Geysers episodically erupt liquid and vapor. Despite two centuries of scientific study, basic questions persist—why do geysers exist? What determines eruption intervals, durations, and heights? What initiates eruptions? Through monitoring eruption intervals, analyzing geophysical data, taking measurements within geyser conduits, performing numerical simulations, and constructing laboratory models, some of these questions have been addressed. Geysers are uncommon because they require a combination of abundant water recharge, magmatism, and rhyolite flows to supply heat and silica, and large fractures and cavities overlain by low-permeability materials to trap rising multiphase and multicomponent fluids. Eruptions are driven by the conversion of thermal to kinetic energy during decompression. Larger and deeper cavities permit larger eruptions and promote regularity by isolating water from weather variations. The ejection velocity may be limited by the speed of sound of the liquid + vapor mixture.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abedini AA, Robinson JE, Muffler LJP, White DE, Beeson MH, Truesdell AH. 2015. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming Data Ser. 911, Volcano Sci. Cent., US Geol. Surv. Reston, VA: doi: 10.3133/ds911
  2. Adelstein E, Tran A, Munoz-Saez C, Shteinberg A, Manga M. 2014. Geyser preplay and eruption in a laboratory model with a bubble trap. J. Volcanol. Geotherm. Res. 285:129–35 [Google Scholar]
  3. Alexandrov DV, Bashkirtseva IA, Ryashko LB. 2016. Analysis of noise-induced eruptions in a geyser model. Eur. Phys. J. B 89:62 [Google Scholar]
  4. Allen ET, Day AL. 1935. Hot springs of the Yellowstone National Park Publ. 466 Carnegie Inst. Washington, DC:
  5. Anderson LW, Anderegg JW, Lawler JE. 1978. Model geysers. Am. J. Sci. 278:725–38 [Google Scholar]
  6. Barrick KA. 2007. Geyser decline and extinction in New Zealand—energy development impacts and implications for environmental management. Environ. Manag. 39:783–805 [Google Scholar]
  7. Barth TFW. 1940. Geysir in Iceland. Am. J. Sci. 238:381–407 [Google Scholar]
  8. Běhounková M, Tobie G, Čadek O, Choblet G, Porco C, Nimmo F. 2015. Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geosci. 8:601–4 [Google Scholar]
  9. Belousov A, Belousova M, Nechayev A. 2013. Video observations inside conduits of erupting geysers in Kamchatka, Russia, and their geological framework: implications for the geyser mechanism. Geology 41:387–90 [Google Scholar]
  10. Bercovici D, Michaut C. 2010. Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophys. J. Int. 182:843–64 [Google Scholar]
  11. Bertels SP, DiCarlo DA, Blunt MJ. 2001. Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 37:649–62 [Google Scholar]
  12. Birch F, Kennedy GC. 1972. Notes on geyser temperatures in Iceland and Yellowstone National Park. Am. Geophys. Union Monogr. 16:329–36 [Google Scholar]
  13. Bissig P, Goldscheider N, Mayoraz J, Surbeck H, Vuataz FD. 2006. Carbogaseous spring waters, coldwater geysers and dry CO2 exhalations in the tectonic window of the Lower Engadine Valley, Switzerland. Eclogae Geol. Helv. 99:143–55 [Google Scholar]
  14. Bloss FD, Barth TFW. 1949. Observations on some Yellowstone geysers. Geol. Soc. Am. Bull. 60:861–86 [Google Scholar]
  15. Brilliantov NV, Schmidt J, Spahn F. 2008. Geysers of Enceladus: quantitative analysis of qualitative models. Planet. Space Sci. 56:1596–606 [Google Scholar]
  16. Brown RH, Kirk RL, Johnson TV, Soderblom LA. 1990. Energy sources for Triton's geyser-like plumes. Science 250:431–35 [Google Scholar]
