1932

Abstract

Planktic foraminifera are an abundant component of deep-sea sediment and are critical to geohistorical research, primarily because as a biological and geochemical system they are sensitive to coupled bio-hydro-lithosphere interactions. They are also well sampled and studied throughout their evolutionary history. Here, we combine a synoptic global compilation of planktic foraminifera with a stochastic null model of taxonomic turnover to identify statistically significant increases in macroevolutionary rates. There are three taxonomic diversifications and two distinct extinctions in the history of the group. The well-known Cretaceous–Paleogene extinction is of unprecedented magnitude and abruptness and is linked to rapid environmental perturbations associated with bolide impact. The Eocene–Oligocene boundary extinction occurs due to a combination of factors related to a major reorganization of the global climate system. Changes in ocean stratification, seawater chemistry, and global climate recur as primary determinants of both macroevolutionary turnover in planktic foraminifera and spatiotemporal patterns of deep-sea sedimentation over the past 130 Myr.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105059
2015-05-30
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105059.html?itemId=/content/journals/10.1146/annurev-earth-060614-105059&mimeType=html&fmt=ahah

Literature Cited

  1. Alroy J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16:55–80 [Google Scholar]
  2. Alroy J. 2014. Accurate and precise estimates of origination and extinction rates. Paleobiology 40:374–97 [Google Scholar]
  3. Alvarez LW, Alvarez W, Asaro F, Michel HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–108 [Google Scholar]
  4. Ando A, Woodard SC, Evans HF, Littler K, Herrmann S. et al. 2013. An emerging palaeoceanographic ‘missing link’: multidisciplinary study of rarely recovered parts of deep-sea Santonian–Campanian transition from Shatsky Rise. J. Geol. Soc. Lond. 170:381–84 [Google Scholar]
  5. Arenillas I, Arz JA, Molina E, Dupuis C. 2000. An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: catastrophic mass extinction and possible survivorship. Micropaleontology 46:31–49 [Google Scholar]
  6. Arthur MA, Jenkyns HC, Brumsack HJ, Schlanger SO. 1990. Stratigraphy, geochemistry and paleoceanography of organic carbon-rich Cretaceous sequences. Cretac. Res. Events Rhythms 304:75–119 [Google Scholar]
  7. Aze T, Ezard THG, Purvis A, Coxall HK, Stewart DRM. et al. 2011. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86:900–27 [Google Scholar]
  8. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55 [Google Scholar]
  9. Bandy OL. 1967. Cretaceous planktonic foraminiferal zonation. Micropaleontology 13:1–31 [Google Scholar]
  10. Barerra E, Savin SM. 1999. Evolution of late Campanian–Maastrichtian marine climates and oceans. Geol. Soc. Am. Spec. Pap. 332:245–82 [Google Scholar]
  11. Barron EJ, Fawcett PJ, Peterson WH. 1995. A “simulation” of mid-Cretaceous climate. Paleoceanography 10:953–62 [Google Scholar]
  12. AWH. 1977. An ecological, zoogeographic and taxonomic review of Recent planktonic foraminifera. Oceanic Micropaleontology 1 ATS Ramsay 1–100 New York: Academic [Google Scholar]
  13. AWH, Tolderlund DS. 1971. Distribution and ecology of living planktonic foraminifera in the surface waters of the Atlantic and Indian Oceans. The Micropalaeontology of Oceans BM Funnell, WR Riedel 105–149 London: Cambridge Univ. Press [Google Scholar]
  14. Benson RH, Chapman RE, Deck LT. 1984. Paleoceanographic events and deep-sea ostracodes. Science 224:1334–36 [Google Scholar]
  15. Berggren WA. 1969. Rates of evolution in some Cenozoic planktonic foraminifera. Micropaleontology 15:351–65 [Google Scholar]
  16. Berggren WA, Hilgen FJ, Langereis CG, Kent DV, Obradovich JD. et al. 1995. Late Neogene chronology: new perspectives in high-resolution stratigraphy. Geol. Soc. Am. Bull. 107:1272–87 [Google Scholar]
  17. Berggren WA, Hollister CD. 1974. Paleogeography, paleobiogeography and the history of circulation in the Atlantic Ocean. SEPM Spec. Publ. 20:126–86 [Google Scholar]
  18. Berner RA. 1994. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294:56–91 [Google Scholar]
