Pyrogenic carbon (PyC; includes soot, char, black carbon, and biochar) is produced by the incomplete combustion of organic matter accompanying biomass burning and fossil fuel consumption. PyC is pervasive in the environment, distributed throughout the atmosphere as well as soils, sediments, and water in both the marine and terrestrial environment. The physicochemical characteristics of PyC are complex and highly variable, dependent on the organic precursor and the conditions of formation. A component of PyC is highly recalcitrant and persists in the environment for millennia. However, it is now clear that a significant proportion of PyC undergoes transformation, translocation, and remineralization by a range of biotic and abiotic processes on comparatively short timescales. Here we synthesize current knowledge of the production, stocks, and fluxes of PyC as well as the physical and chemical processes through which it interacts as a dynamic component of the global carbon cycle.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abiven S, Hengartner P, Schneider MP, Singh N, Schmidt MW. 2011. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol. Biochem. 43:1615–17 [Google Scholar]
  2. Archibald S, Lehmann CE, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. PNAS 110:6442–47 [Google Scholar]
  3. Archibald S, Staver AC, Levin SA. 2012. Evolution of human-driven fire regimes in Africa. PNAS 109:847–52 [Google Scholar]
  4. Ascough PL, Bird MI, Francis SM, Lebl T. 2011. Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. J. Archaeol. Sci. 38:69–78 [Google Scholar]
  5. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC. et al. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9:53–60 [Google Scholar]
  6. Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA. 2013. The changing carbon cycle of the coastal ocean. Nature 504:61–70 [Google Scholar]
  7. Belcher CM, Finch P, Collinson ME, Scott AC, Grassineau NV. 2009. Geochemical evidence for combustion of hydrocarbons during the K-T impact event. PNAS 106:4112–17 [Google Scholar]
  8. Belcher CM, Yearsley JM, Hadden RM, McElwain JC, Rein G. 2010. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. PNAS 107:22448–53 [Google Scholar]
  9. Berna F, Goldber P, Howitz LK, Brink J, Holt S. et al. 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, northern Cape province, South Africa. PNAS 109:E1215–20 [Google Scholar]
  10. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64 [Google Scholar]
  11. Bird MI. 2013. Charcoal. The Encyclopedia of Quaternary Science 4 SA Elias 353–60 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  12. Bird MI. 2015. Test procedures for biochar analysis in soils. Biochar for Environmental Management: Science, Technology and Implementation J Lehmann, S Joseph 677–714 London: Routledge, 2nd. [Google Scholar]
  13. Bird MI, Ascough PL. 2012. Isotopes in pyrogenic carbon: a review. Org. Geochem. 42:1529–39 [Google Scholar]
  14. Bird MI, Cali JA. 1998. A million-year record of fire in sub-Saharan Africa. Nature 394:767–69 [Google Scholar]
  15. Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P. 1999. Stability of elemental carbon in a savanna soil. Glob. Biogeochem. Cycles 13:923–32First field demonstration of rapid PyC degradation in the environment. [Google Scholar]
  16. Bisiaux MM, Edwards R, McConnell JR, Curran MAJ, Van Ommen TD. et al. 2012. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850–2000 AD. Atmos. Chem. Phys. 12:4107–15 [Google Scholar]
  17. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T. et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118:5380–552Comprehensive assessment of black carbon PyC in the atmosphere. [Google Scholar]
  18. Bond WJ, Midgley JJ. 2012. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173:569–83 [Google Scholar]
  19. Bond WJ, Scott AC. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188:1137–50 [Google Scholar]
