A, Behncke B, Belousova M. 2011. Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate. J. Volcanol. Geotherm. Res. 202:60–72 [Google Scholar]
  8. Belousov A, Voight B, Belousova M. 2007. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St. Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull. Volcanol. 69:701–40 [Google Scholar]
  9. Bonadonna C, Costa A. 2013. Modeling tephra sedimentation from volcanic plumes. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism SA Fagents, TKP Gregg, RMC Lopes 173–202 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Branch WE. 1991. Hydrologic change caused by the eruption of Mount St. Helens. Irrigation and Drainage, Proceedings of the 1991 National Conference WF Ritter 531–38 New York: Am. Soc. Civ. Eng. [Google Scholar]
  11. Branney MJ, Kokelaar P. 2002. Pyroclastic Density Currents and the Sedimentation of Ignimbrites Geol. Soc. Lond. Mem. 27 London: Geol. Soc. Lond. [Google Scholar]
  12. Cashman KV, Sparks RSJ. 2013. How volcanoes work: a 25 year perspective. GSA Bull. 125:664–90 [Google Scholar]
  13. Chinen T. 1986. Surface erosion associated with tephra deposition on Mt. Usu and other volcanoes. Environ. Sci. Hokkaido 9:1137–49 [Google Scholar]
  14. Chinen T, Rivière A. 1990. Post-eruption erosion processes and plant recovery in the summit atrio of Mt. Usu, Japan. Catena 17:305–14 [Google Scholar]
  15. Cloutier D, LeCouturier MN, Amos CL, Hill PR. 2006. The effects of suspended sediment concentration on turbulence in an annular flume. Aquat. Ecol. 40:555–65 [Google Scholar]
  16. Coleman N. 1986. Effects of suspended sediment on open-channel velocity distribution. Water Resour. Res. 22:101377–84 [Google Scholar]
  17. Collins BD, Dunne T. 1986. Erosion of tephra from the 1980 eruption of Mount St. Helens. GSA Bull. 97:896–905 [Google Scholar]
  18. Cook RJ, Barron JC, Papendick RI, Williams GJ III. 1981. Impact on agriculture of the Mount St. Helens eruptions. Science 211:16–22 [Google Scholar]
  19. Crockford RH, Richardson DP. 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol. Process. 14:2903–20 [Google Scholar]
  20. Czuba JA, Magirl CS, Czuba CR, Grossman EE, Curran CA. et al. 2011. Sediment load from major rivers into Puget Sound and its adjacent waters USGS Fact Sheet 2011-3083, US Dep. Inter., USGS, Wash. Water Sci. Cent., Tacoma, WA [Google Scholar]
  21. Daag A, van Westen CJ. 1996. Cartographic modeling of erosion in pyroclastic flow deposits of Mount Pinatubo, Philippines. ITC J. 2:110–24 [Google Scholar]
  22. Dale VH, Swanson FJ, Crisafulli CM. 2005. Ecological Responses to the 1980 Eruption of Mount St. Helens. New York: Springer342 [Google Scholar]
  23. Datta B, Lettenmaier DP, Burges SJ. 1983. Assessment of changes in storm and seasonal runoff response of watersheds impacted by Mt. St. Helens ash deposition. Water Resour. Ser. Tech. Rep. 82, Dep. Civ. Eng., Univ. Wash., Seattle [Google Scholar]
  24. Davies DK, Vessell RK, Miles RC, Foley MG, Bonis SB. 1978. Fluvial transport and downstream sediment modifications in an active volcanic region. Fluvial Sedimentation AD Miall 61–84 Can. Soc. Pet. Geol. Mem. 5 Calgary, Can: CSPG [Google Scholar]
  25. Dietrich WE, Dunne T, Humphrey NF, Reid LM. 1982. Construction of sediment budgets for drainage basins. See Swanson et al. 1982 5–23
  26. Dunne T, Leopold LB. 1979. Water in Environmental Planning New York: Freeman818 [Google Scholar]
  27. Fairchild LH. 1987. The importance of lahar initiation processes. Debris Flows/Avalanches: Process, Recognition, and Mitigation JE Costa, GF Wieczorek 51–62 GSA Rev. Eng. Geol. 7 Boulder, CO: GSA [Google Scholar]
  28. Favalli M, Pareschi MT, Zanchetta G. 2006. Simulation of syn-eruptive floods in the circumvesuvian plain (southern Italy). Bull. Volcanol. 68:349–62 [Google Scholar]
  29. Fiksdal AJ. 1981. Infiltration rates of undisturbed and disturbed Mount St. Helens tephra deposits. Wash. Geol. Newsl. 9:31–3 [Google Scholar]
