The Himalayan range exposes a spectacular assemblage of metamorphic rocks from the mid- and deep crust that have fostered numerous models of how the crust responds to continental collisions. Recent petrogenetically based petrologic and geochronologic studies elucidate processes with unprecedented resolution and critically test models that range from continuum processes to one-time events. The pronounced metamorphic inversion across the Main Central Thrust reflects continuum thrusting between ca. 15 and 20 Ma, whereas exposure of ultrahigh-pressure rocks in northwestern massifs and syntaxis granulites reflects singular early (≥45 Ma) and late (≤10 Ma) exhumation events. Multiple mechanisms including wedge collapse and flow of melt-weakened midcrust are debated to explain pressure-temperature trajectories, patterns of thinning, and thermal overprinting. A geochronologic revolution is under way in which spatially resolved compositions and ages of accessory minerals are combined in a petrogenetically valid context to recover specific temperature-time points and paths. Combined chemical and chronologic analysis of monazite is now well established and titanite is particularly promising, but recent zircon data raise questions about anatectic rocks and their use for investigating tectonism.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Beaumont C, Jamieson RA, Nguyen MH, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–42 [Google Scholar]
  2. Beaumont C, Nguyen MH, Jamieson RA, Ellis S. 2006. Crustal flow modes in large hot orogens. See Law et al. 2006 91–145
  3. Berthelsen A. 1953. On the geology of the Rupshu District, NW Himalaya. Medd. Dan. Geol. Foren. 12:350–415 [Google Scholar]
  4. Beyssac O, Bollinger L, Avouac JP, Goffe B. 2004. Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth Planet. Sci. Lett. 225:233–41 [Google Scholar]
  5. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK. 2013. Zircon saturation re-revisited. Chem. Geol. 251:324–34 [Google Scholar]
  6. Bookhagen B, Burbank DW. 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 33:L08405 [Google Scholar]
  7. Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geol. Soc. Am. Bull. 121:385–407 [Google Scholar]
  8. Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu Y. et al. 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. Am. J. Sci. 304:889–929 [Google Scholar]
  9. Burbank DW, Blythe AE, Putkonen J, Pratt-Sitaula B, Gabet E. et al. 2003. Decoupling of erosion and precipitation in the Himalayas. Nature 426:652–55 [Google Scholar]
  10. Burchfiel BC, Royden LH. 1985. North–south extension within the convergent Himalayan region. Geology 13:679–82 [Google Scholar]
  11. Burg J-P, Nievergelt P, Oberli F, Seward D, Davy P. et al. 1998. The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding. J. Asian Earth Sci. 16:239–52 [Google Scholar]
  12. Butler RW, Harris NBW, Whittington AG. 1997. Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas. Mineral. Mag. 61:37–52 [Google Scholar]
  13. Carosi R, Montomoli C, Rubatto D, Visona D. 2010. Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal). Tectonics 29:TC2400 [Google Scholar]
  14. Carosi R, Montomoli C, Rubatto D, Visona D. 2013. Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas. Terra Nova 25478–89 [Google Scholar]
  15. Catlos EJ, Harrison TM, Kohn MJ, Grove M, Ryerson FJ. et al. 2001. Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J. Geophys. Res. 106:B816177–204 [Google Scholar]
  16. Cattin R, Avouac J-P. 2000. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J. Geophys. Res. 105:B613389–407 [Google Scholar]
  17. Chambers JA, Caddick M, Argles T, Horstwood M, Sherlock S. et al. 2009. Empirical constraints on extrusion mechanisms from the upper margin of an exhumed high-grade orogenic core, Sutlej valley, NW India. Tectonophysics 477:77–92 [Google Scholar]
  18. Chambers JA, Kohn MJ. 2012. Titanium in muscovite, biotite, and hornblende: modeling, thermometry and rutile activities in metapelites and amphibolites. Am. Mineral. 97:543–55 [Google Scholar]
  19. Chemenda AI, Burg J-P, Mattauer M. 2000. Evolutionary model of the Himalaya-Tibet system; geopoem based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett. 174:397–409 [Google Scholar]