  20. Bowman DM, Balch J, Artaxo P, Bond WJ, Cochrane MA. et al. 2011. The human dimension of fire regimes on Earth. J. Biogeogr. 38:2223–36 [Google Scholar]
  21. Braadbaart F, Poole I, Van Brussel AA. 2009. Preservation potential of charcoal in alkaline environments: an experimental approach and implications for the archaeological record. J. Archaeol. Sci. 36:1672–79 [Google Scholar]
  22. Chaopricha NT, Marín-Spiotta E. 2014. Soil burial contributes to deep soil organic carbon storage. Soil Biol. Biochem. 69:251–64 [Google Scholar]
  23. Cheng CH, Lehmann J. 2009. Ageing of black carbon along a temperature gradient. Chemosphere 75:1021–27 [Google Scholar]
  24. Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37:1477–88 [Google Scholar]
  25. Chrzazvez J, Théry-Parisot I, Fiorucci G, Terral JF, Thibaut B. 2014. Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: experimental approach combining charcoal analysis and biomechanics. J. Archaeol. Sci. 44:30–42 [Google Scholar]
  26. Cohen-Ofri I, Weiner L, Boaretto E, Mintz G, Weiner S. 2006. Modern and fossil charcoal: aspects of structure and diagenesis. J. Archaeol. Sci. 33:428–39 [Google Scholar]
  27. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ. et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85 [Google Scholar]
  28. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P. 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28:555–76 [Google Scholar]
  29. Coppola AI, Ziolkowski LA, Masiello CA, Druffel ER. 2014. Aged black carbon in marine sediments and sinking particles. Geophys. Res. Lett. 41:2427–33 [Google Scholar]
  30. Cressler WL. 2001. Evidence of earliest known wildfires. Palaios 16:171–74 [Google Scholar]
  31. Cross A, Sohi SP. 2013. A method for screening the relative long-term stability of biochar. Glob. Change Biol. Bioenergy 5:215–20 [Google Scholar]
  32. Czimczik CI, Preston CM, Schmidt MWI, Schulze ED. 2003. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: stocks, molecular structure, and conversion to black carbon charcoal. Glob. Biogeochem. Cycles 17:GB1020 [Google Scholar]
  33. Czimczik CI, Schmidt MWI, Schulze ED. 2005. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. Eur. J. Soil Sci. 56:417–28 [Google Scholar]
  34. Das O, Wang Y, Hsieh YP. 2010. Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3 and C4 grasses. Org. Geochem. 41:263–69 [Google Scholar]
  35. Dickens AF, Gélinas Y, Masiello CA, Wakeham S, Hedges JI. 2004. Reburial of fossil organic carbon in marine sediments. Nature 427:336–39 [Google Scholar]
  36. Dittmar T, de Rezende CE, Manecki M, Niggemann J, Ovalle ARC. et al. 2012. Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat. Geosci. 5:618–22 [Google Scholar]
  37. Dittmar T, Koch BP. 2006. Thermogenic organic matter dissolved in the abyssal ocean. Mar. Chem. 102:208–17 [Google Scholar]
  38. Dittmar T, Paeng J. 2009. A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2:175–79 [Google Scholar]
  39. Druffel ER. 2004. Comments on the importance of black carbon in the global carbon cycle. Mar. Chem. 92:197–200 [Google Scholar]
  40. Duffin KI, Gillson L, Willis KJ. 2008. Testing the sensitivity of charcoal as an indicator of fire events in savanna environments: quantitative predictions of fire proximity, area and intensity. Holocene 18:279–91 [Google Scholar]
  41. Edwards EJ, Osborne CP, Strömberg CA, Smith SA. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  42. Elmquist M, Semiletov I, Guo L, Gustafsson Ö. 2008. Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments. Glob. Biogeochem. Cycles 22:GB2018 [Google Scholar]
  43. Fang Y, Singh B, Singh BP, Krull E. 2014. Biochar carbon stability in four contrasting soils. Eur. J. Soil Sci. 65:60–71 [Google Scholar]
  44. Foereid B, Lehmann J, Major J. 2011. Modeling black carbon degradation and movement in soil. Plant Soil. 345:223–36 [Google Scholar]
