Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adkins JF. 2013. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28:539–61 [Google Scholar]
  2. Allen C. 2009. IceBridge MCoRDS L2 Ice Thickness Boulder, CO: Natl. Snow Ice Data Cent. [Google Scholar]
  3. Alley RB. 2007. Wally was right: predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu. Rev. Earth Planet. Sci. 35:241–72 [Google Scholar]
  4. Alley RB, Anandakrishnan S, Dupont TK, Parizek BR, Pollard D. 2007. Effect of sedimentation on ice-sheet grounding-line stability. Science 315:1838–41 [Google Scholar]
  5. Alley RB, Andrews JT, Brigham-Grette J, Clarke GKC, Cuffey KM. et al. 2010. History of the Greenland Ice Sheet: paleoclimatic insights. Quat. Sci. Rev. 29:1728–56 [Google Scholar]
  6. Alley RB, Dupont TK, Parizek BR, Anandakrishnan S, Lawson DE. et al. 2006. Outburst flooding and the initiation of ice-stream surges in response to climatic cooling: a hypothesis. Geomorphology 75:76–89 [Google Scholar]
  7. Alley RB, Fahnestock M, Joughin I. 2008a. Climate change: understanding glacier flow in changing times. Science 322:1061–62 [Google Scholar]
  8. Alley RB, Horgan HJ, Joughin I, Cuffey KM, Dupont TK. et al. 2008b. A simple law for ice-shelf calving. Science 322:1344 [Google Scholar]
  9. Alley RB, Whillans IM. 1984. Response of the East Antarctic ice sheet to sea-level rise. J. Geophys. Res. 89:C46487–93 [Google Scholar]
  10. Alley RB, White JWC. 2000. Evidence of West Antarctic changes in the Siple Dome ice core Presented at 7th Annu. West Antarct. Ice Sheet Worksh., Sept. 28–30, Sterling, VA. http://www.waisworkshop.org/pastmeetings/abstracts00/Alley.htm [Google Scholar]
  11. Anandakrishnan S, Catania GA, Alley RB, Horgan HJ. 2007. Discovery of till deposition at the grounding line of Whillans Ice Stream. Science 31:51835–38 [Google Scholar]
  12. Bamber JL, Gomez-Dans JL, Griggs JA. 2009a. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data. Part 1: Data and methods. Cryosphere 3:101–11 [Google Scholar]
  13. Bamber JL, Riva REM, Vermeersen BLA, Le Brocq AM. 2009b. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 324:901–3 [Google Scholar]
  14. Barnes D, Hillenbrand C. 2010. Faunal evidence for a late quaternary trans-Antarctic seaway. Glob. Change Biol. 16:3297–303 [Google Scholar]
  15. Bartholomaus TC, Larsen CF, O'Neel S. 2013. Does calving matter? Evidence for significant submarine melt. Earth Planet. Sci. Lett. 380:21–30 [Google Scholar]
  16. Bassis JN, Walker CC. 2012. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A 468:913–31 [Google Scholar]
  17. Bentley CR, Ostenso NA. 1961. Glacial and subglacial topography of West Antarctica. J. Glaciol. 3:882–912 [Google Scholar]
  18. Bentley MJ, Evans DJA, Fogwill CJ, Hansom JD, Sugden DE, Kubik PW. 2007. Glacial geomorphology and chronology of deglaciation, South Georgia, sub-Antarctic. Quat. Sci. Rev. 26:644–77 [Google Scholar]
  19. Bindschadler RA, Nowicki S, Abe-Ouchi A, Aschwanden A, Choi H. et al. 2013. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol. 59:195–224 [Google Scholar]
  20. Bradley SL, Siddall M, Milne GA, Masson-Delmotte V, Wolff E. 2012. Where might we find evidence of a Last Interglacial West Antarctic ice sheet collapse in Antarctic ice core records?. Glob. Planet. Change 88–89:64–75 [Google Scholar]
  21. Carlson AE, Winsor K. 2012. Northern Hemisphere ice-sheet responses to past climate warming. Nat. Geosci. 5:607–13 [Google Scholar]
  22. Cazenave A, Le Cozannet G. 2014. Sea level rise and its coastal impacts. Earth's Future 2:15–34 [Google Scholar]