  20. Corrie SL, Kohn MJ. 2011. Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models. Geol. Soc. Am. Bull. 123:1863–79 [Google Scholar]
  21. Corrie SL, Kohn MJ, McQuarrie N, Long SP. 2012. Flattening the Bhutan Himalaya. Earth Planet. Sci. Lett. 349–350:67–74 [Google Scholar]
  22. Corrie SL, Kohn MJ, Vervoort JD. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth Planet. Sci. Lett. 289:406–16 [Google Scholar]
  23. Cottle JM, Jessup MJ, Newell DL, Horstwood MSA, Noble SR. et al. 2009. Geochronology of granulitized eclogite from the Ama Drime Massif: implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics 28:TC1002 [Google Scholar]
  24. Dahlen FA. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. 18:55–99 [Google Scholar]
  25. Daniel CG, Hollister LS, Parrish RR, Grujic D. 2003. Exhumation of the Main Central Thrust from lower crustal depths, Eastern Bhutan Himalaya. J. Metamorph. Geol. 21:317–34 [Google Scholar]
  26. Dasgupta S, Ganguly J, Neogi S. 2004. Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P-T gradient and implications. J. Metamorph. Geol. 22:395–412 [Google Scholar]
  27. Davidson C, Grujic DE, Hollister LS, Schmid SM. 1997. Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan Crystallines, Bhutan. J. Metamorphic Geol. 15:593–612 [Google Scholar]
  28. Day HW. 2012. A revised diamond-graphite transition curve. Am. Mineral. 97:52–62 [Google Scholar]
  29. de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B. et al. 2000. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–90 [Google Scholar]
  30. de Sigoyer J, Guillot S, Dick P. 2004. Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics 23:TC3003 [Google Scholar]
  31. de Sigoyer J, Guillot S, Lardeaux J-M, Mascle G. 1997. Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). Eur. J. Mineral. 9:1073–83 [Google Scholar]
  32. DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN. et al. 2001. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20:487–509 [Google Scholar]
  33. Ding L, Zhong D. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Sci. China D 42:491–505 [Google Scholar]
  34. Ding L, Zhong DL, Yin A, Kapp P, Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet. Sci. Lett. 192:423–38 [Google Scholar]
  35. Donaldson DG, Webb AAG, Menold CA, Kylander-Clark ARC, Hacker BR. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology 41:835–38 [Google Scholar]
  36. England P, Molnar P. 1993a. Cause and effect among thrust and normal faulting, anatectic melting and exhumation in the Himalaya. See Treloar & Searle 1993 401–11
  37. England P, Molnar P. 1993b. The interpretation of inverted metamorphic isograds using simple physical calculations. Tectonics 12:145–57 [Google Scholar]
  38. Evans J, Zalasiewicz J. 1996. U-Pb, Pb-Pb and Sm-Nd dating of authigenic monazite: implications for the diagenetic evolution of the Welsh Basin. Earth Planet. Sci. Lett. 144:421–33 [Google Scholar]
  39. Florence FP, Spear FS. 1991. Effects of diffusional modification of garnet growth zoning on P-T path calculations. Contrib. Mineral. Petrol. 107:487–500 [Google Scholar]
  40. Gaidies F, De Capitani C, Abart R. 2008. THERIA_G: a software program to numerically model prograde garnet growth. Contrib. Mineral. Petrol. 155:657–71 [Google Scholar]
  41. Ganguly J, Dasgupta S, Cheng W, Neogi S. 2000. Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet. Sci. Lett. 183:471–86 [Google Scholar]
  42. Godin L, Grujic D, Law RD, Searle MP. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. See Law et al. 2006 1–23
  43. Groppo C, Lombardo B, Rolfo F, Pertusati P. 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). J. Metamorph. Geol. 25:51–75 [Google Scholar]
  44. Groppo C, Rolfo F, Indares A. 2012. Partial melting in the Higher Himalayan Crystallines of eastern Nepal: the effect of decompression and implications for the “channel flow” model. J. Petrol. 53:1057–88 [Google Scholar]
  45. Groppo C, Rolfo F, Mosca P. 2013. The cordierite-bearing anatectic rocks of the higher Himalayan crystallines (eastern Nepal): low-pressure anatexis, melt productivity, melt loss and the preservation of cordierite. J. Metamorph. Geol. 31:187–204 [Google Scholar]