  19. Bice KL, Huber BT, Norris RD. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography 18:1031 [Google Scholar]
  20. Billups K, Schrag DP. 2002. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17:1003 [Google Scholar]
  21. Birch HS, Coxall HK, Pearson PN. 2012. Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis. Paleobiology 38:374–90 [Google Scholar]
  22. Boersma A, Premoli Silva I. 1986. Terminal Eocene events: planktonic foraminiferal and isotopic evidence. Terminal Eocene Events C Pomerol, I Premoli Silva 213–24 Dev. Palaeontol. Stratigr. 9 Amsterdam: Elsevier [Google Scholar]
  23. Boersma A, Premoli Silva I, Shackleton NJ. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography 2:287–331 [Google Scholar]
  24. Bolli HM, Saunders JB. 1985. Oligocene to Holocene low latitude planktic foraminifera. See Bolli et al. 1985 155–262
  25. Bolli HM, Saunders JB, Perch-Nielsen K. 1985. Plankton Stratigraphy Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  26. Bornemann A, Norris RD. 2007. Size-related stable isotope changes in Late Cretaceous planktic foraminifera: implications for paleoecology and photosymbiosis. Mar. Micropaleontol. 65:32–42 [Google Scholar]
  27. Boudagher-Fadel MK, Banner FT, Whittaker JE. 1997. The Early Evolutionary History of the Planktonic Foraminifera Br. Micropaleontol. Soc. Publ. Ser London: Chapman & Hall [Google Scholar]
  28. Bralower TJ, CoBabe E, Clement B, Sliter WV, Osburn CL, Longoria J. 1999. The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, Northeastern Mexico. J. Foraminifer. Res. 29:418–37 [Google Scholar]
  29. Bralower TJ, Fullagar PD, Paull CK, Dwyer GS, Leckie RM. 1997. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geol. Soc. Am. Bull. 109:1421–42 [Google Scholar]
  30. Bréhéret JG. 1994. The mid-Cretaceous organic rich sediments from the Vocontian zone of the French Southeast Basin. Spec. Publ. Eur. Assoc. Pet. Geosci. 4:295–320 [Google Scholar]
  31. Bréhéret JG, Caron M, Delamette M. 1986. Niveaux riches en matière organique dans l'Albien vocontien: quelques caractères du paléoenvironnement essai d'interprétation génétique. Doc. BRGM 110:141–91 [Google Scholar]
  32. Budd AF. 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19:25–35 [Google Scholar]
  33. Caldeira K, Rampino MR. 1991. The mid-Cretaceous super plume, carbon dioxide, and global warming. Geophys. Res. Lett. 18:987–90 [Google Scholar]
  34. Caron M. 1985. Cretaceous planktic foraminifera. See Bolli et al. 1985 17–86
  35. Caron M, Dall'Agnolo S, Accarie H, Barrera B, Kauffman EG. et al. 2006. High-resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39:171–200 [Google Scholar]
  36. Caron M, Homewood P. 1982. Evolution of the early planktonic foraminifers. Mar. Micropaleontol. 7:453–62 [Google Scholar]
  37. Cermeño P, Castro-Bugallo A, Vallina SM. 2013. Diversification patterns of planktic foraminifera in the fossil record. Mar. Micropaleontol. 104:38–43 [Google Scholar]
  38. Cifelli R. 1969. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18:154–68 [Google Scholar]
  39. Clarke LJ, Jenkyns HC. 1999. New oxygen isotope evidence for long-term Cretaceous climate change in the Southern Hemisphere. Geology 27:699–702 [Google Scholar]
  40. Collins LS. 1989. Evolutionary rates of a rapid radiation: the Paleogene planktic foraminifera. Palaios 4:251–63 [Google Scholar]
  41. Coxall HK, Pearson PN. 2007. The Eocene–Oligocene transition. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies M Williams, AM Haywood, FJ Gregory, DN Schmidt 351–87 Micropaleontol. Soc. Spec. Publ London: Geol. Soc. [Google Scholar]
  42. Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57 [Google Scholar]
  43. Coxall HK, Wilson PA, Pearson PN, Sexton PF. 2007. Iterative evolution of digitate planktonic foraminifera. Paleobiology 33:495–516 [Google Scholar]
  44. Cramer BS, Toggweiler JR, Wright JR, Katz ME, Miller KG. 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24:PA4216 [Google Scholar]
  45. Darling KF, Thomas E, Kasemann SA, Seears HA, Smart CW, Wade CM. 2009. Surviving mass extinction by bridging the benthic/planktic divide. PNAS 406:12629–33 [Google Scholar]
  46. Darling KF, Wade CM, Kroon D, Brown AJL. 1997. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar. Micropaleontol. 30:251–66 [Google Scholar]