  30. Fohrer N, Berkenhagen J, Hecker J-M, Rudolph A. 1999. Changing soil and surface conditions during rainfall—single rainstorm/subsequent rainstorms. Catena 37:355–75 [Google Scholar]
  31. Folk RL. 1980. Petrology of Sedimentary Rocks Austin, TX: Hemphill184 [Google Scholar]
  32. Freundt A, Wilson CJN, Carey SN. 2000. Ignimbrites and block-and-ash flow deposits. See Sigurdsson et al. 2000 581–99
  33. Glicken HX. 1996. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. USGS Open-File Rep. 96-677, US Dep. Inter., USGS, Cascades Volcano Obs., Vancouver, WA. 90 pp. [Google Scholar]
  34. Graf W. 1977. The rate law in fluvial geomorphology. Am. J. Sci. 277:178–91 [Google Scholar]
  35. Gran KB. 2012. Strong seasonality in sand loading and resulting feedbacks on sediment transport, bed texture, and channel planform at Mount Pinatubo, Philippines. Earth Surf. Process. Landf. 37:1012–22 [Google Scholar]
  36. Gran KB, Montgomery DR. 2005. Spatial and temporal patterns in fluvial recovery following volcanic eruptions—channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. GSA Bull. 117:195–211 [Google Scholar]
  37. Gran KB, Montgomery DR, Halbur JC. 2011. Long-term elevated post-eruption sedimentation at Mount Pinatubo, Philippines. Geology 39:367–70 [Google Scholar]
  38. Gran KB, Montgomery DR, Sutherland DG. 2006. Channel bed evolution and sediment transport under declining sand inputs. Water Resour. Res. 42:W10407 [Google Scholar]
  39. Grant GE. 1997. Critical flow constrains flow hydraulics in mobile-bed streams: a new hypothesis. Water Resour. Res. 33:349–58 [Google Scholar]
  40. Hardardóttir J, Geirsdóttir A, Thordarson T. 2001. Tephra layers in a sediment core from Lake Hestvatn, southern Iceland: implications for evaluating sedimentation processes and environmental impacts on a lacustrine system caused by tephra fall deposits in the surrounding watershed. Volcaniclastic Sedimentation in Lacustrine Settings JDL White, NR Riggs 225–46 Spec. Publ. Int. Assoc. Sedimentol. 30 Oxford: Blackwell Sci. [Google Scholar]
  41. Harris AJL, Vallance JW, Kimberly P, Rose WI, Matías O. et al. 2006. Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala. Volcanic Hazards in Central America WI Rose, GJS Bluth, MJ Carr, JW Ewert, LC Patino, JW Vallance 85–104 GSA Spec. Pap. 412 Boulder, CO: GSA [Google Scholar]
  42. Hayes SK, Montgomery DR, Newhall CG. 2002. Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo. Geomorphology 45:211–24 [Google Scholar]
  43. Hendrayanto, Kobashi S, Mizuyama T, Kosugi K. 1995. Hydrological characteristics of new volcanic ash deposit. J. Jpn. Soc. Hydrol. Water Resour. 8:5484–91 [Google Scholar]
  44. Hildreth W, Fierstein J. 2012. The Novarupta-Katmai Eruption of 1912—Largest Eruption of the Twentieth Century: Centennial Perspectives USGS Prof. Pap. 1791 Washington, DC: USGS. [Google Scholar]
  45. Hirao K, Yoshida M. 1989. Sediment yield of Mt. Galunggung after eruption in 1982. Proc. Int. Symp. Eros. Volcan. Debris Flow Technol., July 31–Aug. 3, Yogyakarta, Indonesia V21-1–V21-22 Yogyakarta, Indones: Minist. Public Works [Google Scholar]
  46. Hoblitt RP, Miller CD, Vallance JW. 1981. Origin and stratigraphy of the deposit produced by the May 18 directed blast. See Lipman & Mullineaux 1981 401–20
  47. Horton RE. 1933. The role of infiltration in the hydrologic cycle. Trans. Am. Geophys. Union 14:446–60 [Google Scholar]
  48. Horton RE. 1940. An approach toward a physical interpretation of infiltration-capacity. Proc. Soil Sci. Soc. Am. 5:399–417 [Google Scholar]
  49. Houghton BF, Wilson CJN, Pyle DM. 2000. Pyroclastic fall deposits. See Sigurdsson et al. 2000 555–70
  50. Ikeya H, Hendrayanto, Kosugi K, Mizuyama T. 1995. Observed changes in the infiltration rates of pyroclastic deposits resulting from volcanic activities. J. Jpn. Soc. Eros. Control Eng. 48:222–26 (in Japanese, with English abstr.) [Google Scholar]
  51. Imagawa T. 1986. Mud and debris flows on Mt. Usu after the 1977–1978 eruption. Environ. Sci. Hokkaido 9:1113–35 [Google Scholar]