  46. Groppo C, Rubatto D, Rolfo F, Lombardo B. 2010. Early Oligocene partial melting in the Main Central Thrust Zone (Arun valley, eastern Nepal Himalaya). Lithos 118:287–301 [Google Scholar]
  47. Grujic D, Casey M, Davidson C, Hollister LS, Kundig R. et al. 1996. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43 [Google Scholar]
  48. Grujic D, Warren CJ, Wooden JL. 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere 3:346–66 [Google Scholar]
  49. Guillot S, de Sigoyer J, Lardeaux JM, Mascle G. 1997. Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): evidence for continental subduction during India-Asia convergence. Contrib. Mineral. Petrol. 128:197–212 [Google Scholar]
  50. Guillot S, Lardeaux JM, Mascle G, Colchen M. 1995. A new record of high-pressure metamorphism in the Himalayan Range—the retrogressed eclogites of the Tso Morari dome (east Ladakh). C.R. Acad. Sci. II 320:931–36 [Google Scholar]
  51. Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics 451:225–41 [Google Scholar]
  52. Guilmette C, Indares A, Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos 124:66–81 [Google Scholar]
  53. Harris NBW, Caddick M, Kosler J, Goswami S, Vance D, Tindle AG. 2004. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J. Metamorph. Geol. 22:249–64 [Google Scholar]
  54. Harris NBW, Massey J. 1994. Decompression and anatexis of Himalayan metapelites. Tectonics 13:1537–46 [Google Scholar]
  55. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochim. Cosmochim. Acta 73:1039–51 [Google Scholar]
  56. Harrison TM, Grove M, McKeegan KD, Coath CD, Lovera OM, Le Fort P. 1999. Origin and episodic emplacement of the Manaslu intrusive complex, Central Himalaya. J. Petrol. 40:3–19 [Google Scholar]
  57. Harrison TM, Ryerson FJ, Le Fort P, Yin A, Lovera OM, Catlos EJ. 1997. A Late Miocene–Pliocene origin for the Central Himalayan inverted metamorphism. Earth Planet. Sci. Lett. 146:E1–7 [Google Scholar]
  58. Hayden LA, Watson EB, Wark DA. 2008. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 155:529–40 [Google Scholar]
  59. Hemingway BS, Bohlen SR, Hankins WB, Westrum EF Jr, Kuskov OL. 1998. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. Am. Mineral. 83:409–18 [Google Scholar]
  60. Henry P, LePichon X, Goffe B. 1997. Kinematic, thermal and petrological model of the Himalayas: constraints related to metamorphism within the underthrust Indian crust and topographic elevation. Tectonophysics 273:31–56 [Google Scholar]
  61. Herman F, Copeland P, Avouac J-P, Bollinger L, Mahéo G. et al. 2010. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. 115:B06407 [Google Scholar]
  62. Holland TJB. 1980. The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am. Mineral. 65:129–34 [Google Scholar]
  63. Hubbard MS. 1996. Ductile shear as a cause of inverted metamorphism: example from the Nepal Himalaya. J. Geol. 104:493–99 [Google Scholar]
  64. Huerta AD, Royden LH, Hodges KV. 1999. The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J. Metamorph. Geol. 17:349–66 [Google Scholar]
  65. Imayama T, Takeshita T, Arita K. 2010. Metamorphic P-T profile and P-T path discontinuity across the far-eastern Nepal Himalaya: investigation of channel flow models. J. Metamorph. Geol. 28:527–49 [Google Scholar]
  66. Inger S, Harris NBW. 1992. Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal. J. Metamorph. Geol. 10:439–52 [Google Scholar]
  67. Jain AK, Manickavasagam RM. 1993. Inverted metamorphism in the intracontinental ductive shear zone during Himalayan collisional tectonics. Geology 21:407–10 [Google Scholar]
  68. Jamieson RA, Beaumont C, Medvedev S, Nguyen MH. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J. Geophys. Res. 109:B06407 [Google Scholar]
  69. Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M. et al. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. J. Metamorph. Geol. 21:589–99 [Google Scholar]
  70. Kellett DA, Grujic D, Coutand I, Cottle J, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics 32:252–70 [Google Scholar]
  71. Kelsey DE, Clark C, Hand M. 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J. Metamorph. Geol. 26:199–212 [Google Scholar]
