Several features of Earth owe their origin to processes occurring during and shortly following Earth formation. Collisions with planetary embryos caused substantial melting of the growing Earth, leading to prolonged core formation, atmosphere outgassing, and deepening of the magma ocean as Earth grew. Mantle noble gas isotopic compositions and the mantle abundance of elements that partition into the core record this very early Earth differentiation. In contrast, the elements that are not involved in either core or atmosphere formation show surprisingly muted evidence of the fractionation expected during magma ocean crystallization, and even this minimal evidence for early intramantle differentiation appears to have been erased by mantle convection within ∼1.5 billion years of Earth formation. By 4.36 Ga, Earth's surface and shallow interior had reached temperatures similar to those of the present Earth, and mantle melting, and perhaps plate subduction, was producing crustal rock types similar to those seen today. Remnants of early Earth differentiation may still exist in the deep mantle and continue to influence patterns of large-scale mantle convection, sequestration of some trace elements, geomagnetic reversals, vertical motions of continents, and hot-spot volcanism.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allegre CJ, Mahnes G, Gopel C. 2008. The major differentiation of the Earth at ∼4.45 Ga. Earth Planet. Sci. Lett. 267:353–64 [Google Scholar]
  2. Amelin Y. 2008. U-Pb ages of angrites. Geochim. Cosmochim. Acta 72:221–32 [Google Scholar]
  3. Andrault D, Bolfan-Casanova N, Nigro GL, Bouhifd MA, Garbarino G, Mezouar M. 2011. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304:251–59 [Google Scholar]
  4. Andrault D, Petitgirard S, Nigro SL, Devidal J-L, Garbarino G, Mezouar M. 2012. Solid-liquid iron partitioning in Earth's deep mantle. Nature 487:354–57 [Google Scholar]
  5. Andreasen R, Sharma M. 2007. Mixing and homogenization in the early solar system: clues from Sr, Ba, Nd, and Sm isotopes in meteorites. Astrophys. J. 665:874–83 [Google Scholar]
  6. Appel PWU, Fedo CM, Moorbath S, Myers JS. 1998. Recognizable primary volcanic and sedimentary features in a low-strain domain of the highly deformed, oldest known (∼3.7–3.8 Gyr) greenstone belt, Isua, West Greenland. Terra Nova 10:57–62 [Google Scholar]
  7. Asphaug E, Agnor CB, Williams Q. 2005. Hit-and-run planetary collisions. Nature 439:155–60 [Google Scholar]
  8. Bennett VC, Brandon AD, Nutman AP. 2007. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science 318:1907–10 [Google Scholar]
  9. Benz W, Slattery WL, Cameron AGW. 1988. Collisional stripping of Mercury's mantle. Icarus 74:516–28 [Google Scholar]
  10. Borg LE, Connelly JN, Boyet M, Carlson RW. 2011. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477:70–73 [Google Scholar]
  11. Borg LE, Draper DS. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteorit. Planet. Sci. 38:1713–31 [Google Scholar]
  12. Bouhifd MA, Jephcoat AP. 2011. Convergence of Ni and Co metal-silicate partition coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet. Sci. Lett. 307:341–48 [Google Scholar]
  13. Bowring SA, Housh TB, Isachsen CE. 1990. The Acasta gneisses; remnant of Earth's early crust. The Origin of the Earth HE Newsom, JH Jones 319–43 New York: Oxford Univ. Press [Google Scholar]
  14. Bowring SA, Williams IS. 1999. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 134:3–16 [Google Scholar]
  15. Boyet M, Blichert-Toft J, Rosing M, Storey M, Telouk P, Albarede F. 2003. 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214:427–42 [Google Scholar]
  16. Boyet M, Carlson RW. 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–81 [Google Scholar]
  17. Boyet M, Carlson RW. 2007. A highly depleted moon or a non-magma ocean origin for the lunar crust?. Earth Planet. Sci. Lett. 262:505–16 [Google Scholar]