  45. Forbes MS, Raison RJ, Skjemstad JO. 2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 370:190–206 [Google Scholar]
  46. Galy V, Beyssac O, France-Lanord C, Eglinton T. 2008. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322:943–45 [Google Scholar]
  47. Gierga M, Schneider MPW, Wiedemeier DB, Lang SQ, Smittenberg RH. et al. 2014. Purification of fire derived markers for μg scale isotope analysis (δ13C, Δ14C) using high performance liquid chromatography (HPLC). Org. Geochem. 70:1–9 [Google Scholar]
  48. Giglio L, Randerson JT, Werf GR. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118:317–28Comprehensive assessment of global biomass burning. [Google Scholar]
  49. Glaser B, Haumaier L, Guggenberger G, Zech W. 2001. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41 [Google Scholar]
  50. Glinka K. 1914. Die Typen der Bodenbildung, ihre Klassifikation und geographische Verbreitung Berlin: Gebrüder Borntraeger
  51. Godwin H. 1962. Half-life of radiocarbon. Nature 195:984 [Google Scholar]
  52. Gurwick NP, Moore LA, Kelly C, Elias P. 2013. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLOS ONE 8:e75932 [Google Scholar]
  53. Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP. et al. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob. Biogeochem. Cycles 21:GB3016Benchmark intercomparison study of PyC analytical methods. [Google Scholar]
  54. Hammes K, Torn MS, Lapenas AG, Schmid MWI. 2008. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5:1339–50 [Google Scholar]
  55. Hansell DA, Carlson CA, Schlitzer R. 2012. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob. Biogeochem. Cycles 26:GB1016 [Google Scholar]
  56. Haumaier L, Zech W. 1995. Black carbon—possible source of highly aromatic components of soil humic acids. Org. Geochem. 23:191–96 [Google Scholar]
  57. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C. et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31:945–58 [Google Scholar]
  58. Herring JR. 1985. Charcoal influxes into sediments of the North Pacific Ocean: the Cenozoic record of burning. The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present WS Broecker, ET Sundquist 419–42 Washington, DC: AGU [Google Scholar]
  59. Hiederer R, Köchy M. 2011. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database Luxembourg: Publ. Off. E.U.
  60. Hockaday WC, Grannas AM, Kim S, Hatcher PG. 2006. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 37:501–10 [Google Scholar]
  61. Hockaday WC, Grannas AM, Kim S, Hatcher PG. 2007. The transformation and mobility of charcoal in a fire-impacted watershed. Geochim. Cosmochim. Acta 71:3432–45 [Google Scholar]
  62. Hoetzel S, Dupont L, Schefuß E, Rommerskirchen F, Wefer G. 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6:1027–30 [Google Scholar]
  63. Hoffmann T, Glatzel S, Dikau R. 2009. A carbon storage perspective on alluvial sediment storage in the Rhine catchment. Geomorphology 108:127–37 [Google Scholar]
  64. Hoffmann T, Mudd SM, Oost KV, Verstraeten G, Erkens G. et al. 2013. Humans and the missing C-sink: erosion and burial of soil carbon through time. Earth Surf. Dyn. 1:45–52 [Google Scholar]
  65. Houghton RA. 2007. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35:313–47 [Google Scholar]
  66. Jaffé R, Ding Y, Niggemann J, Vähätalo AV, Stubbins A. et al. 2013. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–47Assessment of dissolved PyC transport to the oceans. [Google Scholar]
  67. Jenkinson DS, Rayner JH. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123:298–305 [Google Scholar]
  68. Jia G, Peng PA, Zhao Q, Jian Z. 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology 31:1093–96 [Google Scholar]
  69. Jones TP, Chaloner WG. 1991. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97:39–50 [Google Scholar]
