1932

Abstract

Seafloor geodetic techniques allow for measurements of crustal deformation over the ∼70% of Earth's surface that is inaccessible to the standard tools of tectonic geodesy. Precise underwater measurement of position, displacement, strain, and gravity poses technical, logistical, and cost challenges. Nonetheless, acoustic ranging; pressure sensors; underwater strain-, tilt- and gravimeters; and repeat multibeam sonar and seismic measurements are able to capture small-scale or regional deformation with approximately centimeter-level precision. Pioneering seafloor geodetic measurements offshore Japan, Cascadia, and Hawaii have substantially contributed to advances in our understanding of the motion and deformation of oceanic tectonic plates, earthquake cycle deformation in subduction zones, and the deformation of submarine volcanoes. Nontectonic deformation related to down-slope mass movement and underwater extraction of hydrocarbons or other resources represent other important targets. Recent technological advances promise further improvements in precision as well as the development of smaller, more autonomous, and less costly seafloor geodetic systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054953
2014-05-30
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-060313-054953.html?itemId=/content/journals/10.1146/annurev-earth-060313-054953&mimeType=html&fmt=ahah

Literature Cited

  1. Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M. 2011. Results from Sleipner gravity monitoring: updated density and temperature distribution of the CO2 plume. Energy Procedia 4:5504–11 [Google Scholar]
  2. Anderson G, Constable S, Staudigel H, Wyatt FK. 1997. A seafloor long-baseline tiltmeter. J. Geophys. Res. 102:B920269–85 [Google Scholar]
  3. Asada A, Ura T. 2010. Full-swath bathymetric survey system with synthetic aperture and triangle-arrayed interferometric techniques for autonomous underwater vehicle Presented at OCEANS 2010, Sept. 20–23, Seattle, WA. doi: 10.1109/OCEANS.2010.5664359 [Google Scholar]
  4. Ballu V, Bonnefond P, Calmant S, Bouin MN, Pelletier B. et al. 2013. Using altimetry and seafloor pressure data to estimate vertical deformation offshore: Vanuatu case study. Adv. Space Res. 51:1335–51 [Google Scholar]
  5. Blum JA, Chadwell CD, Driscoll N, Zumberge MA. 2010. Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and CHIRP seismic data. Geophys. Res. Lett. 37:L13308 [Google Scholar]
  6. Bourne S, Hatchell P, Partridge S, Leaf C, Klemm H. et al. 2009. An autonomous seafloor system for monitoring reservoir deformation Presented at EAGE Conf. Exhib., 71st, June 8, Amsterdam [Google Scholar]
  7. Brooks BA, Foster JH, Bevis M, Frazer LN, Wolfe CJ, Behn M. 2006. Periodic slow earthquakes on the flank of Kilauea volcano, Hawaii. Earth Planet. Sci. Lett. 246:207–16 [Google Scholar]
  8. Brooks BA, Foster JH, McGuire JJ, Behn M. 2011. Submarine landslides and slow earthquakes: monitoring motion with GPS and seafloor geodesy. Encyclopedia of Complexity and System Science W Lee 889–907 New York: Springer [Google Scholar]
  9. Bürgmann R, Kogan MG, Steblov GM, Hilley G, Levin VE, Apel T. 2005. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res. 110:B07405 [Google Scholar]
  10. Bürgmann R, Thatcher W. 2013. Space geodesy: a revolution in crustal deformation measurements of tectonic processes. The Web of Geological Sciences: Advances, Impacts, and Interactions ME Bickford 397–430 GSA Spec. Pap. 500 Boulder, CO: GSA [Google Scholar]
  11. Caress DW, Clague DA, Paduan JB, Martin JF, Dreyer BM. et al. 2012. Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011. Nat. Geosci. 5:483–88 [Google Scholar]
  12. Chadwell CD, Hildebrand JA, Spiess FN, Morton JL, Normark WR, Reiss CA. 1999. No spreading across the southern Juan de Fuca Ridge axial cleft during 1994–1996. Geophys. Res. Lett. 26:2525–28 [Google Scholar]
  13. Chadwell CD, Spiess FN. 2008. Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-acoustic data. J. Geophys. Res. 113:B04415 [Google Scholar]