  18. Brandon AD, Lapen TJ, Debaille V, Beard BL, Rankenburg K, Neal C. 2009. Re-evaluating 142Nd/144Nd in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73:6421–45 [Google Scholar]
  19. Brandon AD, Walker RJ. 2005. The debate over core-mantle interaction. Earth Planet. Sci. Lett. 232:211–25 [Google Scholar]
  20. Brenan JM, McDonough WF. 2009. Core formation and metal-silicate fractionation of osmium and iridium from gold. Nat. Geosci. 2:798–801 [Google Scholar]
  21. Bull AL, McNamara AK, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles. Earth Planet. Sci. Lett. 278:152–62 [Google Scholar]
  22. Bunge HP, Grand SP. 2000. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405:337–40 [Google Scholar]
  23. Bunge HP, Richards MA, Lithogow-Bertelloni C, Baumgardner JR, Grand SP, Romanowicz BA. 1998. Time scales and heterogeneous structure in geodynamic Earth models. Science 280:91–95 [Google Scholar]
  24. Burke K, Steinberger B, Torsvik TH, Smethurst MA. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sci. Lett. 265:49–60 [Google Scholar]
  25. Burke K, Torsvik TH. 2004. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227:531–38 [Google Scholar]
  26. Burkemper LK, Agee CB, Garcia KA. 2012. Constraints on core formation from molybdenum solubility in silicate melts at high pressure. Earth Planet. Sci. Lett. 335–36:95–104 [Google Scholar]
  27. Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R. 2011. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312:390–400 [Google Scholar]
  28. Canup RM. 2004. Simulations of a late lunar-forming impact. Icarus 168:433–56 [Google Scholar]
  29. Canup RM. 2012. Forming a moon with an Earth-like composition via a giant impact. Science 338:1052–55 [Google Scholar]
  30. Carlson RW, Boyet M. 2008. Composition of Earth's interior: the importance of early events. Philos. Trans. R. Soc. A 366:4077–103 [Google Scholar]
  31. Carlson RW, Boyet M, Horan M. 2007. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation. Science 316:1175–78 [Google Scholar]
  32. Carlson RW, Lugmair GW. 1979. Sm-Nd constraints on early lunar differentiation and the evolution of KREEP. Earth Planet. Sci. Lett. 45:123–32 [Google Scholar]
  33. Caro G. 2011. Early silicate Earth differentiation. Annu. Rev. Earth Planet. Sci. 39:31–58 [Google Scholar]
  34. Caro G, Bourdon B. 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle-crust system. Geochim. Cosmochim. Acta 74:3333–49 [Google Scholar]
  35. Caro G, Bourdon B, Birck JL, Moorbath S. 2006. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta 70:164–91 [Google Scholar]
  36. Caro G, Bourdon B, Wood BJ, Corgne A. 2005. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436:246–49 [Google Scholar]
  37. Catalli K, Shim SH, Prakapenka VB. 2009. Thickness and Clapeyron slope of the post-perovskite boundary. Nature 462:782–85 [Google Scholar]
  38. Cates NL, Mojzsis SJ. 2007. Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth Planet. Sci. Lett. 255:9–21 [Google Scholar]
  39. Chambers JE. 2004. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223:241–52 [Google Scholar]
  40. Chou C-L, Shaw DM, Crocket JH. 1983. Siderophile trace elements in the Earth's oceanic crust and upper mantle. J. Geophys. Res. 88:A507–18 [Google Scholar]
  41. Clayton RN, Grossman L, Mayeda TK. 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–88 [Google Scholar]
  42. Coltice N, Moreira M, Hernlund J, Labrosse S. 2011. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308:193–99 [Google Scholar]
  43. Coltice N, Schmalzl J. 2006. Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations. Geophys. Res. Lett. 33:L23304 [Google Scholar]
  44. Corgne A, Liebske C, Wood BJ, Rubie DC, Frost DJ. 2005. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69:485–96 [Google Scholar]
  45. Cuk M, Stewart ST. 2012. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–52 [Google Scholar]
