With the advent of broadband seismology and GPS, significant diversity in the source radiation spectra of large earthquakes has been clearly demonstrated. This diversity requires different approaches to mitigate hazards. In certain tectonic environments, seismologists can forecast the future occurrence of large earthquakes within a solid scientific framework using the results from seismology and GPS. Such forecasts are critically important for long-term hazard mitigation practices, but because stochastic fracture processes are complex, the forecasts are inevitably subject to large uncertainty, and unexpected events will continue to surprise seismologists. Recent developments in real-time seismology will help seismologists to cope with and prepare for tsunamis and earthquakes. Combining a better understanding of earthquake diversity with modern technology is the key to effective and comprehensive hazard mitigation practices.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abercrombie RE, Antolik M, Felzer K, Ekström G. 2001. The 1994 Java tsunami earthquake: slip over a subducting seamount. J. Geophys. Res. 106:6595–607 [Google Scholar]
  2. Aki K. 1967. Scaling law of seismic spectrum. J. Geophys. Res. 72:1217–31 [Google Scholar]
  3. Allen RM, Gasparini P, Kamigaichi O, Böse M. 2009. The status of earthquake early warning around the world: an introductory overview. Seismol. Res. Lett. 80:682–93 [Google Scholar]
  4. Ammon CJ, Kanamori H, Lay T. 2008. A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature 451:561–65 [Google Scholar]
  5. Ammon CJ, Kanamori H, Lay T, Velasco AA. 2006. The 17 July 2006 Java tsunami earthquake. Geophys. Res. Lett. 33:L24308 [Google Scholar]
  6. Ando M. 1975. Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophysics 27:119–40 [Google Scholar]
  7. Asano K, Iwata T, Irikura K. 2004. Source modeling and strong ground motion simulation of the off Miyagi intraslab earthquake of May 26, 2003. Zisin 57:171–85 (In Japanese) [Google Scholar]
  8. Bak P, Tang C. 1989. Earthquakes as self-organized critical phenomena. J. Geophys. Res. 94:15635–37 [Google Scholar]
  9. Beavan J, Wang X, Holden C, Wilson K, Power W. et al. 2010. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009. Nature 466:959–63 [Google Scholar]
  10. Beck S, Barrientos S, Kausel E, Reyes M. 1998. Source characteristics of historic earthquakes along the central Chile subduction zone. J. S. Am. Earth Sci. 11:115–29 [Google Scholar]
  11. Brune JN. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75:4997–5009 [Google Scholar]
  12. Christensen DH, Ruff L. 1988. Seismic coupling and outer rise earthquakes. J. Geophys. Res. 93:13421–44 [Google Scholar]
  13. Cisternas M, Atwater BF, Torrejon F, Sawai Y, Machuca G. et al. 2005. Predecessors of the giant 1960 Chile earthquake. Nature 437:404–7 [Google Scholar]
  14. Crowell BW, Bock Y, Melgar D. 2012. Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys. Res. Lett. 39:L09305 [Google Scholar]
  15. Darwin C. 1845. Journal of Researches into the Natural History and Geology of the Countries Visited during the Voyage of H.M.S. Beagle Round the World. London: John Murray [Google Scholar]
  16. Delouis B, Nocquet J-M, Vallée M. 2010. Slip distribution of the February 27, 2010 Mw= 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys. Res. Lett. 37:L17305 [Google Scholar]
  17. Fedotov SA. 1965. Regularities of the distribution of strong earthquakes in Kamchatka, the Kuril islands and northeastern Japan. Tr. Inst. Fiz. Zemli Akad. Nauk SSSR 36:66–93 (In Russian) [Google Scholar]
  18. Feng L, Newman AV, Protti M, González V, Jiang Y, Dixon TH. 2012. Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling. J. Geophys. Res. 117:B06407 [Google Scholar]
  19. Gasparini P, Manfredi G, Zschau J. 2007. Earthquake Early Warning Systems Berlin: Springer [Google Scholar]
  20. Hackl M, Malservisi R, Wdowinski S. 2009. Strain rate patterns from dense GPS networks. Nat. Hazards Earth Syst. Sci. 9:1177–87 [Google Scholar]
  21. Hashimoto C, Noda A, Sagiya T, Matsu'ura M. 2009. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nat. Geosci. 2:141–44 [Google Scholar]