  72. Kelsey DE, Powell R. 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. J. Metamorph. Geol. 29:151–66 [Google Scholar]
  73. Kohn MJ. 2004. Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in central Nepal. Geochem. Geophys. Geosyst. 5:Q12014 [Google Scholar]
  74. Kohn MJ. 2007. Paleoaltimetry—Geochemical and Thermodynamic Approaches Washington, DC: Mineral. Soc. Am. [Google Scholar]
  75. Kohn MJ. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol. Soc. Am. Bull. 120:259–73 [Google Scholar]
  76. Kohn MJ. 2013. Geochemical zoning in metamorphic minerals. The Crust RL Rudnick, pp. 229–61. Treatise Geochem. 3 Oxford, UK: Elsevier, 2nd. [Google Scholar]
  77. Kohn MJ, Catlos EJ, Ryerson FJ, Harrison TM. 2001. Pressure-temperature-time path discontinuity in the Main Central thrust zone, central Nepal. Geology 29:571–74 [Google Scholar]
  78. Kohn MJ, Corrie SL. 2011. Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite: evidence for a static hot channel in the Himalayan orogen. Earth Planet. Sci. Lett. 311:136–43 [Google Scholar]
  79. Kohn MJ, Parkinson CD. 2002. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30:591–94 [Google Scholar]
  80. Kohn MJ, Spear F. 2000. Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology 28:1127–30 [Google Scholar]
  81. Kohn MJ, Wieland MS, Parkinson CD, Upreti BN. 2004. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet. Sci. Lett. 228:299–310 [Google Scholar]
  82. Kohn MJ, Wieland MS, Parkinson CD, Upreti BN. 2005. Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. J. Metamorph. Geol. 23:399–406 [Google Scholar]
  83. Koons PO, Zeitler PK, Chamberlain CP, Craw D, Meltzer AS. 2002. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. Am. J. Sci. 302:749–73 [Google Scholar]
  84. Lanari P, Riel N, Guillot S, Vidal O, Schwartz S. et al. 2013. Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: application to the Stak eclogitic massif (northwest Himalaya). Geology 41:111–14 [Google Scholar]
  85. Lavé J, Avouac JP. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. 106:B1126561–91 [Google Scholar]
  86. Law RD, Searle MP, Godin L. 2006. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones Geol. Soc. Spec. Publ. 268 London: Geol. Soc. Lond. [Google Scholar]
  87. Le Fort P. 1975. Himalayas: the collided range. Present knowledge of the continental arc. Am. J. Sci. 275-A:1–44 [Google Scholar]
  88. Le Fort P, Guillot S, Pêcher A. 1997. HP metamorphic belt along the Indus suture zone of NW Himalaya: new discoveries and significance. C.R. Acad. Sci. IIA 325:773–78 [Google Scholar]
  89. Liu Y, Siebel W, Theye T, Massonne H-J. 2011. Isotopic and structural constraints on the late Miocene to Pliocene evolution of the Namche Barwa area, eastern Himalayan syntaxis, SE Tibet. Gondwana Res. 19:894–909 [Google Scholar]
  90. Liu Y, Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. J. Metamorph. Geol. 15:451–66 [Google Scholar]
  91. Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. J. Geodyn. 30:37–60 [Google Scholar]
  92. Lombardo B, Rolfo F, Compagnoni R. 2000. Glaucophane and barroisite eclogites from the Upper Kaghan Nappe: implications for the metamorphic history of the NW Himalaya. Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya MA Khan, PJ Treloar, MP Searle, MQ Jan 411–30 Geol. Soc. Spec. Publ. 170 London: Geol. Soc. Lond. [Google Scholar]
  93. Long S, McQuarrie N. 2010. Placing limits on channel flow: insights from the Bhutan Himalaya. Earth Planet. Sci. Lett. 2010:375–90 [Google Scholar]
  94. Long S, McQuarrie N, Tobgay T, Grujic D. 2011. Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Geol. Soc. Am. Bull. 123:1427–47 [Google Scholar]
  95. Menard T, Spear FS. 1993. Metamorphism of calcic pelitic schists, Strafford Dome, Vermont; compositional zoning and reaction history. J. Petrol. 34:977–1005 [Google Scholar]
  96. Misch P. 1949. Metasomatic granitization of batholithic dimensions. Am. J. Sci. 247:209–45 [Google Scholar]
  97. Montomoli C, Iaccarino S, Carosi R, Langone A, Visona D. 2013. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): insights on the exhumation of crystalline rocks. Tectonophysics 6081349–70 [Google Scholar]