  23. Christianson K, Parizek BR, Alley RB, Horgan HJ, Jacobel RW. et al. 2013. Ice sheet grounding zone stabilization due to till compaction. Geophys. Res. Lett. 40:5406–11 [Google Scholar]
  24. Cook CP, van de Flierdt T, Williams T, Hemming SR, Iwai M. et al. 2013. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6:765–69 [Google Scholar]
  25. Cook S, Rutt IC, Murray T, Luckman A, Zwinger N. et al. 2014. Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere 8:827–41 [Google Scholar]
  26. Cook S, Zwinger T, Rutt IC, O'Neel S, Murray T. 2012. Testing the effect of water in crevasses on a physically based calving model. Ann. Glaciol. 53:90–96 [Google Scholar]
  27. Cuffey KM, Paterson WSB. 2010. The Physics of Glaciers Oxford, UK: Butterworth-Heinemann, 4th ed.. [Google Scholar]
  28. Dahl-Jensen D, Albert MR, Aldahan A, Azuma N, Balsley-Clausen D. et al. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493:489–94 [Google Scholar]
  29. Das SB, Joughin I, Behn MD, Howat IM, King MA. et al. 2008. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320:778–81 [Google Scholar]
  30. Denton GH, Alley RB, Comer GC, Broecker WS. 2005. The role of seasonality in abrupt climate change. Quat. Sci. Rev. 24:1159–82 [Google Scholar]
  31. Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Lightenberg SRM. et al. 2013. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502:89–92 [Google Scholar]
  32. Dowdeswell JA, Fugelli EMG. 2012. The seismic architecture and geometry of grounding-zone wedges formed at the marine margins of past ice sheets. Geol. Soc. Am. Bull. 124:1750–61 [Google Scholar]
  33. Dowdeswell JA, Ottesen D, Evans J, Cofaigh , Anderson JB. 2008. Submarine glacial landforms and rates of ice-stream collapse. Geology 36:819–22 [Google Scholar]
  34. Dupont TK, Alley RB. 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett. 32:L04503 [Google Scholar]
  35. Dutrieux P, De Rydt J, Jenkins A, Holland PR, Ha HK. et al. 2014. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343:174–78 [Google Scholar]
  36. Dutton A, Lambeck K. 2012. Ice volume and sea level during the last interglacial. Science 337:216–19 [Google Scholar]
  37. Ewing M, Donn WL. 1956. A theory of ice ages. Science 123:1061–65 [Google Scholar]
  38. Favier L, Durand G, Cornford SL, Gudmundsson GH, Gagliardini O. et al. 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4:117–21 [Google Scholar]
  39. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE. et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–93 [Google Scholar]
  40. Frigola J, Canals M, Cacho I, Moreno A, Sierro FJ. et al. 2012. A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability. Clim. Past 8:1067–77 [Google Scholar]
  41. Gogineni P. 2012. CReSIS radar depth sounder data Center for Remote Sensing of Ice Sheets (CReSIS), Lawrence, KS, retrieved July 2014. http://data.cresis.ku.edu/ [Google Scholar]
  42. Gomez N, Mitrovica JX, Huybers P, Clark PU. 2010. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci. 3:850–53 [Google Scholar]
  43. Griggs JA, Bamber JL. 2009. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data. Part 2: Validation and error estimates. Cryosphere 3:113–23 [Google Scholar]
  44. Hanson B, Hooke RLeB. 2003. Buckling rate and overhang development at a calving face. J. Glaciol. 49:577–86 [Google Scholar]
  45. Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M. 2005. MODIS Mosaic of Antarctica 2003–2004 (MOA2004) Image Map Boulder, CO: Natl. Snow Ice Data Cent. Updated 2013 doi: 10.7265/N5ZK5DM5 [Google Scholar]
  46. Hattermann T, Levermann A. 2010. Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica. Clim. Dyn. 35:741–56 [Google Scholar]