  52. Inbar M, Enriquez AR, Graniel JHG. 2001. Morphological changes and erosion processes following the 1982 eruption of El Chichón volcano, Chiapas, Mexico. Geomorphol. Relief Process. Environ. 3:175–84 [Google Scholar]
  53. Inbar M, Hubp JL, Ruiz LV. 1994. The geomorphological evolution of the Parícutin cone and lava flows, Mexico, 1943–1990. Geomorphology 9:57–76 [Google Scholar]
  54. James LA. 1991. Time and the persistence of alluvium: river engineering, fluvial geomorphology, and mining sediment in California. Geomorphology 31:265–90 [Google Scholar]
  55. Janda RJ, Meyer DF, Childers D. 1984. Sedimentation and geomorphic changes during and following the 1980–1983 eruptions of Mount St. Helens, Washington. Shin Sabo 37:210–21 and 37:35–19 [Google Scholar]
  56. Jefferson A, Grant GE, Lewis SL, Lancaster ST. 2010. Coevolution of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA. Earth Surf. Process. Landf. 35:803–16 [Google Scholar]
  57. Jerolmack DJ, Mohrig D. 2007. Conditions for branching in depositional rivers. Geology 35:463–66 [Google Scholar]
  58. Jitousono T, Shimokawa E, Teramoto Y, Nagata O. 1996. Distribution of ash fall deposit and infiltration rate on the flank of Unzen volcano. J. Jpn. Soc. Eros. Control Eng. 49:333–36 (in Japanese) [Google Scholar]
  59. Johnson AC, Wilcock P. 1998. Effect of root strength and soil saturation on hillslope stability in forests with natural cedar decline in headwater regions of SE Alaska. Proc. Headwater '98, Fourth Int. Conf. Headwater Control, Merano, Italy381–87 Rotterdam, Neth: Balkema [Google Scholar]
  60. Johnson MG, Beschta RL. 1980. Logging, infiltration capacity, and surface erodibility in western Oregon. J. For. 78:334–37 [Google Scholar]
  61. Jones JA. 2000. Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour. Res. 36:2621–42 [Google Scholar]
  62. Kadomura H, Imagawa T, Yamamoto H. 1983. Eruption-induced rapid erosion and mass movements on Usu Volcano, Hokkaido. Z. Geomorphol. Suppl. 46:123–42 [Google Scholar]
  63. Kataoka KS, Manville V, Nakajo T, Urabe A. 2009. Impacts of explosive volcanism on distal alluvial sedimentation—examples from the Pliocene–Holocene volcaniclastic successions of Japan. Sediment. Geol. 220:306–17 [Google Scholar]
  64. Kelfoun K, Legros F, Gourgaud A. 2000. A statistical study of trees damaged by the 22 November 1994 eruption of Merapi volcano (Java, Indonesia): relationships between ash-cloud surges and block-and-ash flows. J. Volcanol. Geotherm. Res. 100:379–93 [Google Scholar]
  65. Kesel RH, Lowe DR. 1987. Geomorphology and sedimentology of the Toro Amarillo alluvial fan in a humid tropical environment, Costa Rica. Geogr. Ann. Ser. A 69:85–99 [Google Scholar]
  66. Kisa H, Yamakoshi T, Ishizuka T, Sugiyama M, Takiguchi S. 2013. The feature of surface runoff caused by rainfall on hillslopes covered with the tephra by the 2011 eruption of Shinmoe-dake, Kirishima volcano. J. Jpn. Soc. Eros. Control Eng. 65:612–21 (in Japanese, with English abstr.) [Google Scholar]
  67. Kuenzi WD, Horst OH, McGehee RV. 1979. Effect of volcanic activity on fluvial-deltaic sedimentation in a modern arc-trench gap, southwestern Guatemala. GSA Bull. 90:827–38 [Google Scholar]
  68. Lavigne F. 2004. Rate of sediment yield following small-scale volcanic eruptions: a quantitative assessment at the Merapi and Semeru stratovolcanoes, Java, Indonesia. Earth Surf. Process. Landf. 29:1045–58 [Google Scholar]
  69. Lavigne F, Suwa H. 2004. Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology 61:41–58 [Google Scholar]
  70. Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A. 2000. Lahars at Merapi volcano, Central Java: an overview. J. Volcanol. Geotherm. Res. 100:423–56 [Google Scholar]
  71. Leavesley GH, Lusby GC, Lichty RW. 1989. Infiltration and erosion characteristics of selected tephra deposits from the 1980 eruption of Mount St. Helens, Washington, USA. Hydrol. Sci. J. 34:3339–53 [Google Scholar]