  98. Mukherjee BK, Sachan HK. 2001. Discovery of coesite from Indian Himalaya: a record of ultra-high pressure metamorphism in Indian Continental Crust. Curr. Sci. 81:1358–61 [Google Scholar]
  99. Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A. et al. 2010. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res. 115:B12416 [Google Scholar]
  100. Neogi S, Dasgupta S, Fukuoka M. 1998. High P-T polymetamorphism, dehydration melting, and generation of migmatites and granites in the Higher Himalayan Crystalline Complex, Sikkim, India. J. Petrol. 39:61–99 [Google Scholar]
  101. O'Brien PJ, Zotov N, Law R, Khan MA, Jan MQ. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology 29:435–38 [Google Scholar]
  102. Patiño Douce AE, Harris N. 1998. Experimental constraints on Himalayan anatexis. J. Petrol. 39:689–710 [Google Scholar]
  103. Pattison DRM. 1992. Stability of andalusite and sillimanite and the Al2SiO5 triple point; constraints from the Ballachulish aureole, Scotland. J. Geol. 100:423–46 [Google Scholar]
  104. Pattison DRM, Chacko T, Farquhar J, McFarlane CRM. 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J. Petrol. 44:867–900 [Google Scholar]
  105. Pearson ON, DeCelles PG. 2005. Structural geology and regional tectonic significance of the Ramgarh thrust, Himalayan fold-thrust belt of Nepal. Tectonics 24:TC4008 [Google Scholar]
  106. Pêcher A. 1989. The metamorphism in the central Himalaya. J. Metamorphic Geol. 7:31–41 [Google Scholar]
  107. Pinet C, Jaupart C. 1987. A thermal model for the distribution in space and time of the Himalayan granites. Earth Planet. Sci. Lett. 84:87–99 [Google Scholar]
  108. Pognante U, Benna P. 1993. Metamorphic zonation, migmatization and leucogranites along the Everest transect of eastern Nepal and Tibet; record of an exhumation history. See Treloar & Searle 1993 323–40
  109. Pognante U, Piera B, Le Fort P. 1993. High-pressure metamorphism in the High Himalayan Crystallines of the Stak Valley, northeastern Nanga Parbat–Haramosh syntaxis, Pakistan Himalaya. See Treloar & Searle 1993 161–72
  110. Pognante U, Spencer DA. 1991. First record of eclogites from the High Himalayan belt, Kaghan valley (northern Pakistan). Eur. J. Mineral. 3:613–18 [Google Scholar]
  111. Powell R, Holland T. 1994. Optimal geothermometry and geobarometry. Am. Mineral. 79:120–33 [Google Scholar]
  112. Pyle JM, Spear FS. 1999. Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol. Mater. Res. 1:1–49 [Google Scholar]
  113. Pyle JM, Spear FS. 2003. Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am. Mineral. 88:338–51 [Google Scholar]
  114. Rao RUM, Rao GV, Narain H. 1976. Radioactive heat generation and heat flow in the Indian shield. Earth Planet. Sci. Lett. 30:57–64 [Google Scholar]
  115. Rehman HU, Yamamoto H, Kaneko Y, Kausar AB, Murata M, Ozawa H. 2007. Thermobaric structure of the Himalayan Metamorphic Belt in Kaghan Valley, Pakistan. J. Asian Earth Sci. 29:390–406 [Google Scholar]
  116. Robinson DM, DeCelles PG, Garzione CN, Pearson ON, Harrison TM, Catlos EJ. 2003. Kinematic model for the Main Central thrust in Nepal. Geology 31:359–62 [Google Scholar]
  117. Robinson DM, Pearson ON. 2006. Exhumation of Greater Himalayan rock along the Main Central Thrust in Nepal: implications for channel flow. See Law et al. 2006 255–67
  118. Royden LH. 1993. The steady state thermal structure of eroding orogenic belts and accretionary prisms. J. Geophys. Res. 98:B34487–507 [Google Scholar]
  119. Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and link between U-Pb ages and metamorphism. Chem. Geol. 184:123–38 [Google Scholar]
  120. Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element–constrained monazite and zircon chronology. Contrib. Mineral. Petrol. 165:349–72 [Google Scholar]
  121. Sachan HK, Kohn MJ, Saxena A, Corrie SL. 2010. The Malari leucogranite, Garhwal Himalaya, northern India: chemistry, age, and tectonic implications. Geol. Soc. Am. Bull. 122:1865–76 [Google Scholar]
  122. Schlup M, Carter A, Cosca M, Steck A. 2003. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: the Indus River–Tso Morari transect, NW Himalaya. J. Geol. Soc. 160:385–99 [Google Scholar]