  47. Headly MA, Severinghaus JP. 2007. A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. J. Geophys. Res. 112:D19105 [Google Scholar]
  48. Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J. 2012. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–28 [Google Scholar]
  49. Hemming SR. 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42:RG1005 [Google Scholar]
  50. Holden PB, Edwards NR, Wolff EW, Valdes PJ, Singarayer JS. 2011. The Mid-Brunhes Event and West Antarctic Ice Sheet stability. J. Quat. Sci. 26:474–77 [Google Scholar]
  51. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B. 2008a. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1:659–64 [Google Scholar]
  52. Holland PR, Jenkins A, Holland DM. 2008b. The response of ice shelf basal melting to variations in ocean temperature. J. Clim. 21:2558–72 [Google Scholar]
  53. Hollin JT. 1962. On the glacial history of Antarctica. J. Glaciol. 4:173–95 [Google Scholar]
  54. Holschuh N, Pollard D, Alley RB, Anandakrishnan S. 2014. Evaluating Marie Byrd Land stability using an improved basal topography. Earth Planet. Sci. Lett. 408:362–69 [Google Scholar]
  55. Horgan HJ, Alley RB, Christianson K, Jacobel RW, Anandakrishnan S. et al. 2013. Estuaries beneath ice sheets. Geology 41:1159–62 [Google Scholar]
  56. Horgan HJ, Walker RT, Anandakrishnan S, Alley RB. 2011. Surface elevation changes at the front of the Ross Ice Shelf: implications for basal melting. J. Geophys. Res. 116:C02005 [Google Scholar]
  57. Hughes TJ. 1981. The “weak underbelly” of the West Antarctic Ice Sheet. J. Glaciol. 27:518–25 [Google Scholar]
  58. Jacobs SS, Giulivi CF, Mele PA. 2002. Freshening of the Ross Sea during the late 20th century. Science 297:386–89 [Google Scholar]
  59. Jacobs SS, Jenkins A, Giulivi CF, Dutrieux P. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4:519–23 [Google Scholar]
  60. Jakobsson M, Anderson JB, Nitsche FO, Dowdeswell JA, Ryllencreutz R. et al. 2011. Geological record of ice shelf breakup and grounding line retreat, Pine Island Bay, West Antarctica. Geology 39:691–94 [Google Scholar]
  61. Jamieson SSR, Vieli A, Livingstone SJ, Cofaigh , Stokes C. et al. 2012. Ice-stream stability on a reverse bed slope. Nat. Geosci. 5:1–4 [Google Scholar]
  62. Jenkins A, Doake CSM. 1991. Ice-ocean interaction on Ronne Ice Shelf, Antarctica. J. Geophys. Res. 96:C1791–813 [Google Scholar]
  63. Jenkins A, Holland DM. 1999. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29:1787–800 [Google Scholar]
  64. Johnson JS, Bentley MJ, Smith JA, Finkel RC, Rood DH. et al. 2014. Rapid thinning of Pine Island Glacier in the early Holocene. Science 343:999–1001 [Google Scholar]
  65. Joughin I, Alley RB. 2011. Stability of the West Antarctic Ice Sheet in a warming world. Nat. Geosci. 4:506–513 [Google Scholar]
  66. Joughin I, Alley RB, Holland DM. 2012a. Ice-sheet response to oceanic forcing. Science 338:1172–76 [Google Scholar]
  67. Joughin I, Howat I, Alley RB, Ekstrom G, Fahnestock M. et al. 2008. Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res. 113:F01004 [Google Scholar]
  68. Joughin I, Smith BE, Holland DM. 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 37:L20502 [Google Scholar]
  69. Joughin I, Smith BE, Medley B. 2014a. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344:735–38 [Google Scholar]
  70. Joughin I, Smith BE, Shean DE, Floricioiu D. 2014b. Further summer speedup of Jakobshavn Isbræ. Cryosphere 8:209–14 [Google Scholar]
  71. Joughin I, Smith I, Howat D, Floricioiu D, Alley RB. et al. 2012b. Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J. Geophys. Res. 117:F02030 [Google Scholar]