  72. Lettenmaier DP, Burges SJ. 1981. Estimation of flood frequency changes in the Toutle and Cowlitz River basins following the eruption of Mt. St. Helens Charles W. Harris Hydraul. Lab. Tech. Rep. 69, Dep. Civ. Eng., Univ. Wash., Seattle. 73 pp. [Google Scholar]
  73. Lipman PW, Mullineaux DR. 1981. The 1980 Eruptions of Mount St. Helens, Washington. USGS Prof. Pap. 1250 Washington, DC: USGS. 844 pp. [Google Scholar]
  74. Lisle T. 1995. Effects of coarse woody debris and its removal on a channel affected by the 1980 eruption of Mount St. Helens, Washington. Water Resour. Res. 31:71797–808 [Google Scholar]
  75. Lisle TE, Cui Y, Parker G, Pizzuto JE, Dodd AM. 2001. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers. Earth Surf. Process. Landf. 26:1409–20 [Google Scholar]
  76. Lombard RE, Miles MB, Nelson LM, Kresh DL, Carpenter PJ. 1981. The impact of mudflows of May 18 on the lower Toutle and Cowlitz Rivers. See Lipman & Mullineaux 1981 693–99
  77. Macías JL, Capra L, Scott KM, Espíndola JM, García-Palomo A, Costa JE. 2004. The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico. GSA Bull. 116:233–46 [Google Scholar]
  78. Major JJ. 2004. Posteruption suspended sediment transport at Mount St. Helens: decadal-scale relationships between landscape adjustments and river discharges. J. Geophys. Res. 109:F1F01002 [Google Scholar]
  79. Major JJ, Mark LE. 2006. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington. GSA Bull. 118:938–58 [Google Scholar]
  80. Major JJ, Pierson TC, Dinehart RL, Costa JE. 2000. Sediment yield following severe volcanic disturbance—a two-decade perspective from Mount St. Helens. Geology 28:819–22 [Google Scholar]
  81. Major JJ, Pierson TC, Hoblitt RP, Moreno H. 2013. Pyroclastic density currents associated with the 2008–2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics. Andean Geol. 40:2324–58 [Google Scholar]
  82. Major JJ, Yamakoshi T. 2005. Decadal-scale change of infiltration characteristics of a tephra-mantled hillslope at Mount St. Helens, Washington. Hydrol. Process. 19:3621–30 [Google Scholar]
  83. Manville V, Hodgson KA, Nairn IA. 2007. A review of break-out floods from volcanogenic lakes in New Zealand. N.Z. J. Geol. Geophys. 50:131–50 [Google Scholar]
  84. Manville V, Németh K, Kano K. 2009a. Source to sink: a review of three decades of progress in understanding of volcaniclastic processes, deposits, and hazards. Sediment. Geol. 220:136–61 [Google Scholar]
  85. Manville V, Segschneider B, Newton E, White JDL, Houghton BF, Wilson CJN. 2009b. Environmental impact of the 1.8 ka Taupo eruption, New Zealand: landscape responses to a large-scale explosive rhyolite eruption. Sediment. Geol. 220:318–36 [Google Scholar]
  86. Manville V, Wilson CJN. 2004. The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response. N.Z. J. Geol. Geophys. 47:525–47 [Google Scholar]
  87. McGuire WJ. 1996. Volcano instability: a review of contemporary themes. Volcano Instability on the Earth and Other Planets WJ McGuire, AP Jones, J Neuberg 1–23 Geol. Soc. Lond. Spec. Publ. 110 London: Geol . Soc. Lond. [Google Scholar]
  88. Meyer DF, Martinson HA. 1989. Rates and processes of channel development and recovery following the 1980 eruption of Mount St. Helens, Washington. Hydrol. Sci. J. 34:115–27 [Google Scholar]
  89. Miller DE, Gardner WH. 1962. Water infiltration into stratified soil. Proc. Soil Sci. Soc. Am. 26:115–19 [Google Scholar]
  90. Mills MJ. 2000. Volcanic aerosol and global atmospheric effects. See Sigurdsson et al. 2000 931–43
  91. Miyabuchi Y, Shimizu A, Takeshita K. 1999. Grain size characteristics and infiltration rates of deposits associated with the 1990–95 eruption of Unzen volcano, Japan. Trans. Jpn Geomorphol. Union 30:85–96 (in Japanese, with English abstr.) [Google Scholar]
  92. Montgomery DR, Panfil MS, Hayes SK. 1999. Channel-bed mobility response to extreme sediment loading at Mount Pinatubo. Geology 27:271–74 [Google Scholar]