  123. Schneider C, Masch L. 1993. The metamorphism of the Tibetan Series from the Manang area, Marsyandi Valley, Central Nepal. See Treloar & Searle 1993 357–74
  124. Schneider DA, Edwards MA, Kidd WSF, Khan MA, Seeber L, Zeitler PK. 1999. Tectonics of Nanga Parbat, western Himalaya: synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure. Geology 27:999–1002 [Google Scholar]
  125. Searle MP. 1999. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya). J. Asian Earth Sci. 17:773–83 [Google Scholar]
  126. Searle MP, Rex AJ. 1989. Thermal model for the Zanskar Himalaya. J. Metamorph. Geol. 7:127–34 [Google Scholar]
  127. Spear FS. 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths Washington, DC: Mineral. Soc. Am. [Google Scholar]
  128. Spear FS, Cheney JT. 1989. A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O. Contrib. Mineral. Petrol. 101:149–64 [Google Scholar]
  129. Spear FS, Kohn MJ, Cheney JT. 1999. P-T paths from anatectic pelites. Contrib. Mineral. Petrol. 134:17–32 [Google Scholar]
  130. Spear FS, Kohn MJ, Florence F, Menard T. 1990. A model for garnet and plagioclase growth in pelitic schists: implications for thermobarometry and P-T path determinations. J. Metamorph. Geol. 8:683–96 [Google Scholar]
  131. Spear FS, Peacock SM, Kohn MJ, Florence FP, Menard T. 1991. Computer programs for petrologic P-T-t path calculations. Am. Mineral. 76:2009–12 [Google Scholar]
  132. Spear FS, Pyle JM. 2010. Theoretical modeling of monazite growth in a low-Ca metapelite. Chem. Geol. 273:111–19 [Google Scholar]
  133. Spear FS, Selverstone J, Hickmott D, Crowley P, Hodges KV. 1984. P-T paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terranes. Geology 12:87–90 [Google Scholar]
  134. Stephenson BJ, Waters DJ, Searle MP. 2000. Inverted metamorphism and the Main Central thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. J. Metamorph. Geol. 18:571–90 [Google Scholar]
  135. St-Onge MR, Rayner N, Palin RM, Searle MP, Waters DJ. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J. Metamorph. Geol. 31:469–504 [Google Scholar]
  136. Su W, Zhang M, Liu XH, Lin JF, Ye K, Liu X. 2012. Exact timing of granulite metamorphism in the Namche Barwa, eastern Himalayan syntaxis: new constrains from SIMS U-Pb zircon age. Int. J. Earth Sci. 101:239–52 [Google Scholar]
  137. Swapp SM, Hollister LS. 1991. Inverted metamorphism within the Tibetan slab of Bhutan: evidence for a tectonically transported heat-source. Can. Mineral. 29:1019–41 [Google Scholar]
  138. Thiede RC, Ehlers TA, Bookhagen B, Strecker MR. 2009. Erosional variability along the northwest Himalaya. J. Geophys. Res. 114:F01015 [Google Scholar]
  139. Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SJ, Lanzirotti. 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib. Mineral. Petrol. 160:743–59 [Google Scholar]
  140. Tonarini S, Villa IM, Oberli F, Meier M, Spencer DA. et al. 1993. Eocene age of eclogite metamorphism in Pakistan Himalaya; implications for India-Eurasia collision. Terra Nova 5:13–20 [Google Scholar]
  141. Tracy RJ, Robinson P, Thompson AB. 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. Am. Mineral. 61:762–75 [Google Scholar]
  142. Treloar PJ, O'Brien PJ, Parrish RR, Khan MA. 2003. Exhumation of early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. J. Geol. Soc. 160:367–76 [Google Scholar]
  143. Treloar PJ, Searle MP. 1993. Himalayan Tectonics Geol. Soc. Spec. Publ. 74 London: Geol. Soc. Lond. [Google Scholar]
  144. Vance D, Mahar E. 1998. Pressure-temperature paths from P-T pseudosections and zoned garnets: potential, limitations and examples from the Zanskar Himalaya, NW India. Contrib. Mineral. Petrol. 132:225–45 [Google Scholar]
  145. Vannay JC, Grasemann B. 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138:253–76 [Google Scholar]
  146. Viskupic K, Hodges KV, Bowring SA. 2005. Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contrib. Mineral. Petrol. 149:1–21 [Google Scholar]
  147. Visona D, Carosi R, Montomoli C, Tiepolo M, Peruzzo L. 2012. Miocene andalusite leucogranite in central-east Himalaya (Everest-Masang Kang area): low-pressure melting during heating. Lithos 144–45:194–208 [Google Scholar]