  72. Joughin I, Tulaczyk S, Bamber JL, Blankenship D, Holt JW. et al. 2009. Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol. 55:245–57 [Google Scholar]
  73. Khan SA, Kjaer KH, Bevis M, Bamber JL, Wahr J. et al. 2014. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim. Change 4:292–99 [Google Scholar]
  74. Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M. 2009. Probabilistic assessment of sea level during the last interglacial stage. Nature 462:863–67 [Google Scholar]
  75. Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M. 2013. A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int. 193:711–16 [Google Scholar]
  76. Korotkikh EV, Mayewski PA, Handley MJ, Sneed SB, Introne DS. et al. 2011. The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica. Quat. Sci. Rev. 30:1940–47 [Google Scholar]
  77. Larour E, Morlighem M, Seroussi H, Schiermeier J, Rignot E. 2012. Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J. Geophys. Res. 117:F04203 [Google Scholar]
  78. Le Brocq AM, Payne AJ, Vieli A. 2010. An improved Antarctic dataset for high resolution numerical ice sheet models. Earth Syst. Sci. Data 2:247–60 [Google Scholar]
  79. Le Brocq AM, Ross N, Griggs JA, Bingham RG, Corr HFJ. et al. 2013. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 6:945–48 [Google Scholar]
  80. Leeson AA, Shepherd A, Briggs K, Howat I, Fettweis X. et al. 2015. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Change 5:51–55 [Google Scholar]
  81. Levermann A, Albrecht T, Winkelmann R, Martin MA, Haseloff M, Joughin I. 2012. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere 6:273–86 [Google Scholar]
  82. MacAyeal DR. 1993. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography 8:775–84 [Google Scholar]
  83. MacAyeal DR, Scambos TA, Hulbe CL, Fahnestock MA. 2003. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol. 49:22–36 [Google Scholar]
  84. MacGregor JA, Catania GA, Conway HB, Schroeder DM, Joughin IR. et al. 2013. Weak bed control of the eastern shear margin of Thwaites Glacier, West Antarctica. J. Glaciol. 59:900–12 [Google Scholar]
  85. MacGregor JA, Catania GA, Marskowski MS, Andrews AG. 2012. Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J. Glaciol. 58:458–66 [Google Scholar]
  86. Mankoff KD, Jacobs SS, Tulaczyk SM, Stammerjohn SE. 2012. The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica. Ann. Glaciol. 53:123–28 [Google Scholar]
  87. Marcott SA, Clark PU, Padman L, Klinkhammer GP, Springer SR. et al. 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. PNAS 108:13415–19 [Google Scholar]
  88. McMillan M, Shepherd A, Sundal A, Briggs K, Muir A. et al. 2014. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41:3899–905 [Google Scholar]
  89. Meier MF, Post AS. 1987. Fast tidewater glaciers. J. Geophys. Res. 92:B99051–58 [Google Scholar]
  90. Mengel M, Levermann A. 2014. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4:451–55 [Google Scholar]
  91. Mercer JH. 1968. Antarctic ice and Sangamon sea level. Int. Assoc. Sci. Hydrol. Publ. 79:217–25 [Google Scholar]
  92. Millgate T, Holland PR, Jenkins A, Johnson HL. 2013. The effect of basal channels on oceanic ice-shelf melting. J. Geophys. Res. Oceans 118:6951–64 [Google Scholar]
  93. Morlighem M, Rignot E, Mouginot J, Seroussi H, Larour E. 2014. Deeply incised submarine glacial valleys beneath the Greenland Ice Sheet. Nat. Geosci. 7:418–22 [Google Scholar]
  94. Motyka RJ, Truffer M, Mortensen J, Rysgaard S, Howat I. 2011. Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res. 116:F01007 [Google Scholar]
  95. Mouginot J, Rignot E, Scheuchl B. 2014. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1873 to 2013. Geophys. Res. Lett. 41:L059069 [Google Scholar]