  46. Dauphas N, Marty B, Reisberg L. 2002. Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys. J. 565:640–44 [Google Scholar]
  47. Dauphas N, Pourmand A. 2011. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–93 [Google Scholar]
  48. Davaille A. 1999. Simultaneous generation of hot spots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–60 [Google Scholar]
  49. David J, Godin L, Stevenson R, O'Neil J, Francis D. 2009. U-Pb ages (3.8–2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton, Canada. GSA Bull. 121:150–63 [Google Scholar]
  50. Davies DR, Goes S, Davies JH, Schuberth BSA, Bunge H-P, Ritsema J. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: the dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353:253–69 [Google Scholar]
  51. Davies GF, Richards MA. 1992. Mantle convection. J. Geol. 100:151–206 [Google Scholar]
  52. de Koker N, Karki BB, Stixrude L. 2013. Thermodynamics of the MgO-SiO2 system in Earth's lowermost mantle from first principles. Earth Planet. Sci. Lett. 361:58–63 [Google Scholar]
  53. Debaille V, O'Neill C, Brandon AD, Haenecour P, Yin Q-Z. et al. 2013. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373:83–92 [Google Scholar]
  54. Dorfman SM, Meng Y, Prakapenka VB, Duffy TS. 2013. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite. Earth Planet. Sci. Lett. 361:249–57 [Google Scholar]
  55. Dziewonski AM. 1984. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89:B75929–52 [Google Scholar]
  56. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model (PREM). Phys. Earth Planet. Inter. 25:297–356 [Google Scholar]
  57. Dziewonski AM, Hager BH, O'Connell RJ. 1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res. 82:239–55 [Google Scholar]
  58. Dziewonski AM, Lekic V, Romanowicz B. 2010. Mantle anchor structure: an argument for bottom-up tectonics. Earth Planet. Sci. Lett. 299:69–79 [Google Scholar]
  59. Elkins-Tanton LT. 2008. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271:181–91 [Google Scholar]
  60. Elkins-Tanton LT. 2012. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40:113–39 [Google Scholar]
  61. Fiquet G, Auzende AL, Siebert J, Corgne A, Bureau H. et al. 2010. Melting of peridotite to 140 Gigapascals. Science 329:1516–18 [Google Scholar]
  62. Fischer-Godde M, Burkhardt C, Kleine T. 2013. Origin of the late veneer inferred from Ru isotope systematics. Lunar Planet. Sci. Conf. Abstr. 44:2876 [Google Scholar]
  63. Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W. et al. 1983. Ion microprobe identification of 4100–4200 Myr old terrestrial zircons. Nature 304:616–18 [Google Scholar]
  64. Fukao Y, Obayashi M. 2013. Subducted slabs above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 188:1–19 [Google Scholar]
  65. Funamori N, Sato T. 2010. Density contrast between silicate melts and crystals in the deep mantle: an integrated view based on static-compression data. Earth Planet. Sci. Lett. 295:435–40 [Google Scholar]
  66. Garnero EJ, Helmberger DV. 1996. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 23:977–80 [Google Scholar]
  67. Garnero EJ, McNamara AK. 2008. Structure and dynamics of Earth's lower mantle. Science 320:626–28 [Google Scholar]
  68. Gonnermann HM, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature 459:560–64 [Google Scholar]
  69. Hager BH, O'Connell RJ. 1981. A simple global model of plate dynamics and mantle convection. J. Geophys. Res. 86:B64843–67 [Google Scholar]
  70. Hager BH, Richards MA. 1989. Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Philos. Trans. R. Soc. A 328:209–327 [Google Scholar]
  71. Halliday AN, Kleine T. 2005. Meteorites and the timing, mechanisms, and conditions of terrestrial planet accretion and early differentiation. Meteorites and the Early Solar System II DS Lauretta, HY McSween Jr 775–801 Tucson: Univ. Ariz. Press [Google Scholar]