  47. DeConto RM, Pollard D, Wilson P, Pälike H. 2008. Thresholds for Cenozoic bipolar glaciation. Nature 455:652–57 [Google Scholar]
  48. D'Haenens S, Bornemann A, Stassen P, Speijer RP. 2012. Multiple early Eocene benthic foraminiferal assemblage and δ13C fluctuations at DSDP Site 401 (Bay of Biscay—NE Atlantic). Mar. Micropaleontol. 88–89:15–35 [Google Scholar]
  49. D'Hondt S. 2005. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36:295–317 [Google Scholar]
  50. D'Hondt S, Zachos JC. 1998. Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis. Paleobiology 24:512–23 [Google Scholar]
  51. D'Hondt S, Zachos JC, Schultz G. 1994. Stable isotopes and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20:391–406 [Google Scholar]
  52. Dickens GR, Castillo MM, Walker JCG. 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–62 [Google Scholar]
  53. Dickens GR, O'Neil JR, Rea DK, Owen RM. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–71 [Google Scholar]
  54. Douglas RG, Savin SM. 1978. Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Mar. Micropaleontol. 3:175–96 [Google Scholar]
  55. Eldrett JS, Harding C, Wilson PA, Butler E, Roberts AP. 2007. Continental ice in Greenland during the Eocene and Oligocene. Nature 446:176–99 [Google Scholar]
  56. Erba E. 1994. Nannofossils and superplumes: the Early Aptian “nannoconid crisis.”. Paleoceanography 9:483–501 [Google Scholar]
  57. Erbacher J, Hemleben C, Huber BT, Markey M. 1999. Correlating environmental changes during early Albian oceanic anoxic event 1B using benthic foraminiferal paleoecology. Mar. Micropaleontol. 38:7–28 [Google Scholar]
  58. Erbacher J, Huber BT, Norris RD, Markey M. 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409:325–27 [Google Scholar]
  59. Erbacher J, Thurow J. 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30:139–58 [Google Scholar]
  60. Ezard THG, Aze T, Pearson PN, Purvis A. 2011. Interplay between changing climate and species' ecology drives macroevolutionary dynamics. Science 332:349–51 [Google Scholar]
  61. Falzoni F, Petrizzo MR, MacLeod KG, Huber BT. 2013. Santonian–Campanian planktonic foraminifera from Tanzania, Shatsky Rise and Exmouth Plateau: species depth ecology and paleoceanographic inferences. Mar. Micropaleontol. 103:15–29 [Google Scholar]
  62. Foote M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74–102 [Google Scholar]
  63. Freeman KH, Hays JM. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6:185–98 [Google Scholar]
  64. Frerichs W. 1971. Evolution of planktonic foraminifera and paleotemperatures. J. Paleontol. 45:963–68 [Google Scholar]
  65. Friedrich O, Norris RD, Bornemann A, Beckmann B, Pälike H. et al. 2008. Cyclic changes in Turonian to Coniacian planktic foraminiferal assemblages from the tropical Atlantic Ocean. Mar. Micropaleontol. 68:299–313 [Google Scholar]
  66. Friedrich O, Norris RD, Erbacher J. 2012. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth's temperature and carbon cycle. Geology 40:107–10 [Google Scholar]
  67. Georgescu MD, Saupe EE, Huber BT. 2008. Morphometric and stratophenetic basis for phylogeny and taxonomy in Late Cretaceous gublerinid planktonic foraminifera. Micropaleontology 54:397–424 [Google Scholar]
  68. Gradstein F, Ogg J, Smith A. 2004. A Geologic Time Scale Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  69. Gröcke DR, Hesselbo SP, Jenkyns HC. 1999. Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology 27:155–58 [Google Scholar]
  70. Hannisdal B, Peters SE. 2011. Phanerozoic Earth system evolution and marine biodiversity. Science 334:1121–24 [Google Scholar]
  71. Haq BU, Hardenbol J, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:1156–67 [Google Scholar]
  72. Haq BU, Premoli Silva I, Lohmann GP. 1977. Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the early Cenozoic Atlantic Ocean. J. Geophys. Res. 82:3861–76 [Google Scholar]
  73. Hart M. 1980. A water depth model for the evolution of the planktonic Foraminiferida. Nature 286:252–54 [Google Scholar]
  74. Hemleben C, Spindler M, Anderson OR. 1989. Modern Planktonic Foraminifera New York: Springer-Verlag [Google Scholar]
  75. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ. et al. 2012. The geological record of ocean acidification. Science 335:1058–63 [Google Scholar]