  22. Hayes GP, Earle PS, Benz HM, Wald DJ, Briggs RW. USGS/NEIC Earthq. Response Team 2011. 88 hours: the US Geological Survey National Earthquake Information Center response to the 11 March 2011 Mw 9.0 Tohoku earthquake. Seismol. Res. Lett. 82:481–93 [Google Scholar]
  23. Heki K. 2011. A tale of two earthquakes. Science 332:1390–91 [Google Scholar]
  24. Hill EM, Borrero JC, Huang Z, Qiu Q, Banerjee P. et al. 2012. The 2010 Mw 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J. Geophys. Res. 117:B06402 [Google Scholar]
  25. Hsu Y-J, Simons M, Avouac J-P, Galetzka J, Sieh K. et al. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312:1921–26 [Google Scholar]
  26. Huang B-S, Chen K-C, Huang W-G, Wang J-H, Chang T-M. et al. 2000. Characteristics of strong ground motion across a thrust fault tip from the September 21, 1999, Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 27:2729–32 [Google Scholar]
  27. Ide S, Takeo M. 1996. The dynamic rupture process of the 1993 Kushiro-Oki earthquake. J. Geophys. Res. 101:B35661–75 [Google Scholar]
  28. Iinuma T, Protti M, Obana K, González V, Van der Laat R. et al. 2004. Inter-plate coupling in the Nicoya Peninsula, Costa Rica, as deduced from a trans-peninsula GPS experiment. Earth Planet. Sci. Lett. 223:203–12 [Google Scholar]
  29. Imamura A. 1928. On the seismic activity of central Japan. Jpn. J. Astron. Geophys. 6:119–37 [Google Scholar]
  30. Ito T, Yoshioka S, Miyazaki S. 2000. Interplate coupling in northeast Japan deduced from inversion analysis of GPS data. Earth Planet. Sci. Lett. 176:117–30 [Google Scholar]
  31. Kagan YY, Jackson DD. 1991. Seismic gap hypothesis: ten years after. J. Geophys. Res. 96:B1321419–31 [Google Scholar]
  32. Kanamori H. 1970. The Alaska earthquake of 1964: radiation of long-period surface waves and source mechanism. J. Geophys. Res. 75:5029–40 [Google Scholar]
  33. Kanamori H. 1971. Seismological evidence for a lithospheric normal faulting—the Sanriku earthquake of 1933. Phys. Earth Planet. Inter. 4:289–300 [Google Scholar]
  34. Kanamori H. 1972. Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6:346–59 [Google Scholar]
  35. Kanamori H. 2005. Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci. 33:195–214 [Google Scholar]
  36. Kanamori H, Anderson DL. 1975. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65:1073–95 [Google Scholar]
  37. Kanamori H, Kikuchi M. 1993. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361:714–16 [Google Scholar]
  38. Kanamori H, Lee WHK, Ma K-F. 2012. The 1909 Taipei earthquake—implication for seismic hazard in Taipei. Geophys. J. Int. 191:126–46 [Google Scholar]
  39. Kanamori H, Rivera L, Lee WHK. 2010. Historical seismograms for unravelling a mysterious earthquake: the 1907 Sumatra earthquake. Geophys. J. Int. 183:358–74 [Google Scholar]
  40. Kashima T, Koyama S, Okawa I. 2012. Strong motion records in buildings from the 2011 off the Pacific coast of Tohoku earthquake. Build. Res. Data No. 135, Build. Res. Inst., Tsukuba, Japan [Google Scholar]
  41. Kelleher J, Savino J, Rowlett H, McCann W. 1974. Why and where great thrust earthquakes occur along island arcs. J. Geophys. Res. 79:4889–99 [Google Scholar]
  42. Konca AO, Avouac J-P, Sladen A, Meltzner AJ, Sieh K. et al. 2008. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–35 [Google Scholar]
  43. Lay T. 2011. Earthquakes: a Chilean surprise. Nature 471:174–75 [Google Scholar]
  44. Lay T, Ammon CJ, Kanamori H, Koper KD, Sufri O, Hutko AR. 2010a. Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys. Res. Lett. 37:L13301 [Google Scholar]
  45. Lay T, Ammon CJ, Kanamori H, Rivera L, Koper KD, Hutko AR. 2010b. The 2009 Samoa-Tonga great earthquake triggered doublet. Nature 466:964–68 [Google Scholar]
  46. Lay T, Ammon CJ, Kanamori H, Yamazaki Y, Cheung KF, Hutko AR. 2011. The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys. Res. Lett. 38:L06302 [Google Scholar]
  47. Lay T, Kanamori H. 1980. Earthquake doublets in the Solomon Islands. Phys. Earth Planet. Inter. 21:283–304 [Google Scholar]
  48. Lay T, Kanamori H. 1981. An asperity model of large earthquake sequences. Earthquake Prediction: An International Review DW Simpson, PG Richards 579–92 Washington, DC: AGU [Google Scholar]