  72. Harper CL, Jacobsen SB. 1996. Noble gases and Earth's accretion. Science 273:1814–18 [Google Scholar]
  73. Harrison TM. 2009. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37:479–505 [Google Scholar]
  74. He Y, Wen L. 2012. Geographic boundary of the “Pacific Anomaly” and its geometry and transitional structure in the north. J. Geophys. Res. 117:B09308 [Google Scholar]
  75. Herndon JM. 1979. The nickel silicide inner core of the Earth. Proc. R. Soc. A 368:495–500 [Google Scholar]
  76. Holden P, Lanc P, Ireland TR, Harrison TM, Foster JJ, Bruce Z. 2009. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int. J. Mass Spectrom. 286:53–63 [Google Scholar]
  77. Hopkins M, Harrison TM, Manning CE. 2008. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456:493–96 [Google Scholar]
  78. Huber C, Bachmann O, Manga M. 2009. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283:38–47 [Google Scholar]
  79. Iizuka T, Horie K, Komiya T, Maruyama S, Hirata T. et al. 2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust. Geology 34:245–48 [Google Scholar]
  80. Iizuka T, Komiya T, Ueno Y, Katayama I, Uehara Y. et al. 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectonothermal history. Precambr. Res. 153:179–208 [Google Scholar]
  81. Jackson MG, Carlson RW, Kurz MD, Kempton PD, Francis D, Blusztajn J. 2010. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466:853–56 [Google Scholar]
  82. Javoy M. 1995. The integral enstatite chondrite model of the Earth. Geophys. Res. Lett. 22:2219–22 [Google Scholar]
  83. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C. et al. 2010. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293:259–68 [Google Scholar]
  84. Jellinek AM, Manga M. 2002. The influence of a chemical boundary layer on the fixity and lifetime of mantle plumes. Nature 418:760–63 [Google Scholar]
  85. Jochum KP, Hofmann AW, Seufert HM. 1993. Tin in mantle-derived rocks: constraints on Earth evolution. Geochim. Cosmochim. Acta 57:3585–95 [Google Scholar]
  86. Kamber BS, Whitehouse MJ, Bolhar R, Moorbath S. 2005. Volcanic resurfacing and the early terrestrial crust: zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240:276–90 [Google Scholar]
  87. Kellogg LH, Hager BH, van der Hilst RD. 1999. Compositional stratification in the deep mantle. Science 283:1881–84 [Google Scholar]
  88. Kellogg LH, Turcotte DL. 1987. Homogenization of the mantle by convective mixing and diffusion. Earth Planet. Sci. Lett. 81:371–78 [Google Scholar]
  89. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A. et al. 2010. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296:45–56 [Google Scholar]
  90. Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K. et al. 2009. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73:5150–88 [Google Scholar]
  91. Labrosse S, Herlund JW, Coltice NA. 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450:866–69 [Google Scholar]
  92. Lay T, Garnero EJ, Williams Q. 2004. Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Inter. 146:441–67 [Google Scholar]
  93. Le Bars M, Davaille A. 2004. Whole layer convection in a heterogeneous planetary mantle. J. Geophys. Res. 109:B03403 [Google Scholar]
  94. Lee C-T, Luffi P, Hoink T, Li J, Dasgupta R, Hernlund J. 2010. Upside-down differentiation and generation of a “primordial” lower mantle. Nature 463:930–33 [Google Scholar]
  95. Liebske C, Corgne A, Frost DJ, Rubie DC, Wood BJ. 2005. Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contrib. Mineral. Petrol. 149:113–28 [Google Scholar]
  96. Liebske C, Frost DJ. 2012. Melting phase relations in the MgO-MgSiO3 system between 16 and 26 GPa: implications for melting in Earth's deep interior. Earth Planet. Sci. Lett. 345–48:159–70 [Google Scholar]
  97. Lithgow-Bertelloni C, Richards MA. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36:27–78 [Google Scholar]