  76. Houston RM, Huber BT, Spero HJ. 1999. Size-related isotopic trends in some Maastrichtian planktic foraminifera: methodological comparisons, intraspecific variability, and evidence for photosymbiosis. Mar. Micropaleontol. 36:169–88 [Google Scholar]
  77. Huber BT, Leckie RM. 2011. Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections. J. Foraminifer. Res. 41:53–95 [Google Scholar]
  78. Huber BT, Leckie RM, Norris RD, Bralower TJ, CoBabe E. 1999. Foraminiferal assemblage and stable isotopic change across the Cenomanian–Turonian boundary in the subtropical North Atlantic. J. Foraminifer. Res. 29:392–417 [Google Scholar]
  79. Huber BT, MacLeod KG, Gröcke DR, Kucera M. 2011. Paleotemperature and paleosalinity inferences and chemostratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic. Paleoceanography 26:PA4221 [Google Scholar]
  80. Hull PM, Norris RD, Bralower TJ, Schueth JD. 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. 4:856–60 [Google Scholar]
  81. Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN. et al. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event. Cretac. Res. 9:3–103 [Google Scholar]
  82. Jarvis I, Gale AS, Jenkyns HC, Pearce MA. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol. Mag. 143:561–608 [Google Scholar]
  83. Jenkyns HC. 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. Lond. 137:171–81 [Google Scholar]
  84. Jones C, Jenkyns H. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 301:112–49 [Google Scholar]
  85. Kamikuri SI, Nishi H, Moore T, Nigrini C, Motoyama I. 2005. Radiolarian faunal turnover across the Oligocene/Miocene boundary in the equatorial Pacific Ocean. Mar. Micropaleontol. 57:74–96 [Google Scholar]
  86. Katz M, Miller KG, Wright J, Wade BS, Browning JV. et al. 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nat. Geosci. 1:329–34 [Google Scholar]
  87. Kauffman EG. 1985. Cretaceous evolution of the Western Interior Basin of the United States. SEPM Field Trip Guideb. 4:IV–XI [Google Scholar]
  88. Kauffman EG, Caldwell WGE. 1993. The Western Interior Basin in space and time. Geol. Assoc. Can. Spec. Pap. 39:1–130 [Google Scholar]
  89. Keller G, Barron JA. 1983. Paleoclimatic implication of Miocene deep-sea hiatus. Geol. Soc. Am. Bull. 94:590–613 [Google Scholar]
  90. Keller G, Herbert T, Dorsey R, D'Hondt S, Johnsson M, Chi WR. 1987. Global distribution of late Paleogene hiatuses. Geology 15:199–203 [Google Scholar]
  91. Kelly DC. 2002. Response of Antarctic (ODP Site 690) planktonic foraminifera to the Paleocene–Eocene thermal maximum: faunal evidence for ocean/climate change. Paleoceanography 17:1071 [Google Scholar]
  92. Kelly DC, Arnold AJ, Parker W. 1996a. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella. Paleobiology 22:266–81 [Google Scholar]
  93. Kelly DC, Bralower TJ, Zachos JC, Premoli Silva I, Thomas E. 1996b. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423–26 [Google Scholar]
  94. Kennedy WJ, Gale AS, Bown PR, Caron M, Davey RJ. et al. 2000. Integrated stratigraphy across the Aptian-Albian boundary in the Marnes Bleues, at the Col de Pré-Guittard, Arnayon (Drome), and at Tartonne (Alpes-de-Haute-Provence), France: a candidate global boundary stratotype section and boundary point for the base of the Albian Stage. Cretac. Res. 21:591–720 [Google Scholar]
  95. Kennett JP, Srinivasan MS. 1983. Neogene Planktonic Foraminifera Stroudsburg, PA: Hutchinson Ross [Google Scholar]
  96. Kennett JP, Stott LD. 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinction at the end of the Palaeocene. Nature 353:225–29 [Google Scholar]
  97. Kring DA. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255:4–21 [Google Scholar]
  98. Larson RL. 1991. Geological consequences of superplumes. Geology 19:963–66 [Google Scholar]
  99. Leckie RM. 1985. Foraminifera of the Cenomanian-Turonian boundary interval, Greenhorn Formation, Rock Canyon Anticline, Pueblo Colorado. SEPM Field Trip Guideb. 4:139–49 [Google Scholar]
  100. Leckie RM. 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73:107–38 [Google Scholar]
  101. Leckie RM. 2009. Seeking a better life in the plankton. PNAS 106:14183–84 [Google Scholar]
  102. Leckie RM, Bralower TJ, Cashman R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17:1041 [Google Scholar]
