1932

Abstract

Seafloor geodetic techniques allow for measurements of crustal deformation over the ∼70% of Earth's surface that is inaccessible to the standard tools of tectonic geodesy. Precise underwater measurement of position, displacement, strain, and gravity poses technical, logistical, and cost challenges. Nonetheless, acoustic ranging; pressure sensors; underwater strain-, tilt- and gravimeters; and repeat multibeam sonar and seismic measurements are able to capture small-scale or regional deformation with approximately centimeter-level precision. Pioneering seafloor geodetic measurements offshore Japan, Cascadia, and Hawaii have substantially contributed to advances in our understanding of the motion and deformation of oceanic tectonic plates, earthquake cycle deformation in subduction zones, and the deformation of submarine volcanoes. Nontectonic deformation related to down-slope mass movement and underwater extraction of hydrocarbons or other resources represent other important targets. Recent technological advances promise further improvements in precision as well as the development of smaller, more autonomous, and less costly seafloor geodetic systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054953
2014-05-30
2024-10-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-earth-060313-054953
Loading
/content/journals/10.1146/annurev-earth-060313-054953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error