  14. Chadwell CD, Sweeney AD. 2010. Acoustic ray-trace equations for seafloor geodesy. Mar. Geod. 33:164–86 [Google Scholar]
  15. Chadwick WW Jr, Embley RW, Milburn HB, Meinig C, Stapp M. 1999. Evidence for deformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca Ridge, from acoustic extensometer measurements. Geophys. Res. Lett. 26:3441–44 [Google Scholar]
  16. Chadwick WW Jr, Nooner SL, Butterfield DA, Lilley MD. 2012. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nat. Geosci. 5:474–77 [Google Scholar]
  17. Chadwick WW Jr, Stapp M. 2002. A deep-sea observatory experiment using acoustic extensometers: precise horizontal distance measurements across a mid-ocean ridge. IEEE J. Ocean. Eng. 27:193–201 [Google Scholar]
  18. Davis E, Becker K, Dziak R, Cassidy J, Wang K, Lilley M. 2004. Hydrological response to a seafloor spreading episode on the Juan de Fuca ridge. Nature 430:335–38 [Google Scholar]
  19. Davis E, Heesemann M, Wang K. 2011. Evidence for episodic aseismic slip across the subduction seismogenic zone off Costa Rica: CORK borehole pressure observations at the subduction prism toe. Earth Planet. Sci. Lett. 306:299–305 [Google Scholar]
  20. DeMets C, Gordon RG, Argus DF, Stein D. 1994. Effect of recent revisions to the geomagnetic reversal time scale and estimates of current plate motions. Geophys. Res. Lett. 21:2191–94 [Google Scholar]
  21. Eiken O, Stenvold T, Zumberge M, Alnes H, Sasagawa G. 2008. Gravimetric monitoring of gas production from the Troll field. Geophysics 73:WA149–54 [Google Scholar]
  22. Fabian M, Villinger H. 2008. Long-term tilt and acceleration data from the Logatchev hydrothermal vent field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter. Geochem. Geophys. Geosyst. 9:Q07016 [Google Scholar]
  23. Fox CG. 1993. Five years of ground deformation monitoring on Axial Seamount using a bottom pressure recorder. Geophys. Res. Lett. 20:1859–62 [Google Scholar]
  24. Fujimoto H, Koizumi K, Osada Y, Kanazawa T. 1998. Development of instruments for seafloor geodesy. Earth Planets Space 50:905–11 [Google Scholar]
  25. Fujita M, Ishikawa T, Mochizuki M, Sato M, Toyama S. et al. 2006. GPS/acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planets Space 58:265–75 [Google Scholar]
  26. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y. 2011. The 2011 Tohoku-oki earthquake: displacement reaching the trench axis. Science 334:1240 [Google Scholar]
  27. Gagnon KL, Chadwell CD, Norabuena E. 2005. Measuring the onset of updip locking in the Peru-Chile Trench at 12°S from GPS and acoustic measurements. Nature 434:205–8 [Google Scholar]
  28. Geen M. 1998. Applications of interferometric swath bathymetry Presented at OCEANS '98, Sept. 28–Oct. 1, Nice, Fr. doi: 10.1109/OCEANS.1998.724411 [Google Scholar]
  29. Guilbot J, Smith B. 2002. 4D-constrained depth conversion for reservoir compaction estimation. Application to the Ekofisk field. Lead. Edge 21:302–8 [Google Scholar]
  30. Hashimoto C, Noda A, Sagiya T, Matsu'ura M. 2009. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nat. Geosci. 2:141–44 [Google Scholar]
  31. Hatchell P, Bourne S. 2005. Rocks under strain: strain-induced time-lapse time shifts are observed for depleting reservoir. Lead. Edge 24:1222–25 [Google Scholar]
  32. Hatchell P, Jorgensen O, Gommesen L, Stammeijer J. 2007. Monitoring reservoir compaction from subsidence and time-lapse timeshifts in the Dan field. SEG Tech. Progr. Expand. Abstr. 26:2867–71 [Google Scholar]
  33. Hino R, Inazu D, Ohta Y, Ito Y, Suzuki S. et al. 2013. Was the 2011 Tohoku-oki earthquake preceded by aseismic preslip? Examination of seafloor vertical deformation data near the epicenter. Mar. Geophys. Res. doi: 10.1007/s11001-013-9208-2 [Google Scholar]
  34. Ide S, Baltay A, Beroza GC. 2011. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-oki earthquake. Science 332:1426–29 [Google Scholar]
  35. Iinuma T, Hino R, Kido M, Inazu D, Osada Y. et al. 2012. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res. 117:B07409 [Google Scholar]