  70. Jurado E, Dachs J, Duarte CM, Simó R. 2008. Atmospheric deposition of organic and black carbon to the global oceans. Atmos. Environ. 42:7931–39 [Google Scholar]
  71. Kaal J. 2011. Identification, molecular characterisation and significance of fire residues in colluvial soils from Campo Lameiro (NW Spain) PhD Thesis, Instituto de Estudios Gallegos, Padre Sarmiento, Spain [Google Scholar]
  72. Kanaly RA, Harayama S. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182:2059–67 [Google Scholar]
  73. Kane ES, Hockaday WC, Turetsky MR, Masiello CA, Valentine DW. et al. 2010. Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics. Biogeochemistry 100:39–56 [Google Scholar]
  74. Keeley JE, Rundel PW. 2005. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8:683–90 [Google Scholar]
  75. Keiluweit M, Nico PS, Johnson MG, Kleber M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44:1247–53 [Google Scholar]
  76. Kershaw AP. 1986. Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles. Nature 322:47 [Google Scholar]
  77. Kim S, Kaplan LA, Benner R, Hatcher PG. 2004. Hydrogen-deficient molecules in natural riverine water samples—evidence for the existence of black carbon in DOM. Mar. Chem. 92:225–34 [Google Scholar]
  78. Krull ES, Skjemstad JO, Graetz D, Grice K, Dunning W. et al. 2003. 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org. Geochem. 34:1337–52 [Google Scholar]
  79. Kuhlbusch TAJ. 1998. Black carbon and the carbon cycle. Science 280:1903–4First attempt to construct a global PyC budget. [Google Scholar]
  80. Kuhlbusch TAJ, Andreae MO, Cachier H, Goldammer JG, Lacaux JP. et al. 1996. Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. J. Geophys. Res. 101:D1923651–65 [Google Scholar]
  81. Kuhlbusch TAJ, Crutzen PJ. 1996. Black carbon, the global carbon cycle, and atmospheric carbon dioxide. Biomass Burn. Glob. Change 1:160–69 [Google Scholar]
  82. Kuo LJ, Louchouarn P, Herbert BE. 2011. Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues. Chemosphere 85:797–805 [Google Scholar]
  83. Kuzyakov Y, Bogomolova I, Glaser B. 2014. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70:229–36Longest-running PyC degradation study by incubation. [Google Scholar]
  84. Lehmann J. 2007. A handful of carbon. Nature 447:143–44 [Google Scholar]
  85. Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Glob. Change 11:395–419 [Google Scholar]
  86. Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M. et al. 2008. Australian climate—carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1:832–35 [Google Scholar]
  87. Lohmann R, Bollinger K, Cantwell M, Feichter J, Fischer-Bruns I. et al. 2009. Fluxes of soot black carbon to South Atlantic sediments. Glob. Biogeochem. Cycles 23:GB1015 [Google Scholar]
  88. Major J, Lehmann J, Rondon M, Goodale C. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Change Biol. 16:1366–79 [Google Scholar]
  89. Mannino A, Harvey HR. 2004. Black carbon in estuarine and coastal ocean dissolved organic matter. Limnol. Oceanogr. 49:735–40 [Google Scholar]
  90. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP. et al. 2008. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1:697–702 [Google Scholar]
  91. Mašek O, Brownsort P, Cross A, Sohi S. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–55 [Google Scholar]
  92. Masiello CA. 2004. New directions in black carbon organic geochemistry. Mar. Chem. 92:201–13 [Google Scholar]
  93. Masiello CA, Druffel ERM. 1998. Black carbon in deep-sea sediments. Science 280:1911–13First demonstration that PyC in ocean sediments was much older than contemporaneous organic carbon. [Google Scholar]
  94. Masiello CA, Druffel ERM. 2003. Organic and black carbon 13C and 14C through the Santa Monica Basin oxic–anoxic transition. Geophys. Res. Lett. 30:1185 [Google Scholar]
  95. McBeath AV, Smernik RJ. 2009. Variation in the degree of aromatic condensation of chars. Org. Geochem. 40:1161–68 [Google Scholar]