  93. Nakada S, Shimizu H, Ohta K. 1999. Overview of the 1990–1995 eruption at Unzen Volcano. J. Volcanol. Geotherm. Res. 89:1–22 [Google Scholar]
  94. Newhall CG, Punongbayan RS. 1996. Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines Seattle: Univ. Wash. Press1126 [Google Scholar]
  95. Nicholas AP, Ashworth PJ, Kirkby MJ, Macklin MG, Murray T. 1995. Sediment slugs: large-scale fluctuations in fluvial sediment transport rates and storage volumes. Prog. Phys. Geogr. 19:500–19 [Google Scholar]
  96. Nomura Y, Kosugi K, Mizuyama T. 2003. Physical properties of volcanic ash deposits in Miyakejima, Mt. Usu and Sakurajima: analysis of physical properties of ash deposits in relation to mudflow occurrences. J. Jpn. Soc. Eros. Control Eng. 55:63–12 (in Japanese, with English abstr.) [Google Scholar]
  97. Ogawa Y, Daimaru H, Shimizu A. 2007. Experimental study of post-eruption overland flow and sediment load from slopes overlain by pyroclastic-flow deposits, Unzen volcano, Japan. Geomorphol. Relief Process. Environ. 3:237–46 [Google Scholar]
  98. Okuda S, Suwa H, Okunishi K, Nakano M, Yokoyama K. 1977. Synthetic observation on debris flow: Part 3. Annu. Disaster Prev. Res. Inst. Kyoto Univ. 20B:1237–63 [Google Scholar]
  99. Onda Y, Takenaka C, Mizuyama T. 1996. The mechanism inducing the infiltration rate lowering of Unzen volcanic ash. J. Jpn. Soc. Eros. Control Eng. 49:125–30 (in Japanese, with English abstr.) [Google Scholar]
  100. Orwig CE, Mathison JM. 1982. Forecasting considerations in Mount St. Helens affected rivers. Proc. Mount St. Helens: Effects Water Resour., Oct. 7–8, 1981, Jantzen Beach, Or.272–92 Pullman, Wash: Wash. State Water Res. Cent., Wash. State Univ. [Google Scholar]
  101. Pareschi MT, Favalli M, Giannini F, Sulpizio R, Zanchetta G, Santacroce R. 2000. May 5, 1998, debris flows in circum-Vesuvian areas (southern Italy): insights for hazard assessment. Geology 28:639–42 [Google Scholar]
  102. Phillips JD. 2009. Changes, perturbations, and responses in geomorphic systems. Prog. Phys. Geogr. 33:17–30 [Google Scholar]
  103. Piégay H, Schumm SA. 2003. System approaches in fluvial geomorphology. Tools in Fluvial Geomorphology GM Kondolf, H Piégay 105–34 New York: Wiley [Google Scholar]
  104. Pierson TC. 2005. Hyperconcentrated flow—transitional process between water flow and debris flow. Debris-Flow Hazards and Related Phenomena M Jakob, O Hungr 159–202 Chichester, UK: Springer-Praxis [Google Scholar]
  105. Pierson TC, Daag AS, Delos Reyes PJ, Regalado MTM, Solidum RU, Tubianosa BS. 1996. Flow and deposition of posteruption hot lahars on the east side of Mount Pinatubo, July–October 1991. See Newhall & Punongbayan 1996 921–50
  106. Pierson TC, Janda RJ, Thouret J-C, Borrero CA. 1990. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J. Volcanol. Geotherm. Res. 41:17–66 [Google Scholar]
  107. Pierson TC, Janda RJ, Umbal JV, Daag AS. 1992. Immediate and long-term hazards from lahars and excess sedimentation in rivers draining Mt. Pinatubo, Philippines. USGS Water-Res. Investig. Rep. 92-4039, US Dep. Inter., USGS, Cascades Volcano Obs., Vancouver, WA [Google Scholar]
  108. Pierson TC, Major JJ, Amigo Á, Moreno H. 2013. Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bull. Volcanol. 75:5723 [Google Scholar]
  109. Pierson TC, Pringle PT, Cameron KA. 2011. Magnitude and timing of downstream channel aggradation and degradation in response to a dome-building eruption at Mount Hood, Oregon. GSA Bull. 123:3–20 [Google Scholar]
  110. Podolak CJP, Wilcock PR. 2013. Experimental study of the response of a gravel streambed to increased sediment supply. Earth Surf. Process. Landf. 38:1748–64 [Google Scholar]
  111. Pringle P, Scott K. 2001. Postglacial influence of volcanism on the landscape and environmental history of the Puget Lowland, Washington: a review of geologic literature and recent discoveries, with emphasis on the landscape disturbances associated with lahars, lahar runouts, and associated flooding. Proc. Puget Sound Res. Conf., 5th, Feb. 12–14, Bellevue, Wash. Olympia, WA: Puget Sound Partnersh http://archives.eopugetsound.org/conf/2001PS_ResearchConference/sessions/oral/4d_pring.pdf [Google Scholar]