  98. Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591:1220–47 [Google Scholar]
  99. Lugmair GW, Shukolyukov A. 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62:2863–86 [Google Scholar]
  100. Lyubetskaya T, Korenaga J. 2007. Chemical composition of Earth's primitive mantle and its variance. 1. Methods and results. J. Geophys. Res. 112:B03211 [Google Scholar]
  101. Maier WD, Barnes SJ, Campbell IH, Fiorentini ML, Peltonen P. et al. 2009. Progressive mixing of meteoritic veneer into the early Earth's deep mantle. Nature 460:620–23 [Google Scholar]
  102. Manga M. 1996. Mixing of heterogeneities in the mantle: effect of viscosity differences. Geophys. Res. Lett. 23:403–6 [Google Scholar]
  103. Mann U, Frost DJ, Rubie DC, Becker H, Audetat A. 2012. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of the highly siderophile element concentrations in Earth's mantle. Geochim. Cosmochim. Acta 84:593–613 [Google Scholar]
  104. Masters G, Laske G, Bolton H, Dziewonski A. 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale SI Karato A Forte, R Liebermann, G Masters, L Stixrude 63–87 Washington, DC: AGU [Google Scholar]
  105. McDonough WF. 2003. Compositional model for the Earth's core. Treatise on Geochemistry 2 The Mantle and Core RW Carlson 547–68 Amsterdam: Elsevier [Google Scholar]
  106. McDonough WF, Sun S. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  107. McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH. et al. 2011. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–32 [Google Scholar]
  108. McNamara AK, Garnero EJ, Rost S. 2010. Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet. Sci. Lett. 299:1–9 [Google Scholar]
  109. McNamara AK, Zhong S. 2005. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136–39 [Google Scholar]
  110. Mojzsis SJ, Harrison TM, Pidgeon RT. 2001. Oxygen-isotope evidence from ancient zircons for liquid water at Earth's surface 4,300 Myr ago. Nature 409:178–80 [Google Scholar]
  111. Morgan JW, Walker RJ, Brandon AD, Horan MF. 2001. Siderophile elements in Earth's upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteoritics Planet. Sci. 36:1257–75 [Google Scholar]
  112. Mosenfelder JL, Asimow PD, Frost DJ, Rubie DC, Ahrens TJ. 2009. The MgSiO3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. J. Geophys. Res. 114:B01203 [Google Scholar]
  113. Mukhopadhyay S. 2012. Early differentiation and volatile accretion in deep mantle neon and xenon. Nature 486:101–4 [Google Scholar]
  114. Nemchin AA, Pidgeon RT, Whitehouse MJ, Vaughan JP, Meyer C. 2008. SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim. Cosmochim. Acta 72:668–89 [Google Scholar]
  115. Ni S, Tan E, Gurnis M, Helmberger DV. 2002. Sharp sides to the African superplume. Science 296:1850–52 [Google Scholar]
  116. Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J. et al. 2011. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature 473:199–202 [Google Scholar]
  117. Nutman AP, Bennett VC, Friend CRL, Rosing MT. 1997a. ∼3710 and >3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem. Geol. 141:271–87 [Google Scholar]
  118. Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD. 1997b. The Itsaq gneiss complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900–3600 Ma). Precambr. Res. 78:1–39 [Google Scholar]
  119. Nyquist LE, Shih CY. 1992. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56:2213–34 [Google Scholar]
  120. Nyquist LE, Wiesmann H, Bansal B, Shih CY, Keith JE, Harper CL. 1995. 146Sm-142Nd formation interval for the lunar mantle. Geochim. Cosmochim. Acta 59:2817–37 [Google Scholar]
  121. O'Brien DP, Morbidelli A, Levinson HF. 2006. Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58 [Google Scholar]
  122. Olson P, Deguen R, Hinnov LA, Zhong S. 2013. Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Phys. Earth Planet. Inter. 214:87–103 [Google Scholar]