  17. Bryan TS. 2008. The Geysers of Yellowstone Boulder: Univ. Press of Colorado, 4th ed..
  18. Bunsen R. 1847. Physikalische Beobachtungen ueber die hauptsaechliche Geysir Islands. Poggendorffs Ann. Phys. Chem. 72:159–70 [Google Scholar]
  19. Campbell KA, Guido DM, Gautret P, Foucher F, Ramboz C, Westall F. 2015. Geyserite in hot-spring siliceous sinter: window on Earth's hottest terrestrial (paleo)environment and its extreme life. Earth-Sci. Rev. 148:44–64 [Google Scholar]
  20. Casarosa C, Latrofa E, Shelginski A. 1983. The geyser effect in a two-phase thermosyphon. Int. J. Heat Mass Trans. 26:933–41 [Google Scholar]
  21. Cody AS, Lumb JT. 1992. Changes in thermal activity in the Rotorua geothermal field. Geothermics 21:215–30 [Google Scholar]
  22. Cortecci G, Boschetti T, Mussi M, Lameli CH, Mucchino C, Barbieri M. 2005. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem. J. 39:547–71 [Google Scholar]
  23. Cros E, Roux P, Vandemeulebrouck J, Kedar S. 2011. Locating hydrothermal acoustic sources at Old Faithful Geyser using Matched Field Processing. Geophys. J. Int. 187:385–93 [Google Scholar]
  24. Cross J. 2010. A model of a geyser that erupts in series. GOSA Trans 11:123–30 [Google Scholar]
  25. Davis B. 2012. Observations of small model geysers with variable plumbing. GOSA Trans 12:159–72 [Google Scholar]
  26. Dowden J, Kapadia P, Brown G, Rymer H. 1991. Dynamics of a geyser eruption. J. Geophys. Res. 96:B1118059–71 [Google Scholar]
  27. Droznin V, Bakhtiyarov V, Levin V. 1999. Temperature measurements in the Velikan Geyser Basin (Valley of Geysers, Kamchatka). Volcanol. Seismol. 21:67–78 [Google Scholar]
  28. Emter D. 1997. Tidal triggering of earthquakes and volcanic events. Tidal Phenomena H Wilhelm, W Zurm, HG Wenzel 295–309 New York: Springer [Google Scholar]
  29. Foley D. 2006. Dating castle geyser: preliminary results and broad speculations on the geologic development of geysers and hydrothermal systems in Yellowstone National Park, Wyoming, USA. Trans. Geotherm. Res. Counc. 30:413–17 [Google Scholar]
  30. Forrester JD, Thune HW. 1942. A model geyser. Science 95:204–6 [Google Scholar]
  31. Fournier RO. 1969. Old Faithful: a physical model. Science 163:304–5 [Google Scholar]
  32. Fournier RO. 1981. Application of water chemistry to geothermal exploration and reservoir engineering. Geothermal Systems: Principles and Case Histories L Rybach, LJP Muffler 109–43 Chichester, UK: Wiley [Google Scholar]
  33. Fournier RO. 1985. The behavior of silica in hydrothermal solutions. Rev. Econ. Geol. 2:45–61 [Google Scholar]
  34. Fukutomi TA. 1942a. New mechanism of the geyser I. Bull. Seismol. Soc. Jpn. 14:157–74 [Google Scholar]
  35. Fukutomi TA. 1942b. New mechanism of the geyser II. Bull. Seismol. Soc. Jpn. 14:189–202 [Google Scholar]
  36. Furushima Y, Nagao M, Suzuki A, Yamamoto H, Maruyama T. 2009. Periodic behavior of the bubble jet (geyser) in the Taketomi submarine hot springs of the southern part of Yaeyama archipelago, Japan. Mar. Technol. Soc. J. 43:13–22 [Google Scholar]
  37. Giggenbach WF. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 52:2749–65 [Google Scholar]
  38. Giggenbach WF, Glover RB. 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand. Geothermics 21:121–40 [Google Scholar]
  39. Glennon JA, Pfaff RM. 2004. The operation and geography of carbon dioxide-driven, cold-water “geysers.”. GOSA Trans 9:184–92 [Google Scholar]
  40. Hague A. 1889. Soaping geysers. Science 8:382–84 [Google Scholar]
  41. Hales AL. 1937. Convection currents in geysers. Geophys. J. Int. 4:122–31 [Google Scholar]
  42. Han WS, Lu M, McPherson BL, Keating EH, Moore J. et al. 2013. Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: experimental observation and mechanism analysis. Geofluids 13:283–97 [Google Scholar]
  43. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A. et al. 2006. Enceladus’ water vapor plume. Science 311:1422–25 [Google Scholar]
  44. Hayden FV. 1883. Twelfth annual report of the United States Geological and Geographical Survey of the Territories: a report of progress of the exploration in Wyoming and Idaho for the year 1878, Part II: Yellowstone National Park. Ann. Rep., US Geol. Surv., Washington, DC