  96. McBeath AV, Smernik RJ, Schneider MPW, Schmidt MWI, Plant EL. 2011. Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org. Geochem. 42:1194–202 [Google Scholar]
  97. McBeath AV, Wurster CM, Bird MI. 2015. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy 73:155–73 [Google Scholar]
  98. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS. et al. 2007. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317:1381–84 [Google Scholar]
  99. Meredith W, Ascough PL, Bird MI, Large DJ, Snape CE. et al. 2012. Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochim. Cosmochim. Acta 97:131–47 [Google Scholar]
  100. Middelburg JJ, Nieuwenhuize J, van Breugel P. 1999. Black carbon in marine sediments. Mar. Chem. 65:245–52 [Google Scholar]
  101. Miranda AC, Sinátora H, Oliveira IF, Ferreira B. 1993. Soil and air temperatures during prescribed cerrado fires in Central Brazil. J. Trop. Ecol. 9:313–20 [Google Scholar]
  102. Mooney SD, Harrison SP, Bartlein PJ, Daniau AL, Stevenson J. et al. 2011. Late Quaternary fire regimes of Australasia. Quat. Sci. Rev. 30:28–46 [Google Scholar]
  103. Nguyen BT, Lehmann J. 2009. Black carbon decomposition under varying water regimes. Org. Geochem. 40:846–53 [Google Scholar]
  104. Norwood MJ, Louchouarn P, Kuo LJ, Harvey OR. 2013. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Org. Geochem. 56:111–19 [Google Scholar]
  105. Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R. 2009. The charcoal carbon pool in boreal forest soils. Nat. Geosci. 2:692–95 [Google Scholar]
  106. O'Leary MH. 1988. Carbon isotopes in photosynthesis. Bioscience 38:328–36 [Google Scholar]
  107. Page S, Rieley J, Hoscilo A, Spessa A, Weber U. 2013. Current fire regimes, impacts and the likely changes. IV: Tropical Southeast Asia. Vegetation Fires and Global Change: Challenges for Concerted International Action. A White Paper Directed to the United Nations and International Organizations JG Goldammer 89–99 Remagen, Ger: Kessel [Google Scholar]
  108. Pietikäinen J, Kiikkilä O, Fritze H. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–42 [Google Scholar]
  109. Premović PI. 2012. Soot in Cretaceous-Paleogene boundary clays worldwide: Is it really derived from fossil fuel beds close to Chicxulub?. Cent. Eur. J. Geosci. 4:383–87 [Google Scholar]
  110. Preston CM, Schmidt MWI. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420 [Google Scholar]
  111. Quinton JN, Govers G, Van Oost K, Bardgett RD. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3:311–14 [Google Scholar]
  112. Randerson JT, Van der Werf GR, Collatz GJ, Giglio L, Still CJ. et al. 2005. Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Glob. Biogeochem. Cycles 19:GB2019 [Google Scholar]
  113. Robertson DS, Lewis WM, Sheehan PM, Toon OB. 2013. K-Pg extinction: reevaluation of the heat-fire hypothesis. J. Geophys. Res. Biogeosci. 118:329–36 [Google Scholar]
  114. Rodionov A, Amelung W, Peinemann N, Haumaier L, Zhang X. et al. 2010. Black carbon in grassland ecosystems of the world. Glob. Biogeochem. Cycles 24:GB3013 [Google Scholar]
  115. Rumpel C, Ba A, Darboux F, Chaplot V, Planchon O. 2009. Erosion budget and process selectivity of black carbon at meter scale. Geoderma 154:131–37 [Google Scholar]
  116. Rumpel C, Chaplot V, Planchon O, Bernadou J, Valentin C, Mariotti A. 2006. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 65:30–40 [Google Scholar]
  117. Saiz G, Goodrick I, Wurster CM, Zimmermann M, Nelson PN, Bird MI. 2014a. Charcoal re-combustion efficiency in tropical savannas. Geoderma 219:40–45 [Google Scholar]
  118. Saiz G, Wynn JG, Wurster CM, Goodrick I, Nelson PN, Bird MI. 2014b. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition. Biogeosci. Disc. 11:15149–83 [Google Scholar]
  119. Sánchez-García L, Cato I, Gustafsson Ö. 2012. The sequestration sink of soot black carbon in the Northern European Shelf sediments. Glob. Biogeochem. Cycles 26:GB1001 [Google Scholar]