  148. Walker CB, Searle MP, Waters DJ. 2001. An integrated tectonothermal model for the evolution of the High Himalaya in western Zanskar with constraints from thermobarometry and metamorphic modeling. Tectonics 20:810–33 [Google Scholar]
  149. Warren CJ, Beaumont C, Jamieson RA. 2008a. Formation and exhumation of ultra-high-pressure rocks during continental collision: role of detachment in the subduction channel. Geochem. Geophys. Geosyst. 9:Q04019 [Google Scholar]
  150. Warren CJ, Beaumont C, Jamieson RA. 2008b. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet. Sci. Lett. 267:129–45 [Google Scholar]
  151. Waters DJ. 1991. Hercynite-quartz granulites: phase relations, and implications for crustal processes. Eur. J. Mineral. 3:367–86 [Google Scholar]
  152. Watson EB, Harrison TM. 1983. Zircon saturation revisited; temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64:295–304 [Google Scholar]
  153. Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151:413–33 [Google Scholar]
  154. Webb AAG, Yin A, Harrison TM, Célérier J, Gehrels GE. et al. 2011. Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere 7:1013–61 [Google Scholar]
  155. Whittington AG. 1996. Exhumation overrated at Nanga Parbat, northern Pakistan. Tectonophysics 260:215–26 [Google Scholar]
  156. Whittington AG, Harris N, Baker J. 2000. Low-pressure crustal anatexis: the significance of spinel and cordierite from metapelitic assemblages at Nanga Parbat, northern Pakistan. What Drives Metamorphism and Metamorphic Reactions? PJ Treloar, PJ O'Brien 183–98 Geol. Soc. Spec. Publ. 138 London: Geol. Soc. Lond. [Google Scholar]
  157. Wilke FDH, O'Brien PJ, Altenberger U, Konrad-Schmolke M, Khan MA. 2010a. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos 114:70–85 [Google Scholar]
  158. Wilke FDH, O'Brien PJ, Gerdes A, Timmerman MJ, Sudo M, Khan MA. 2010b. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. Eur. J. Mineral. 22:703–19 [Google Scholar]
  159. Wilke FDH, Sobel ER, O'Brien PJ, Stockli DF. 2012. Apatite fission track and (U-Th)/He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: implications for an Eocene Plateau and Oligocene to Pliocene exhumation. J. Asian Earth Sci. 59:14–23 [Google Scholar]
  160. Willett SD. 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. 104:B1228957–81 [Google Scholar]
  161. Winslow DM, Chamberlain CP, Zeitler PK. 1995. Metamorphism and melting of the lithosphere due to rapid denudation, Nanga Parbat massif Himalaya. J. Geol. 103:395–409 [Google Scholar]
  162. Wyss M. 2000. Metamorphic evolution of the northern Himachal Himalaya: phase equilibria constraints and thermobarometry. Schweiz. Mineral. Petrogr. Mitteil. 80:317–50 [Google Scholar]
  163. Xu W-C, Zhang H-F, Parrish R, Harris N, Guo L, Yuan H-L. 2010. Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics 485:231–44 [Google Scholar]
  164. Xu Z, Ji S, Cai Z, Zeng L, Geng Q, Cao H. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: constraints from deformation, fabrics and geochronology. Gondwana Res. 21:19–36 [Google Scholar]
  165. Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 76:1–131 [Google Scholar]
  166. Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28:211–80 [Google Scholar]
  167. Zeitler PK, Chamberlain CP. 1991. Petrogenetic and tectonic significance of young leucogranites from the northwestern Himalaya, Pakistan. Tectonics 10:729–41 [Google Scholar]
  168. Zeitler PK, Chamberlain CP, Smith HA. 1993. Synchronous anatexis, metamorphism, and rapid denudation at Nanga Parbat (Pakistan Himalaya). Geology 21:347–50 [Google Scholar]
  169. Zeitler PK, Koons PO, Bishop MP, Chamberlain CP, Craw D. et al. 2001a. Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20:712–28 [Google Scholar]
  170. Zeitler PK, Meltzer AS, Koons PO, Craw D, Hallet B. et al. 2001b. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today 11:4–9 [Google Scholar]
  171. Zhu XK, O'Nions RK. 1999. Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology; a case study from the Lewisian terrain. Earth Planet. Sci. Lett. 171:209–20 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error