  36. Ito Y, Hino R, Kido M, Fujimoto H, Osada Y. et al. 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-oki earthquake. Tectonophysics 600:14–26 [Google Scholar]
  37. Ito Y, Tsuji T, Osada Y, Kido M, Inazu D. et al. 2011. Frontal wedge deformation near the source region of the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L00G05 [Google Scholar]
  38. Japan Coast Guard 2011. Seafloor movements by seafloor geodetic observations before and after the 2011 off the Pacific Coast of Tohoku earthquake. Rep. Coord. Comm. Earthq. Predict. 86:284–93 (In Japanese) [Google Scholar]
  39. Japan Coast Guard 2012. Seafloor movements obtained by seafloor geodetic observations after the 2011 off the Pacific Coast of Tohoku earthquake. Rep. Coord. Comm. Earthq. Predict. 88:150–54 (In Japanese) [Google Scholar]
  40. Kato A, Obara K, Igarashi T, Tsuruoka H, Nakagawa S, Hirata N. 2012. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-oki earthquake. Science 335:705–8 [Google Scholar]
  41. Kido M, Osada Y, Fujimoto H, Hino R, Ito Y. 2011. Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L24303 [Google Scholar]
  42. Kodaira S, No T, Nakamura Y, Fujiwara T, Kaiho Y. et al. 2012. Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat. Geosci. 5:646–50 [Google Scholar]
  43. Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR. et al. 2012. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117:B04311 [Google Scholar]
  44. Loveless JP, Meade B. 2011. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw = 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L17306 [Google Scholar]
  45. Matsumoto Y, Fujita M, Ishikawa T, Mochizuki M, Yabuki T, Asada A. 2006. Undersea co-seismic crustal movements associated with the 2005 Off Miyagi Prefecture earthquake detected by GPS/acoustic seafloor geodetic observation. Earth Planets Space 58:1573–76 [Google Scholar]
  46. Matsumoto Y, Ishikawa T, Fujita M, Sato M, Saito H. et al. 2008. Weak interplate coupling beneath the subduction zone off Fukushima, NE Japan, inferred from GPS/acoustic seafloor geodetic observation. Earth Planets Space 60:e9–12 [Google Scholar]
  47. McCaffrey R, King RW, Payne S, Lancaster M. 2013. Active tectonics of northwestern US inferred from GPS-derived surface velocities. J. Geophys. Res. Solid Earth 118:709–23 [Google Scholar]
  48. McGuire JJ, Collins JA. 2013. Millimeter-level precision in a seafloor geodesy experiment at the Discovery transform fault, East Pacific Rise. Geochem. Geophys. Geosyst. 14:4392–402 [Google Scholar]
  49. McGuire JJ, Collins JA, Gouedard P, Roland E, Lizarralde D. et al. 2012. Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nat. Geosci. 5:336–41 [Google Scholar]
  50. Mikada H, Asakawa K. 2008. Development of Japanese scientific cable technology Presented at OCEANS 2008, Sept. 15–18, Quebec City. doi: 10.1109/OCEANS.2008.5151942 [Google Scholar]
  51. Monastersky R. 2012. The next wave. Nature 438:144–46 [Google Scholar]
  52. Morgan JK, Moore GF, Clague DA. 2003. Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii. J. Geophys. Res. 108:B92415 [Google Scholar]
  53. Morgan JK, Silver E, Camerlenghi A, Dugan B, Kirby S. et al. 2009. Addressing geohazards through ocean drilling. Sci. Drill. 7:15–30 [Google Scholar]
  54. Nooner SL, Eiken O, Hermanrud C, Sasagawa GS, Stenvold T, Zumberge MA. 2007. Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. Int. J. Greenh. Gas Control 1:198–214 [Google Scholar]
  55. Ohta Y, Hino R, Inazu D, Ohzono M, Ito Y. et al. 2012. Geodetic constraints on afterslip characteristics following the March 9, 2011, Sanriku-oki earthquake, Japan. Geophys. Res. Lett. 39:L16304 [Google Scholar]
  56. Owen SE, Bürgmann R. 2006. An increment of volcano collapse: kinematics of the 1975 Kalapana, Hawaii, earthquake. J. Volcanol. Geotherm. Res. 150:163–85 [Google Scholar]
  57. Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-oki earthquake. Nature 475:373–76 [Google Scholar]