  123. Olson P, Yuen DA, Balsinger D. 1984. Convective mixing and fine-structure of mantle heterogeneity. Phys. Earth Planet. Inter. 36:291–304 [Google Scholar]
  124. O'Neil J, Carlson RW, Paquette J-L, Francis D. 2012. Formation age and metamorphic history of the Nuvvuagittuq greenstone belt. Precambr. Res. 220–21:23–44 [Google Scholar]
  125. O'Neil J, Francis D, Carlson RW. 2011. Implications of the Nuvvuagittuq greenstone belt for the formation of Earth's early crust. J. Petrol. 52:985–1009 [Google Scholar]
  126. O'Neil J, Maurice C, Stevenson RK, Larocque J, Cloquet C. et al. 2007. The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) greenstone belt, northeastern Superior Province, Canada. Earth's Oldest Rocks MJ van Kranekdonk, RH Smithies, VC Bennett 219–54 Amsterdam: Elsevier [Google Scholar]
  127. O'Neill HSC, Palme H. 2008. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. A 366:4205–38 [Google Scholar]
  128. Ottino JM. 1990. Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 22:207–53 [Google Scholar]
  129. Pahlevan K, Stevenson DJ. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262:438–49 [Google Scholar]
  130. Palme H, O'Neill HSC. 2003. Cosmochemical estimates of mantle composition. Treatise on Geochemistry 2 The Mantle and Core RW Carlson, HD Holland, KK Turekian 1–38 Amsterdam: Elsevier [Google Scholar]
  131. Pepin RO. 1991. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79 [Google Scholar]
  132. Pepin RO, Porcelli D. 2002. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47:191–246 [Google Scholar]
  133. Pepin RO, Porcelli D. 2006. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250:470–85 [Google Scholar]
  134. Peto M, Mukhopadhyay S, Kelley KA. 2013. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau back-arc basin. Earth Planet. Sci. Lett. 369–70:13–23 [Google Scholar]
  135. Qin L, Alexander CMOD, Carlson RW, Horan MF, Yokoyama T. 2010. Contributors to chromium isotope variation in meteorites. Geochim. Cosmochim. Acta 74:1122–45 [Google Scholar]
  136. Qin L, Carlson RW, Alexander CMOD. 2011. Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochim. Cosmochim. Acta 75:7806–28 [Google Scholar]
  137. Regelous M, Elliott T, Coath CD. 2008. Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272:330–38 [Google Scholar]
  138. Ricard Y, Fleitout L, Froidevaux C. 1984. Geoid heights and lithospheric stresses for a dynamic Earth. Ann. Geophys. 2:267–86 [Google Scholar]
  139. Ricard Y, Richards M, Lithogow-Bertelloni C, Stunff YL. 1993. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98:B1221895–909 [Google Scholar]
  140. Righter K. 2011. Prediction of metal-silicate partition coefficients for siderophile elements: an update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304:158–67 [Google Scholar]
  141. Ritsema J, Ni S, Helmberger DV, Crotwell HP. 1998. Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa. Geophys. Res. Lett. 25:4245–48 [Google Scholar]
  142. Ritsema J, van Heijst HJ, Woodhouse JH. 2004. Global transition zone tomography. J. Geophys. Res. 109:B02302 [Google Scholar]
  143. Rizo H, Boyet M, Blichert-Toft J, Rosing M. 2011. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 312:267–79 [Google Scholar]
  144. Romanowicz BA, Gung YC. 2002. Superplumes from the core-mantle boundary to the lithosphere: implications for heat-flux. Science 296:513–16 [Google Scholar]
  145. Rost S, Garnero EJ, Williams Q, Manga M. 2005. Seismological constraints on a possible plume root at the core-mantle boundary. Nature 435:666–69 [Google Scholar]
  146. Roth ASG, Bourdon B, Mojzsis SJ, Touboul M, Sprung P. et al. 2013. Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet. Sci. Lett. 361:50–57 [Google Scholar]
  147. Rouby H, Greff-Lefftz M, Besse J. 2010. Mantle dynamics, geoid, inertia and TPW since 120 Myr. Earth Planet. Sci. Lett. 292:301–11 [Google Scholar]