  96. Naish T, Powell R, Levy R, Wilson G, Scherer R. et al. 2009. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458:322–28 [Google Scholar]
  97. Nettles M, Ekstrom G. 2010. Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci. 38:467–91 [Google Scholar]
  98. Nick FM, Vieli A, Andersen ML, Joughin I, Payne A. et al. 2013. Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature 497:235–38 [Google Scholar]
  99. Nitsche FO, Gohl K, Larter RD, Hillenbrand CD, Kuhn G. et al. 2013. Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica. Cryosphere 7:249–62 [Google Scholar]
  100. Nowicki S, Bindschadler RA, Abe-Ouchi A, Aschwander A, Bueler E. et al. 2013a. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res. Earth Surf. 118:1002–24 [Google Scholar]
  101. Nowicki S, Bindschadler RA, Abe-Ouchi A, Aschwander A, Bueler E. et al. 2013b. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res. Earth Surf. 118:1025–44 [Google Scholar]
  102. NRC (Natl. Res. Counc.) 2013. Abrupt Impacts of Climate Change: Anticipating Surprises Washington, DC: Natl. Acad. Press [Google Scholar]
  103. O'Leary M, Christoffersen P. 2013. Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 7:119–28 [Google Scholar]
  104. O'Leary MJ, Hearty PJ, Thompson WG, Raymo ME, Mitrovica JX, Webster JM. 2013. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nat. Geosci. 6:796–800 [Google Scholar]
  105. Parizek BR, Alley RB. 2004. Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quat. Sci. Rev. 23:1013–27 [Google Scholar]
  106. Parizek BR, Christianson K, Anandakrishnan S, Alley RB, Walker RT. et al. 2013. Dynamic (in)stability of Thwaites Glacier, West Antarctica. J. Geophys. Res. Earth Surf. 118:638–55 [Google Scholar]
  107. Park JW, Gourmelen N, Shepherd A, Kim SW, Vaughan DG, Wingham DJ. 2013. Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett. 40:2137–42 [Google Scholar]
  108. Payne AJ, Holland PR, Shepherd AP, Rutt IC, Jenkins A, Joughin I. 2007. Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf. J. Geophys. Res. 112:C10019 [Google Scholar]
  109. Payne AJ, Vieli A, Shepherd A, Wingham DJ, Rignot E. 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett. 31:L23401 [Google Scholar]
  110. Penck A. 1928. The causes of the ice-age. Sitz. Preuss. Akad. Wiss. Phys. Math. Kl. 1928:76–85 [Google Scholar]
  111. Pfeffer WT, Harper JT, O'Neel S. 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–43 [Google Scholar]
  112. Pollard D, DeConto RM. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–32 [Google Scholar]
  113. Pollard D, DeConto RM, Alley RB. 2015. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412112–21 [Google Scholar]
  114. Pritchard H, Arthern R, Vaughan D, Edwards L. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–75 [Google Scholar]
  115. Rathbun AP, Marone C, Alley RB, Anandakrishnan S. 2008. Laboratory study of the frictional rheology of sheared till. J. Geophys. Res. 113:F02020 [Google Scholar]
  116. Raymo ME, Mitrovica JX. 2012. Collapse of polar ice sheets during the stage 11 interglacial. Nature 483:453–56 [Google Scholar]
  117. Reyes AV, Carlson AE, Beard BL, Hatfield RG, Stoner JS. et al. 2014. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510:525–28 [Google Scholar]
  118. Rignot E. 2006. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364:1637–55 [Google Scholar]
  119. Rignot E, Bamber J, van den Broeke M, Davis C, Yonghong L. et al. 2008. Recent Antarctic mass loss from radar interferometry and regional climate modelling. Nat. Geosci. 1:106–10 [Google Scholar]
  120. Rignot E, Jacobs S. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296:2020–23 [Google Scholar]