  112. Procter J, Cronin SJ, Fuller IC, Lube G, Manville V. 2010. Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology 38:67–70 [Google Scholar]
  113. Punongbayan RS, Newhall CG, Hoblitt RP. 1996. Photographic record of rapid geomorphic change at Mount Pinatubo, 1991–94. See Newhall & Punongbayan 1996 21–66
  114. Reid LM, Lewis J. 2009. Rates, timing, and mechanisms of rainfall interception loss in a coastal redwood forest. J. Hydrol. 375:459–70 [Google Scholar]
  115. Roche O, Phillips JC, Kelfoun K. 2013. Pyroclastic density currents. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism SA Fagents, TKP Gregg, RMC Lopes 203–29 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  116. Rodolfo KS. 1989. Origin and early evolution of lahar channel at Mabinit, Mayon Volcano, Philippines. GSA Bull. 101:414–26 [Google Scholar]
  117. Rodolfo KS, Umbal JV, Alonso RA, Remotigue CT, Paladio-Melosantos ML. et al. 1996. Two years of lahars on the western flank of Mount Pinatubo: initiation, flow processes, deposits, and attendant geomorphic and hydraulic changes. See Newhall & Punongbayan 1996 989–1013
  118. Roering JJ, Marshall J, Booth AM, Mort M, Jin Q. 2010. Evidence for biotic controls on topography and soil production. Earth Planet. Sci. Lett. 298:183–90 [Google Scholar]
  119. Römkens MJM, Prasad SN, Whisler FD. 1990. Surface sealing and infiltration. Process Studies in Hillslope Hydrology MG Anderson, TP Burt 127–72 Chichester, UK: Wiley [Google Scholar]
  120. Rosenfeld CL, Beach GL. 1983. Evolution of a drainage network: remote sensing analysis of the North Fork Toutle River, Mount St. Helens, Washington. Water Resour. Res. Inst. Rep. WRRI-88, Oreg. State Univ., Corvallis, OR. 100 pp. [Google Scholar]
  121. Rosgen DL. 1994. A classification of natural rivers. Catena 22:169–99 [Google Scholar]
  122. Schneider A, Gerke HH, Maurer T, Nenov R. 2013. Initial hydro-geomorphic development and rill network evolution in an artificial catchment. Earth Surf. Process. Landf. 38:1496–512 [Google Scholar]
  123. Schumm SA. 1985. Patterns of alluvial rivers. Annu. Rev. Earth Planet. Sci. 13:5–27 [Google Scholar]
  124. Schumm SA, Rea DK. 1995. Sediment yield from disturbed earth systems. Geology 23:391–94 [Google Scholar]
  125. Scott KM. 1988. Origin, behavior, and sedimentology of prehistoric catastrophic lahars at Mount St. Helens, Washington. Sedimentologic Consequences of Convulsive Geologic Events HE Clifton 23–36 . GSA Spec. Pap. 229 Boulder, CO: GSA [Google Scholar]
  126. Scott KM, Janda RJ, de la Cruz EG, Gabinete E, Eto I. et al. 1996. Channel and sedimentation responses to large volumes of 1991 volcanic deposits on the east flank of Mount Pinatubo. See Newhall & Punongbayan 1996 971–88
  127. Scott WE, Hoblitt RP, Torres RC, Self S, Martinez MML, Nillos T Jr. 1996. Pyroclastic flows of the June 5, 1991, climactic eruption of Mount Pinatubo. See Newhall & Punongbayan 1996 545–70
  128. Segerstrom K. 1950. Erosion studies at Parícutin, State of Michoacan, Mexico. USGS Bull. 965-A:1–164 [Google Scholar]
  129. Segerstrom K. 1960. Erosion and related phenomena at Parícutin in 1957. USGS Bull. 1104-A:1–18 [Google Scholar]
  130. Shimokawa E, Jitousono T. 1997. Field survey for debris flow in volcanic area. Recent Developments on Debris Flows A Armanini, M Michiue 46–63 Lect. Notes Earth Sci. 64 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  131. Shimokawa E, Jitousono T, Tsuchiya S. 1996. Sediment yield from the 1984 pyroclastic flow deposit covered hillslopes in Merapi volcano, Indonesia. J. Jpn. Soc. Eros. Control Eng. 48:Spec. Issue101–7 [Google Scholar]
  132. Shimokawa E, Jitousono T, Yazawa A, Kawagoe R. 1989. An effect of tephra cover on erosion processes of hillslopes in and around Sakurajima Volcano. Proc. Int. Symp. Eros. Volcan. Debris Flow Technol., July 31–Aug. 3, Yogyakarta, IndonesiaV32–1V32-35 Yogyakarta, Indones: Minist. Public Works [Google Scholar]