  103. Liebrand D, Lourens LJ, Hodell DA, De Boer B, van de Wal RSW, Pälike H. 2011. Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Clim. Past 7:869–80 [Google Scholar]
  104. Lipps JH. 1970. Plankton evolution. Evolution 24:1–22 [Google Scholar]
  105. Lloyd GT, Pearson PN, Young JR, Smith AB. 2012. Sampling bias and the fossil record of planktonic foraminifera on land and in the deep sea. Paleobiology 38:569–84 [Google Scholar]
  106. Lloyd GT, Young JR, Smith AB. 2011. Taxonomic structure of the fossil record is shaped by sampling bias. Syst. Biol. 61:80–89 [Google Scholar]
  107. Lyle M. 2003. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18:1059 [Google Scholar]
  108. Masters BA. 1977. Mesozoic planktonic foraminifera. Oceanic Micropaleontology 1 ATS Ramsay 301–731 New York: Academic [Google Scholar]
  109. Miller KG, Fairbanks RG, Mountain GS. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:1–19 [Google Scholar]
  110. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS. et al. 2005. The Phanerozoic record of global sea-level change. Science 310:1293–98 [Google Scholar]
  111. Moore TC Jr, van Andel TH, Sancetta C, Pisias N. 1978. Cenozoic hiatuses in pelagic sediments: marine plankton and sediments. Micropaleontol. Spec. Publ. 3:113–38 [Google Scholar]
  112. Nederbragt AJ. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37:329–72 [Google Scholar]
  113. Nederbragt AJ, Florentino A, Klosowska B. 2001. Quantitative analysis of calcareous microfossils across the Albian–Cenomanian boundary oceanic anoxic event at DSDP Site 547 (North Atlantic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 166:401–21 [Google Scholar]
  114. Norris R. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388–99 [Google Scholar]
  115. Norris R. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461–80 [Google Scholar]
  116. Norris RD. 2000. Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236–58 [Google Scholar]
  117. Norris RD, Kroon D, Huber BT, Erbacher J. 2001. Cretaceous–Palaeogene ocean and climate change in the subtropical North Atlantic. Geol. Soc. Lond. Spec. Publ. 183:1–22 [Google Scholar]
  118. Norris RD, Wilson PA. 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26:823–26 [Google Scholar]
  119. Olsson RK, Hemleben C, Berggren WA, Huber BT. 1999. Atlas of Paleocene Planktonic Foraminifera Smithson. Contrib. Paleobiol. 85 Washington, DC: Smithson. Inst. Press [Google Scholar]
  120. Olsson RK, Hemleben C, Berggren WA, Liu C. 1992. Wall texture classification of planktonic foraminifera genera in the lower Danian. J. Foraminifer. Res. 22:195–213 [Google Scholar]
  121. Pagani M, Arthur MA, Freeman K. 1999. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14:273–92 [Google Scholar]
  122. Pälike H, Lyle MW, Nishi H, Raffi I, Ridgwell A. et al. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:609–15 [Google Scholar]
  123. Pearson PN. 1993. A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology 39:193–232 [Google Scholar]
  124. Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA. 2006. Atlas of Eocene Planktic Foraminifera Cushman Found. Foraminifer. Res. Spec. Publ. 41. Fredericksburg VA: Cushman Found. [Google Scholar]
  125. Peters SE. 2005. Geologic constraints on the macroevolutionary history of marine animals. PNAS 102:12326–31 [Google Scholar]
  126. Peters SE. 2006. Macrostratigraphy of North America. J. Geol. 114:391–412 [Google Scholar]
  127. Peters SE. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–29 [Google Scholar]
  128. Peters SE, Kelly DC, Fraass AJ. 2013. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493:398–401 [Google Scholar]
  129. Petrizzo MR, Huber BT, Wilson PA, MacLeod KG. 2008. Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23:PA1213 [Google Scholar]
  130. Poulsen CJ, Barron EJ, Arthur MA, Peterson WH. 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16:576–92 [Google Scholar]
  131. Premoli Silva I, Ripepe M, Tornaghi ME. 1989. Planktonic foraminiferal distribution record productivity cycles: evidence from the Aptian-Albian Piobbico core (central Italy). Terra Nova 1:443–48 [Google Scholar]
  132. Premoli Silva I, Sliter WV. 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. Geol. Soc. Am. Spec. Pap. 332:301–28 [Google Scholar]
  133. Prothero DR, Lazarus DB. 1980. Planktonic microfossils and the recognition of ancestors. Syst. Biol. 29:119–29 [Google Scholar]