  49. Lay T, Kanamori H. 2011. Insights from the great 2011 Japan earthquake. Phys. Today 64:33–39 [Google Scholar]
  50. Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR. et al. 2012. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117:B04311 [Google Scholar]
  51. Lomnitz C. 2004. Major earthquakes of Chile: a historical survey, 1535–1960. Seismol. Res. Lett. 75:368–78 [Google Scholar]
  52. Lorito S, Romano F, Atzori S, Tong X, Avallone A. et al. 2011. Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat. Geosci. 4:173–77 [Google Scholar]
  53. Loveless JP, Meade BJ. 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res. 115:B02410 [Google Scholar]
  54. Lynnes CS, Lay T. 1988. Source process of the great 1977 Sumba earthquake. J. Geophys. Res. 93:13407–20 [Google Scholar]
  55. Mazzotti S, Le Pichon X, Henry P, Miyazaki S-I. 2000. Full interseismic locking of the Nankai and Japan–west Kurile subduction zones: an analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. J. Geophys. Res. 105:B613159–77 [Google Scholar]
  56. McCann WR, Nishenko SP, Sykes LR, Krause J. 1979. Seismic gaps and plate tectonics; seismic potential for major boundaries. Pure Appl. Geophys. 117:1082–147 [Google Scholar]
  57. Mogi K. 1968. Some features of recent seismic activity in and near Japan, 1. Bull. Earthq. Res. Inst. Tokyo Univ. 46:1225–36 [Google Scholar]
  58. Morikawa N, Sasatani T. 2003. Source spectral characteristics of two large intra-slab earthquakes along the southern Kuril-Hokkaido arc. Phys. Earth Planet. Inter. 137:67–80 [Google Scholar]
  59. Nakajima J, Hasegawa A, Kita S. 2011. Seismic evidence for reactivation of a buried hydrated fault in the Pacific slab by the 2011 M9.0 Tohoku earthquake. Geophys. Res. Lett. 38:L00G6 [Google Scholar]
  60. National Research Council 2011. Tsunami Warning and Preparedness: An Assessment of the US Tsunami Program and the Nation's Preparedness Efforts Washington, DC: Natl. Acad. Press [Google Scholar]
  61. Newcomb KR, McCann WR. 1987. Seismic history and seismotectonics of the Sunda arc. J. Geophys. Res. 92:421–39 [Google Scholar]
  62. Newman AV, Hayes G, Wei Y, Convers JA. 2011. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite fault rupture, and tsunami excitation. Geophys. Res. Lett. 38:L05302 [Google Scholar]
  63. Newman AV, Okal EA. 1998. Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes. J. Geophys. Res. 103:26885–98 [Google Scholar]
  64. Nishenko SP, Sykes LR. 1993. Comment on “Seismic gap hypothesis: ten years after” by Y.Y. Kagan and D.D. Jackson. J. Geophys. Res. 98:B69909–16 [Google Scholar]
  65. Nishimura T, Hirasawa T, Miyazaki S, Sagiya T, Tada T. et al. 2004. Temporal change of interplate coupling in northeastern Japan during 1995–2002 estimated from continuous GPS observations. Geophys. J. Int. 157:901–16 [Google Scholar]
  66. Norabuena E, Dixon TH, Schwartz S, DeShon H, Newman A. et al. 2004. Geodetic and seismic constraints on some seismogenic zone processes in Costa Rica. J. Geophys. Res. 109:B11403 [Google Scholar]
  67. Ohta Y, Kobayashi T, Tsushima H, Miura S, Hino R. et al. 2012. Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J. Geophys. Res. 117:B02311 [Google Scholar]
  68. Ohta Y, Miura S, Ohzono M, Kita S, Iinuma T. et al. 2011. Large intraslab earthquake (2011 April 7, M 7.1) after the 2011 off the Pacific coast of Tohoku earthquake (M 9.0): coseismic fault model based on the dense GPS network data. Earth Planets Space 63:1207–11 [Google Scholar]
  69. Otsuka M. 1972. A chain-reaction type source model as a tool to interpret the magnitude frequency relation of earthquakes. J. Phys. Earth 20:35–45 [Google Scholar]
  70. Philibosian B, Sieh K, Natawidjaja DH, Chiang H-W, Shen C-C. et al. 2012. An ancient shallow slip event on the Mentawai segment of the Sunda megathrust, Sumatra. J. Geophys. Res. 117:B05401 [Google Scholar]
  71. Plafker G, Rubin M. 1978. Uplift history and earthquake recurrence as deduced from marine terraces on Middleton Island, Alaska. USGS Open-File Rep. 78-943, USGS, Reston, VA [Google Scholar]
  72. Polet J, Kanamori H. 2000. Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys. J. Int. 142:684–702 [Google Scholar]
  73. Polet J, Kanamori H. 2009. Tsunami earthquakes. Encyclopedia of Complexity and Systems Science RA Meyers 9577–92 New York: Springer [Google Scholar]