  133. Siebert L. 2002. Landslides resulting from structural failure of volcanoes. Catastrophic Landslides: Effects, Occurrence, and Mechanisms SG Evans, JV DeGraff, pp. 209–35. GSA Rev. Eng. Geol. 15 Boulder, CO: GSA [Google Scholar]
  134. Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J. 2000. Encyclopedia of Volcanoes. San Diego: Academic. 1,417 pp. [Google Scholar]
  135. Simon A. 1999. Channel and drainage-basin response of the Toutle River system in the aftermath of the 1980 eruption of Mount St. Helens, Washington. USGS Open-File Rep. 96-633, US Dep. Inter., USGS, Cascades Volcano Obs., Vancouver, WA. 130 pp. [Google Scholar]
  136. Smith GA. 1987. The influence of explosive volcanism on fluvial sedimentation: the Deschutes Formation (Neogene) in central Oregon. J. Sediment. Petrol. 57:613–29 [Google Scholar]
  137. Smith GA. 1991. Facies sequences and geometries in continental volcaniclastic sequences. Sedimentation in Volcanic Settings RV Fisher, GA Smith 109–21 SEPM Spec. Publ. 45 Tulsa, OK: Soc. Sediment. Geol. [Google Scholar]
  138. Smith RD, Swanson FJ. 1987. Sediment routing in a small drainage basin in the blast zone at Mount St. Helens, Washington, U.S.A. Geomorphology 1:1–13 [Google Scholar]
  139. Suwa H, Sumaryono A. 1996. Sediment discharge by storm runoff from a creek on Merapi volcano. J. Jpn. Soc. Eros. Control Eng. 48:117–28 [Google Scholar]
  140. Suwa H, Yamakoshi T. 1999. Sediment discharge by storm runoff at volcanic torrents affected by eruption. Z. Geomorphol. Suppl. 114:63–88 [Google Scholar]
  141. Swanson FJ, Collins BD, Dunne T, Wicherski BP. 1983. Erosion of tephra from hillslopes near Mount St. Helens and other volcanoes. Proc. Symp. Eros. Control Volcan. Areas, July 6–9, 1982, Seattle and Vancouver, Wash.183–221 Public Works Res. Inst. Tech. Memo. 1908 Tsukuba, Jpn: Publ. Works Res. Inst. [Google Scholar]
  142. Swanson FJ, Janda RJ, Dunne T, Swanston DN. 1982. Sediment Budgets and Routing in Forested Drainage Basins USDA For. Serv. Gen. Tech. Rep. PNW-141 Washington, DC: US For. Serv165 [Google Scholar]
  143. Swanson FJ, Jones JA, Crisafulli CM, Lara A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geol. 40:2359–91 [Google Scholar]
  144. Swanson FJ, Major JJ. 2005. Physical events, environments, and geological-ecological interactions at Mount St. Helens: March 1980–2004. See Dale et al. 2005 27–44
  145. Tagata S, Yamakoshi T, Doi Y, Kurihara J, Terada H, Sakai N. 2006. Post-eruption characteristics of rainfall runoff and sediment discharge at the Miyakejima Volcano, Japan. Proc. INTERPRAEVENT Int. Symp., Sept. 26, Nigata, Jpn.291–301 Tokyo: Univers. Acad. Press [Google Scholar]
  146. Takeshita K. 1987. Influence of change in soil infiltration due to large-scale tephra cover on erosion processes of mountains. Trans. Jpn. Geomorphol. Union 8:227–48 (in Japanese, with English abstr.) [Google Scholar]
  147. Teramoto Y, Shimokawa E, Jitousono T. 2006. Effects of volcanic ash on the runoff process in Sakurajima volcano. Proc. INTERPRAEVENT Int. Symp., Sept. 26, Nigata, Jpn.303–10 Tokyo: Univers. Acad. Press [Google Scholar]
  148. Thorn CE, Welford MR. 1994. The equilibrium concept in geomorphology. Ann. Assoc. Am. Geogr. 84:666–96 [Google Scholar]
  149. Tindall JA, Kunkel JR. 1999. Unsaturated Zone Hydrology for Scientists and Engineers Upper Saddle River, NJ: Prentice Hall624, 1st ed.. [Google Scholar]
  150. Todesco M, Todini E. 2004. Volcanic eruption induced floods: a rainfall-runoff model applied to the Vesuvian region (Italy). Nat. Hazards 33:223–45 [Google Scholar]
  151. Umbal JV. 1997. Five years of lahars at Pinatubo Volcano: declining but still potentially lethal hazards. J. Geol. Soc. Philipp. 52:11–19 [Google Scholar]
  152. Umbal JV, Rodolfo KS. 1996. The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe Lake. See Newhall & Punongbayan 1996 951–70