  58. Phillips KA, Chadwell CD, Hildebrand JA. 2008. Vertical deformation measurements on the submerged south flank of Kilauea volcano, Hawai'i reveal seafloor motion associated with volcanic collapse. J. Geophys. Res. 113:B05106 [Google Scholar]
  59. Polster A, Fabian M, Villinger H. 2009. Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements. Geochem. Geophys. Geosyst. 10:Q08008 [Google Scholar]
  60. Sasagawa G, Zumberge MA. 2013. A self-calibrating pressure recorder for detecting seafloor height change. IEEE J. Ocean. Eng. 38:447–54 [Google Scholar]
  61. Satake K, Tanioka Y. 1999. Sources of tsunami and tsunamigenic earthquakes in subduction zones. Pure Appl. Geophys. 154:467–83 [Google Scholar]
  62. Sato M, Fujita M, Matsumoto Y, Ishikawa T, Saito H. et al. 2013. Interplate coupling off northeastern Japan before the 2011 Tohoku-oki earthquake, inferred from seafloor geodetic data. J. Geophys. Res. Solid Earth 118:3860–69 [Google Scholar]
  63. Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M. et al. 2011a. Displacement above the hypocenter of the 2011 Tohoku-oki earthquake. Science 332:1395 [Google Scholar]
  64. Sato M, Saito H, Ishikawa T, Matsumoto Y, Fujita M. et al. 2011b. Restoration of interplate locking after the 2005 Off–Miyagi Prefecture earthquake, detected by GPS/acoustic seafloor geodetic observation. Geophys. Res. Lett. 38:L01312 [Google Scholar]
  65. Scholz CH. 1998. Earthquakes and friction laws. Nature 391:37–42 [Google Scholar]
  66. Schwartz SY, Rokosky JM. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45:RG3004 [Google Scholar]
  67. Smith WHF, Sandwell DT. 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–62 [Google Scholar]
  68. Spiess FN. 1980. Acoustic techniques for marine geodesy. Mar. Geod. 4:13–27 [Google Scholar]
  69. Spiess FN. 1985. Suboceanic geodetic measurements. IEEE Trans. Geosci. Remote Sens. GE-23:502–10 [Google Scholar]
  70. Spiess FN, Chadwell CD, Hildebrand JA, Young LE, Purcell JGH, Dragert H. 1998. Precise GPS/acoustic positioning of seafloor reference points for tectonic studies. Phys. Earth Planet. Inter. 108:101–12 [Google Scholar]
  71. Spiess FN, Cox CS, Hays EE, Porter RP, Roberts FA. 1983. Seafloor Referenced Positioning: Needs and Opportunities. Washington, DC: Natl. Acad. Press [Google Scholar]
  72. Spiess FN, Loughridge MS, McGehee MS, Boegeman DE. 1966. An acoustic transponder system. Navigation 13:154–61 [Google Scholar]
  73. Sweeney AD, Chadwell CD, Hildebrand JA, Spiess FN. 2005. Centimeter-level positioning of seafloor acoustic transponders from a deeply-towed interrogator. Mar. Geod. 28:39–70 [Google Scholar]
  74. Tolstoy M, Constable S, Orcutt J, Staudigel H, Wyatt FK, Anderson G. 1998. Short and long baseline tiltmeter measurements on Axial Seamount, Juan de Fuca Ridge. Phys. Earth Planet. Inter. 108:129–41 [Google Scholar]
  75. Uchida N, Matsuzawa T. 2013. Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture. Earth Planet. Sci. Lett. 374:81–91 [Google Scholar]
  76. Wang L, Shum CK, Simons FJ, Tapley B, Dai C. 2012. Coseismic and postseismic deformation of the 2011 Tohoku-oki earthquake constrained by GRACE gravimetry. Geophys. Res. Lett. 39:L07301 [Google Scholar]
  77. Wessel P, Smith WHF. 1998. New, improved version of Generic Mapping Tools released. Eos Trans. AGU 79:579 [Google Scholar]
  78. Wills PB, Hatchell PJ, Bourne SJ. 2008. Time-lapse measurements of shallow horizontal wave velocity over a compacting field. EAGE Expand. Abstr. 70:G039 [Google Scholar]
  79. Wilson DS. 1993. Confidence intervals for motions and deformation of the Juan de Fuca plate. J. Geophys. Res. 98:B916053–71 [Google Scholar]
  80. Zumberge M. 1997. Precise optical path length measurement through an optical fiber: application to seafloor strain monitoring. Ocean Eng. 24:532–42 [Google Scholar]
  81. Zumberge M, Alnes H, Eiken O, Sasagawa G, Stenvold T. 2008. Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics 73:WA133–41 [Google Scholar]
/content/journals/10.1146/annurev-earth-060313-054953
Loading
/content/journals/10.1146/annurev-earth-060313-054953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error