  74. Polet J, Thio HK. 2003. The 1994 Java tsunami earthquake and its “normal” aftershocks. Geophys. Res. Lett. 30:1474 [Google Scholar]
  75. Press F. 1961. Experimental determination of earthquake fault length and rupture velocity. J. Geophys. Res. 66:3471–85 [Google Scholar]
  76. Protti M, Guendel F, Malavassi E. 2001. Evaluación del Potencial Sísmico de la Península de Nicoya Heredia, Costa Rica: Ed. Fund. UNA, 1st ed.. [Google Scholar]
  77. Ruegg JC, Campos J, Madariaga R, Kausel E, de Chabalier JB. et al. 2002. Interseismic strain accumulation in south central Chile from GPS measurements, 1996–1999. Geophys. Res. Lett. 29:12-1–12-4 [Google Scholar]
  78. Ruegg JC, Rudloff A, Vigny C, Madariaga R, de Chabalier JB. et al. 2009. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys. Earth Planet. Inter. 175:78–85 [Google Scholar]
  79. Sagiya T. 2004. A decade of GEONET: 1994–2003. The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 56:xxix–xli [Google Scholar]
  80. Saint-Amand P. 1961. Los terremotos de Mayo, Chile 1960 Tech. Article 14, Michelson Lab., US Nav. Ordnance Test Stn., China Lake, CA [Google Scholar]
  81. Sieh K, Natawidjaja DH, Meltzner AJ, Shen C-C, Cheng H. et al. 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322:1674–78 [Google Scholar]
  82. Singh SK, Pérez-Campos X, Iglesias A, Melgar D. 2012. A method for rapid estimation of moment magnitude for early tsunami warning based on coastal GPS networks. Seismol. Res. Lett. 83:516–30 [Google Scholar]
  83. Spence W. 1986. The 1977 Sumba earthquake series: evidence for slab pull force acting at a subduction zone. J. Geophys. Res. 91:B77225–39 [Google Scholar]
  84. Stauder W. 1968a. Mechanism of the Rat Island earthquake sequence of 4 February 1965 with relation to island arcs and sea-floor spreading. J. Geophys. Res. 73:3847–58 [Google Scholar]
  85. Stauder W. 1968b. Tensional character of earthquake foci beneath the Aleutian trench with relation to sea-floor spreading. J. Geophys. Res. 73:7693–701 [Google Scholar]
  86. Suwa Y, Miura S, Hasegawa A, Sato T, Tachibana K. 2006. Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. J. Geophys. Res. 111:B04402 [Google Scholar]
  87. Suzuki W, Aoi S, Sekiguchi H. 2009. Rupture process of the 2008 Northern Iwate intraslab earthquake derived from strong-motion records. Bull. Seismol. Soc. Am. 99:2825–35 [Google Scholar]
  88. Sykes LR. 1972. Seismicity as a guide to global tectonics and earthquake prediction. Tectonophysics 13:393–414 [Google Scholar]
  89. Tsuboi C. 1932. Investigation on the deformation of the Earth's crust in the Tango district connected with the Tango earthquake of 1927 (Part 4). Bull. Earthq. Res. Inst. Tokyo Univ. 10:411–34 [Google Scholar]
  90. Tsushima H, Hirata K, Hayashi Y, Tanioka Y, Kimura K. et al. 2011. Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:821–26 [Google Scholar]
  91. Uchida N, Matsuzawa T, Ellsworth WL, Imanishi K, Okada T, Hasegawa A. 2007. Source parameters of a M4.8 and its accompanying repeating earthquakes off Kamaishi, NE Japan: implications for the hierarchical structure of asperities and earthquake cycle. Geophys. Res. Lett. 34:L20313 [Google Scholar]
  92. Vere-Jones D. 1976. A branching model for crack propagation. Pure Appl. Geophys. 114:711–25 [Google Scholar]
  93. Vigny C, Socquet A, Peyrat S, Ruegg J-C, Métois M. et al. 2011. The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science 332:1417–21 [Google Scholar]
  94. Ye L, Lay T, Kanamori H. 2012. Intraplate and interplate faulting interactions during the August 31, 2012, Philippine Trench earthquake (Mw 7.6) sequence. Geophys. Res. Lett. 39:L24310 [Google Scholar]
  95. Ye L, Lay T, Kanamori H. 2013. Ground shaking and seismic source spectra for large earthquakes around the megathrust fault offshore of northeastern Honshu, Japan. Bull. Seismol. Soc. Am. 103:1221–41 [Google Scholar]
  96. Yomogida K, Yoshizawa K, Koyama J, Tsuzuki M. 2011. Along-dip segmentation of the 2011 off the Pacific coast of Tohoku earthquake and comparison with other megathrust earthquakes. Earth Planets Space 63:697–701 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error