  148. Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F. et al. 2011. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301:31–42 [Google Scholar]
  149. Rubie DC, Melosh HJ, Reid JE, Liebske C, Righter K. 2003. Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205:239–55 [Google Scholar]
  150. Salters VJM, Stracke A. 2004. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5:Q05B07 [Google Scholar]
  151. Schonbachler M, Carlson RW, Horan MF, Mock TD, Hauri EH. 2010. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328:884–87 [Google Scholar]
  152. Seibert J, Badro J, Antonangeli D, Ryerson FJ. 2013. Terrestrial accretion under oxidizing conditions. Science 339:1194–97 [Google Scholar]
  153. Smith JV. 1981. The first 800 million years of Earth's history. Philos. Trans. R. Soc. A 301:401–22 [Google Scholar]
  154. Solomatov VS. 2000. Fluid dynamics of a terrestrial magma ocean. Origin of the Earth and Moon RM Canup, K Righter 323–38 Tucson: Univ. Ariz. Press [Google Scholar]
  155. Solomatov VS. 2007. Magma oceans and primordial mantle differentiation. Treatise on Geophysics 9 Evolution of the Earth DJ Stevenson 91–119 Amsterdam: Elsevier [Google Scholar]
  156. Sramek O, McDonough WF, Kite ES, Lekic V, Dye ST, Zhong S. 2013. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle. Earth Planet. Sci. Lett. 361:356–66 [Google Scholar]
  157. Staudacher T, Allegre CJ. 1982. Terrestrial xenology. Earth Planet. Sci. Lett. 60:389–406 [Google Scholar]
  158. Stevenson DJ. 1987. Origin of the Moon—the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15:271–315 [Google Scholar]
  159. Stevenson DJ. 1990. Fluid dynamics of core formation. Origin of the Earth HE Newsom, JH Jones 231–49 New York: Oxford Univ. Press [Google Scholar]
  160. Stixrude L, de Koker N, Sun N, Mookherjee M, Karki BB. 2009. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 278:226–32 [Google Scholar]
  161. Stixrude L, Lithgow-Bertelloni C. 2012. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci. 40:569–95 [Google Scholar]
  162. Su W, Dziewonski AM. 1997. Simultaneous inversion for 3D variations in shear and bulk sound velocity in the mantle. Phys. Earth Planet. Inter. 100:135–56 [Google Scholar]
  163. Taylor DJ, McKeegan KD, Harrison TM. 2009. Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279:157–64 [Google Scholar]
  164. Taylor SR, Jakes P. 1974. The geochemical evolution of the Moon. Proc. Lunar Sci. Conf. 5:1287–1305 [Google Scholar]
  165. Tera F, Wasserburg GJ. 1974. U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the moon. Proc. Lunar Sci. Conf. 5:1571–99 [Google Scholar]
  166. Thomas CW, Liu Q, Agee CB, Asimow PD, Lange RA. 2012. Multi-technique equation of state for Fe2SiO4 melt and the density of Fe-bearing silicate melts from 0 to 161 GPa. J. Geophys. Res. 117:B10206 [Google Scholar]
  167. Thommes EW, Duncan MJ, Levinson HF. 2003. Oligarchic growth of giant planets. Icarus 161:431–55 [Google Scholar]
  168. Thorne MS, Garnero EJ. 2004. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. 109:B08301 [Google Scholar]
  169. Thorne MS, Garnero EJ, Grand S. 2004. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146:47–63 [Google Scholar]
  170. To A, Romanowicz B, Capdeville Y, Takeuchi N. 2005. 3D effects of sharp boundaries at the borders of the African and Pacific superplumes: observations and modeling. Earth Planet. Sci. Lett. 233:137–53 [Google Scholar]
  171. Tonks WB, Melosh HJ. 1993. Magma ocean formation due to giant impacts. J. Geophys. Res. 98:E35319–33 [Google Scholar]
  172. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–55 [Google Scholar]
  173. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–9 [Google Scholar]
  174. Touboul M, Puchtel IS, Walker RJ. 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–69 [Google Scholar]
  175. Trinquier A, Birck J-L, Allegre CJ. 2007. Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655:1179–85 [Google Scholar]