  121. Rignot E, Jacobs S, Mouginot J, Scheuchl B. 2013. Ice-shelf melting around Antarctica. Science 341:266–70 [Google Scholar]
  122. Rignot E, Koppes M, Velicogna L. 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci. 3:187–91 [Google Scholar]
  123. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B. 2014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41:3502–9 [Google Scholar]
  124. Rignot E, Mouginot J, Scheuchl B. 2011. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38:L10504 [Google Scholar]
  125. Rignot E, Steffen K. 2008. Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett. 35:L02503 [Google Scholar]
  126. Robin GdQ. 1958. Glaciology III: Seismic shootings and related investigations. Norwegian-British-Swedish Antarctic Expedition, 1949–52: Scientific Results 51–134 Oslo: Nor. Polarinst. [Google Scholar]
  127. Rohling EJ, Grant K, Hemleben CH, Siddall M, Hoogakker BAA. et al. 2008. High rates of sea-level rise during the last interglacial period. Nat. Geosci. 1:38–42 [Google Scholar]
  128. Rohling EJ, Haigh ID, Foster GL, Roberts AP, Grant KM. 2013. A geological perspective on potential future sea-level rise. Sci. Rep. 3:3461 [Google Scholar]
  129. Rovere A, Raymo ME, Mitrovica JX, Hearty PJ, O'Leary MJ, Inglis JD. 2014. The Mid-Pliocene sea-level conundrum: glacial isostasy, eustasy and dynamic topography. Earth Planet. Sci. Lett. 387:27–33 [Google Scholar]
  130. Scambos TA, Berthier E, Shuman CA. 2011. The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol. 52:74–82 [Google Scholar]
  131. Scambos TA, Bohlander JA, Shuman CA, Skvarca P. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31:L18402 [Google Scholar]
  132. Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B. 1998. Pleistocene collapse of the West Antarctic ice sheet. Science 281:82–85 [Google Scholar]
  133. Schmeltz M, Rignot E, Dupont TK, MacAyeal DR. 2002. Sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions: a model study. J. Glaciol. 48:552–58 [Google Scholar]
  134. Schmidtko S, Heywood KJ, Thompson AF, Aoki S. 2014. Multidecadal warming of Antarctic waters. Science 346:1227–31 [Google Scholar]
  135. Schoof C. 2007. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112:F03S28 [Google Scholar]
  136. Scott RF. 1905. Results of the National Antarctic Expedition. I. Geographical. Geogr. J. 25:353–70 [Google Scholar]
  137. Sen Gupta A, Santoso A, Taschetto A, Ummenhofer C, Trevena J, England M. 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Clim. 22:3047–78 [Google Scholar]
  138. Sergienko OV, Hindmarsh RCA. 2013. Regular patterns in frictional resistance of ice-stream beds seen by surface data inversion. Science 342:1086–89 [Google Scholar]
  139. Shannon SR, Payne AJ, Bartholomew ID, van den Broeke MR, Edwards TL. et al. 2013. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. PNAS 110:14156–61 [Google Scholar]
  140. Shepherd A, Wingham D. 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315:1529–32 [Google Scholar]
  141. Shepherd A, Wingham D, Payne T, Skvarca P. 2003. Larsen Ice Shelf has progressively thinned. Science 302:856–59 [Google Scholar]
  142. Shepherd A, Wingham D, Rignot E. 2004. Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett. 31:L23402 [Google Scholar]
  143. Siddall M, Rohling EJ, Thompson WG, Waelbroeck C. 2008. Marine isotope stage 3 sea level fluctuations: data synthesis and new outlook. Rev. Geophys. 46:RG4003 [Google Scholar]
  144. Stanton TP, Shaw WJ, Truffer M, Corr HFJ, Peters LE. et al. 2013. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science 341:1236–39 [Google Scholar]