  120. Sánchez-García L, de Andrés JR, Gélinas Y, Schmidt MW, Louchouarn P. 2013. Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): method comparison and spatial distribution. Mar. Chem. 151:13–22 [Google Scholar]
  121. Santín C, Doerr SH, Preston C, Bryant R. 2013. Consumption of residual pyrogenic carbon by wildfire. Int. J. Wildland Fire 22:1072–77 [Google Scholar]
  122. Scharlemann JP, Tanner EV, Hiederer R, Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5:81–91 [Google Scholar]
  123. Schmidt MW, Noack AG. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14:777–93Benchmark review of research on PyC to 2000. [Google Scholar]
  124. Schneider MP, Smittenberg RH, Dittmar T, Schmidt MW. 2011. Comparison of gas with liquid chromatography for the determination of benzenepolycarboxylic acids as molecular tracers of black carbon. Org. Geochem. 42:275–82 [Google Scholar]
  125. Scott AC, Bowman DM, Bond WJ, Pyne SJ, Alexander ME. 2014. Fire on Earth: An Introduction West Sussex, UK: Wiley
  126. Scott AC, Glasspool IJ. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103:10861–65 [Google Scholar]
  127. Seiler W, Crutzen PJ. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2:207–47 [Google Scholar]
  128. Smith DM, Chughtai AR. 1997. Photochemical effects in the heterogeneous reaction of soot with ozone at low concentrations. J. Atmos. Chem. 26:77–91 [Google Scholar]
  129. Smith DM, Griffin JJ, Goldberg ED. 1973. Elemental carbon in marine sediments: a baseline for burning. Nature 241:268–70 [Google Scholar]
  130. Stubbins A, Niggemann J, Dittmar T, Herndl G. 2012. Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9:1661–70 [Google Scholar]
  131. Thevenon F, Williamson D, Bard E, Anselmetti FS, Beaufort L, Cachier H. 2010. Combining charcoal and elemental black carbon analysis in sedimentary archives: implications for past fire regimes, the pyrogenic carbon cycle, and the human–climate interactions. Glob. Planet. Change 72:381–89 [Google Scholar]
  132. Wang T, Camps-Arbestain M, Hedley M. 2013. Predicting C aromaticity of biochars based on their elemental composition. Org. Geochem. 62:1–6 [Google Scholar]
  133. Whitman T, Hanley K, Enders A, Lehmann J. 2013. Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management. Org. Geochem. 64:76–83 [Google Scholar]
  134. Wilkinson BH, McElroy BJ. 2007. The impact of humans on continental erosion and sedimentation. Geol. Soc. Am. Bull. 119:140–56 [Google Scholar]
  135. Wolbach WS, Gilmour I, Anders E, Orth CJ, Brooks RR. 1988. Global fire at the Cretaceous–Tertiary boundary. Nature 334:665–69 [Google Scholar]
  136. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nat. Commun. 1:1–9Comprehensive assessment of biochar PyC for carbon sequestration. [Google Scholar]
  137. Wright HA, Bailey AW. 1982. Fire Ecology New York: Wiley
  138. Wurster CM, Lloyd J, Goodrick I, Saiz G, Bird MI. 2012. Quantifying the abundance and stable isotope composition of pyrogenic carbon using hydrogen pyrolysis. Rapid Commun. Mass Spectrom. 26:2690–96 [Google Scholar]
  139. Wurster CM, Saiz G, Schneider MP, Schmidt MW, Bird MI. 2013. Quantifying pyrogenic carbon from thermosequences of wood and grass using hydrogen pyrolysis. Org. Geochem. 62:28–32 [Google Scholar]
  140. Zhan C, Cao J, Han Y, Huang S, Tu X. et al. 2013. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau. Sci. Total Environ. 465:255–66 [Google Scholar]
  141. Zimmerman AR. 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Tech. 44:1295–301 [Google Scholar]
  142. Zimmermann M, Bird MI, Wurster C, Saiz G, Goodrick I. et al. 2012. Rapid degradation of pyrogenic carbon. Glob. Change Biol. 18:3306–16 [Google Scholar]
  143. Ziolkowski LA, Druffel ERM. 2010. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37:L16601 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error