  134. R Dev. Core Team 2008. R: A Language and Environment for Statistical Computing. Vienna: R Found. Stat. Comput http://www.r-project.org [Google Scholar]
  135. Raup DM, Sepkoski JJ. 1982. Mass extinctions in the marine fossil record. Science 215:1501–3 [Google Scholar]
  136. Robinson SA, Murphy DP, Vance D, Thomas DJ. 2010. Formation of “Southern Component Water” in the Late Cretaceous: evidence from Nd-isotopes. Geology 38:871–74 [Google Scholar]
  137. Saito T, Thompson PR, Breger D. 1981. Systematic Index of Recent and Pleistocene Planktonic Foraminifera Tokyo: Univ. Tokyo Press [Google Scholar]
  138. Schlanger SO, Jenkyns HC. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55:179–84 [Google Scholar]
  139. Schmidt D, Thierstein H, Bollmann J, Schiebel R. 2004. Abiotic forcing of plankton evolution in the Cenozoic. Science 303:207–10 [Google Scholar]
  140. Scholle PA, Arthur MA. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull. 64:67–87 [Google Scholar]
  141. Schulte P, Alegret L, Arenillas I, Arz JA, Barton P. et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–18 [Google Scholar]
  142. Sexton PF, Wilson PA, Pearson PN. 2006. Paleoecology of late middle Eocene planktic foraminifera and evolutionary implications. Mar. Micropaleontol. 60:1–16 [Google Scholar]
  143. Smit J. 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 190:329–52 [Google Scholar]
  144. Smith AB, Patterson C. 1988. The influence of taxonomy on the perception of patterns of evolution. Evol. Biol. 23:127–216 [Google Scholar]
  145. Stanley S, Wetmore K, Kennett JP. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235–49 [Google Scholar]
  146. Tappan H, Loeblich AR Jr. 1988. Foraminiferal evolution, diversification, and extinction. J. Paleontol. 62:695–714 [Google Scholar]
  147. Thomas DJ, Via RK. 2007. Neogene evolution of Atlantic thermohaline circulation: perspective from Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography 22:PA2212 [Google Scholar]
  148. Thomas E. 2007. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?. Geol. Soc. Am. Spec. Pap. 424:1–24 [Google Scholar]
  149. Toumarkine M, Luterbacher H. 1985. Paleocene and Eocene planktic foraminifera. See Bolli et al. 2005 87–154
  150. van Andel TH. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26:187–94 [Google Scholar]
  151. Vellekoop J, Sluijs A, Smit J, Schouten S, Weijers JWH. et al. 2014. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. PNAS 111:7537–41 [Google Scholar]
  152. Wade BS, Pearson PN. 2008. Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Mar. Micropaleontol. 68:244–55 [Google Scholar]
  153. Wagreich M. 2012. “OAE 3”—regional Atlantic organic carbon burial during the Coniacian–Santonian. Clim. Past 8:1447–55 [Google Scholar]
  154. Wei K, Kennett JP. 1986. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1:67–84 [Google Scholar]
  155. Weissert H, Lini A, Föllmi KB, Kuhn O. 1998. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137:189–203 [Google Scholar]
  156. Wilson PA, Norris R. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425–29 [Google Scholar]
  157. Wilson PA, Norris RD, Cooper MJ. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30:607–10 [Google Scholar]
  158. Wonders AAH. 1980. Middle and Late Cretaceous Planktonic Foraminifera of the Western Mediterranean Area Utrecht Micropaleontol. Bull. 24. Utrecht, Neth.: Utrecht Micropaleontol. Bull. [Google Scholar]
  159. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93 [Google Scholar]
  160. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA. et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–15 [Google Scholar]
  161. Zachos JC, Wara MW, Bohaty S, Delaney ML, Petrizzo MR. et al. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302:1551–54 [Google Scholar]
  162. Zeebe RE, Zachos JC. 2013. Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene. Philos. Trans. R. Soc. A 371:20120006 [Google Scholar]
  163. Zeebe RE, Zachos JC, Dickens GR. 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nat. Geosci. 2:576–80 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105059
Loading
/content/journals/10.1146/annurev-earth-060614-105059
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error