  145. Steig EJ, Ding Q, Battisti DS, Jenkins A. 2012. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea embayment, West Antarctica. Ann. Glaciol. 53:19–28 [Google Scholar]
  146. Straneo F, Curry RG, Sutherland DA, Hamilton GS, Cenedese C. et al. 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4:322–27 [Google Scholar]
  147. Straneo F, Heimbach P. 2013. North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504:36–43 [Google Scholar]
  148. Straneo F, Sutherland DA, Holland D, Gladish C, Hamilton GS. et al. 2012. Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol. 53:202–10 [Google Scholar]
  149. Strugnell JM, Watts PC, Smith PJ, Allcock AL. 2012. Persistent genetic signatures of historic climatic events in an Antarctic octopus. Mol. Ecol. 21:2775–87 [Google Scholar]
  150. Sutterley TC, Velicogna I, Rignot E, Mouginot J, Flament T. et al. 2014. Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophys. Res. Lett. 41:8421–28 [Google Scholar]
  151. Thoma M, Jenkins A, Holland D, Jacobs S. 2008. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35:L18602 [Google Scholar]
  152. Thomas R, Frederick E, Li J, Krabill W, Manizade S. et al. 2011. Accelerating ice loss from the fastest Greenland and Antarctic glaciers. Geophys. Res. Lett. 38:L10502 [Google Scholar]
  153. Thomas RH, Bentley CR. 1978. A model for Holocene retreat of the West Antarctic Ice Sheet. Quat. Res. 10:150–70 [Google Scholar]
  154. Thompson WG, Curran HA, Wilson MA, White B. 2011. Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals. Nat. Geosci. 4:684–87 [Google Scholar]
  155. Tulaczyk S, Kamb WB, Engelhardt HF. 2000. Basal mechanics of Ice Stream B, West Antarctica: 1. Till mechanics. J. Geophys. Res. 105:B1463–81 [Google Scholar]
  156. Vaughan DG, Barnes DKA, Fretwell PT, Bingham RG. 2011. Potential seaways across West Antarctica. Geochem. Geophys. Geosyst. 12:Q10004 [Google Scholar]
  157. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G. et al. 2013. Observations: cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen , et al. pp. 317–382 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  158. Velicogna I, Wahr J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–56 [Google Scholar]
  159. Walker RT, Dupont TK, Parizek BR, Alley RB. 2008. Effects of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys. Res. Lett. 35:L17503 [Google Scholar]
  160. Walker RT, Parizek BR, Alley RB, Anandakrishnan S, Riverman KL, Christianson K. 2013. Ice-shelf tidal flexure and subglacial pressure variations. Earth Planet. Sci. Lett. 361:422–28 [Google Scholar]
  161. Walker RT, Parizek BR, Alley RB, Brunt KM, Anandakrishnan S. 2014. Ice shelf flexure and tidal forcing of Bindschadler Ice Stream, West Antarctica. Earth Planet. Sci. Lett. 395:184–93 [Google Scholar]
  162. Weber ME, Clark PU, Kuhn G, Timmermann A, Sprenk D. et al. 2014. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510:134–38 [Google Scholar]
  163. Weertman J. 1957. Deformation of floating ice shelves. J. Glaciol. 3:38–42 [Google Scholar]
  164. Weertman J. 1974. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13:3–11 [Google Scholar]
  165. Wellner JS, Heroy DC, Anderson JB. 2006. The death mask of the Antarctic ice sheet: comparison of glacial geomorphic features across the continental shelf. Geomorphology 75:157–71 [Google Scholar]
  166. West RG, Sparks BW, Sutcliffe AT. 1960. Coastal interglacial deposits of the English Channel. Philos. Trans. R. Soc. B 243:95–133 [Google Scholar]
  167. White JWC, Alley RB, Brigham-Grette J, Fitzpatrick JJ, Jennings AE. et al. 2010. Past rates of climate change in the Arctic. Quat. Sci. Rev. 29:1716–12 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error