  153. Vallance JW. 2000. Lahars. See Sigurdsson et al. 2000 601–16
  154. Vallance JW. 2005. Volcanic debris flows. Debris-Flow Hazards and Related Phenomena M Jakob, O Hungr 247–74 Chichester, UK: Springer-Praxis [Google Scholar]
  155. Vallance JW, Scott KM. 1997. The Osceola Mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bull. 109:143–63 [Google Scholar]
  156. Voight B, Glicken H, Janda RJ, Douglass PM. 1981. Catastrophic rockslide avalanche of May 18. See Lipman & Mullineaux 1981 347–77
  157. Waldron HH. 1967. Debris flow and erosion control problems caused by the ash eruptions of Irazú Volcano, Costa Rica. USGS Bull. 1241-I:1–37 [Google Scholar]
  158. Waythomas CF, Scott WE, Nye JC. 2010. The geomorphology of an Aleutian volcano following a major eruption: the 7–8 August 2008 eruption of Kasatochi Volcano, Alaska, and its aftermath. Arct. Antarct. Alp. Res. 42:260–75 [Google Scholar]
  159. White JDL, Houghton BF. 2006. Primary volcaniclastic rocks. Geology 34:677–80 [Google Scholar]
  160. White JDL, Houghton BF, Hodgson KA, Wilson CJN. 1997. Delayed sedimentary response to the A.D. 1886 eruption of Tarawera, New Zealand. Geology 25:459–62 [Google Scholar]
  161. Wilcock PR, Crowe JC. 2003. Surface-based transport model for mixed-size sediment. J. Hydraul. Eng. 129:120–28 [Google Scholar]
  162. Willingham WF. 2005. The Army Corps of Engineers' short-term response to the eruption of Mount St. Helens. Or. Hist. Q. 106:174–203 [Google Scholar]
  163. Wilson CJN. 1985. The Taupo eruption, New Zealand: II. The Taupo ignimbrite. Philos. Trans. R. Soc. A 314:229–310 [Google Scholar]
  164. Wilson CJN, Houghton BF. 2000. Pyroclast transport and deposition. See Sigurdsson et al. 2000 545–54
  165. Wohl E. 2013. Floodplains and wood. Earth-Sci. Rev. 123:194–212 [Google Scholar]
  166. Wu BS, Zheng S, Thorne CR. 2012. A general framework for using the rate law to simulate morphological response to disturbance in the fluvial system. Prog. Phys. Geogr. 36:5575–97 [Google Scholar]
  167. Yamakoshi T, Doi Y, Osanai N. 2005. Post-eruption hydrology and sediment discharge at the Miyakejima volcano, Japan. Z. Geomorphol. Suppl. 140:55–72 [Google Scholar]
  168. Yamakoshi T, Ishida T, Nakano M, Yamada T. 2002. Characteristics of sediment movement phenomena caused by rainfall after the 2000 eruption of Usu volcano. Proc. INTERPRAEVENT 2002 Pac. Rim Int. Congr., Oct.14–18, Matsumoto, Jpn. 1145–51 Klagenfurt, Austria: INTERPRAEVENT [Google Scholar]
  169. Yamakoshi T, Sasahara K, Tagata S, Ishida T, Takeshima H, Wakabayashi E. 2006. The surface runoff prediction model for the fine-tephra mantled slope. J. Jpn. Soc. Eros. Control Eng. 59:424–31 (in Japanese, with English abstr.) [Google Scholar]
  170. Yamakoshi T, Suwa H. 2000. Post-eruption characteristics of surface runoff and sediment discharge on the slopes of pyroclastic-flow deposits, Mount Unzen, Japan. Trans. Jpn. Geomorphol. Union 21:4469–97 [Google Scholar]
  171. Yamamoto H. 1984. Erosion of the 1977–1978 tephra layers on a slope of Usu Volcano, Japan. Trans. Jpn. Geomorphol. Union 5:111–24 (in Japanese, with English abstr.) [Google Scholar]
  172. Yamamoto H, Imagawa T. 1983. Surface runoff on a slope covered by 1977–1978 tephra from Usu Volcano. Hydrology 13:25–33 (in Japanese, with English abstr.) [Google Scholar]
  173. Yamamoto H, Kadomura H, Suzuki R, Imagawa T. 1980. Mudflows from a 1977–1978 tephra-covered watershed on Usu Volcano, Hokkaido, Japan. Trans. Jpn. Geomorphol. Union 1:73–88 (in Japanese, with English abstr.) [Google Scholar]
  174. Zheng S, Wu B, Thorne CR, Simon A. 2014. Morphological evolution of the North Fork Toutle River following the eruption of Mount St. Helens, Washington. Geomorphology 208:102–16 [Google Scholar]
  175. Ziemer RR. 1981. Roots and the stability of forested slopes. Erosion and Sediment Transport in Pacific Rim Steeplands TRH Davies, AJ Pearce 343–61 Int. Assoc. Hydrol. Sci. Publ. 132 Wallingford, UK: IAHS [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error