  176. Trinquier A, Birck J-L, Allegre CJ, Gopel C, Ulfbeck D. 2008. 53Mn-53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72:5146–63 [Google Scholar]
  177. Trinquier A, Elliott T, Ulfbeck D, Coath C, Krot AN, Bizzarro M. 2009. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324:374–76 [Google Scholar]
  178. Tucker JM, Mukhopadhyay S, Schilling J-G. 2012. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355–56:244–54 [Google Scholar]
  179. Valley JW, Peck WH, King EM, Wilde SA. 2002. A cool early Earth. Geology 30:351–54 [Google Scholar]
  180. van der Hilst RD, Karason H. 1999. Compositional heterogeneity in the bottom 1000 km of Earth's mantle: towards a hybrid convection model. Science 283:1885–88 [Google Scholar]
  181. van Keken PE, Hauri EH, Ballentine CJ. 2002. Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Annu. Rev. Earth Planet. Sci. 30:493–525 [Google Scholar]
  182. Vervoort JD, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63:533–56 [Google Scholar]
  183. Wade J, Wood BJ. 2005. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236:78–95 [Google Scholar]
  184. Walker RJ. 2009. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69:101–25 [Google Scholar]
  185. Walker RJ, Morgan JW. 1989. Rhenium-osmium systematics of carbonaceous chondrites. Science 243:519–22 [Google Scholar]
  186. Walsh KJ, Morbidelli A, Raymond SN, O'Brien DP, Mandell AM. 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475:206–9 [Google Scholar]
  187. Wang Y, Wen L. 2007. Geometry and P and S velocity structure of the “African Anomaly.”. J. Geophys. Res. 112:B05313 [Google Scholar]
  188. Wanke H, Baddenhausen H, Dreibus G, Jagoutz E, Kruse H. et al. 1973. Multielement analyses of Apollo 15, 16, and 17 samples and the bulk composition of the moon. Proc. Lunar Sci. Conf. 4:1461–81 [Google Scholar]
  189. Wanke H, Driebus G, Jagoutz E. 1984. Mantle chemistry and accretion history of the Earth. Archaean Geochemistry A Kroner, GN Hanson, AM Goodwin 1–24 Berlin: Springer-Verlag [Google Scholar]
  190. Warren PH. 2011. Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311:93–100 [Google Scholar]
  191. Wasson JT, Kallemeyn GW. 1988. Composition of chondrites. Philos. Trans. R. Soc. A 325:535–44 [Google Scholar]
  192. Watson EB, Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–44 [Google Scholar]
  193. Wen L, Silver P, James D, Kuehnel R. 2001. Seismic evidence for a thermo-chemical boundary layer at the base of Earth's mantle. Earth Planet. Sci. Lett. 189:141–53 [Google Scholar]
  194. Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble DA. 2001. Oxygen isotopes and the Moon-forming giant impact. Science 294:345–48 [Google Scholar]
  195. Wilde SA, Valley JW, Peck WH, Graham CM. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature 409:175–78 [Google Scholar]
  196. Willbold M, Elliott T, Moorbath S. 2011. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477:195–98 [Google Scholar]
  197. Williams Q, Garnero EJ. 1996. Seismic evidence for partial melt at the base of Earth's mantle. Science 273:1528–30 [Google Scholar]
  198. Wood JA, Dickey JS Jr, Marvin UB, Powell BN. 1970. Lunar anorthosites and a geophysical model of the Moon. Proc. Apollo 11 Lunar Sci. Conf. AA Levinson 965–88 New York: Pergamon [Google Scholar]
  199. Yokochi R, Marty B. 2004. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225:77–88 [Google Scholar]
  200. Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5:251–55 [Google Scholar]
  201. Zhang N, Zhong SJ, Leng W, Li ZX. 2010. A model for the evolution of the Earth's mantle structure since the Early Paleozoic. J. Geophys. Res. 115:B06401 [Google Scholar]
  202. Zhong SJ, Zhang N, Li ZX, Roberts JH. 2007. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett. 261:443–55 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error