  45. Howald T, Person M, Campbell A, Lueth V, Hofstra A. et al. 2014. Evidence for long timescale (>103 years) changes in hydrothermal activity induced by seismic events. Geofluids 15:252–68 [Google Scholar]
  46. Hung RJ, Shyu KL. 1992. Constant reverse thrust activated reorientation of liquid hydrogen with geyser initiation. J. Spacecr. Rockets 29:279–85 [Google Scholar]
  47. Hurwitz S, Clor LE, McCleskey RB, Nordstrom DK, Hunt AG, Evans WC. 2016. Dissolved gases in hydrothermal and geyser eruptions at Yellowstone. Geology 44:235–38 [Google Scholar]
  48. Hurwitz S, Hunt AG, Evans WC. 2012. Temporal variations of geyser water chemistry in the Upper Geyser Basin, Yellowstone National Park, USA. Geochem. Geophys. Geosyst. 13:Q12005 [Google Scholar]
  49. Hurwitz S, Kumar A, Taylor R, Heasler H. 2008. Climate-induced variations of geyser periodicity in Yellowstone National Park, USA. Geology 36:451–54 [Google Scholar]
  50. Hurwitz S, Sohn RA, Luttrell K, Manga M. 2014. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather. J. Geophys. Res. Solid Earth 119:1718–37 [Google Scholar]
  51. Husen S, Taylor R, Smith RB, Healser H. 2004. Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali Fault earthquake, Alaska. Geology 32:537–40 [Google Scholar]
  52. Hutchinson RA. 1985. Hydrothermal changes in the Upper Geyser Basin, Yellowstone National Park, after the 1983 Borah Peak, Idaho, earthquake. Proc. Worksh. XXVIII Borah Peak, Ida. Earthq Open-File Rep. 85-290, ed. RS Stein, RC Bucknam 612–24 Menlo Park, CA: US Geol. Surv. [Google Scholar]
  53. Hutchinson RA, Westphal JA, Kieffer SW. 1997. In situ observations of Old Faithful Geyser. Geology 25:875–78 [Google Scholar]
  54. Huybers P, Langmuir C. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286:479–91 [Google Scholar]
  55. Ingebritsen SE, Rojstaczer SA. 1993. Controls on geyser periodicity. Science 262:889–92 [Google Scholar]
  56. Ingebritsen SE, Rojstaczer SA. 1996. Geyser periodicity and the response of geysers to small strains in the Earth. J. Geophys. Res. 101:B1021891–907 [Google Scholar]
  57. Ingersoll AP, Ewald SP. 2011. Total particulate mass in Enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images. Icarus 216:492–506 [Google Scholar]
  58. Jaggar TA Jr.. 1898. Some conditions affecting geyser eruption. Am. J. Sci. 5:323–33 [Google Scholar]
  59. Jellinek AM, Manga M, Saar MO. 2004. Did melting glaciers cause volcanic eruptions in eastern California? Probing the mechanics of dike formation. J. Geophys. Res 109:B09206 [Google Scholar]
  60. Johnson JB, Anderson JF, Anthony RE, Sciotto M. 2013. Detecting geyser activity with infrasound. J. Volcanol. Geotherm. Res. 256:105–17 [Google Scholar]
  61. Johnston MJS, Mauk FJ. 1972. Earth tides and the triggering of eruptions from Mount Stromboli, Italy. Nature 239:266–67 [Google Scholar]
  62. Jones B, Renaut RW, Torfason H, Owen RB. 2007. The geological history of Geysir, Iceland: a tephrochronological approach to the dating of sinter. J. Geol. Soc. 164:1241–52 [Google Scholar]
  63. Kagami H. 2010. An extended dynamic model of a geyser induced by an inflow of gas (2): effects of various shapes and repeated expansions and contractions in an underground watercourse. Data Sci. J. 9:IGY110–20 [Google Scholar]
  64. Karlstrom L, Hurwitz S, Sohn RA, Vandemeulebrouck J, Murphy F. et al. 2013. Eruptions at Lone Star Geyser, Yellowstone National Park, USA. 1. Energetics and eruption dynamics. J. Geophys. Res. Solid Earth 118:4048–62 [Google Scholar]
  65. Kedar S, Kanamori H, Sturtevant B. 1998. Bubble collapse as the source of harmonic tremor at Old Faithful Geyser. J. Geophys. Res. 103:B1024283–99 [Google Scholar]
  66. Kedar S, Sturtevant B, Kanamori H. 1996. The origin of harmonic tremor at Old Faithful geyser. Nature 379:708–11 [Google Scholar]
  67. Kieffer SW. 1977. Sound speed in liquid-gas mixtures: water-air and water-steam. J. Geophys. Res. 82:2895–905 [Google Scholar]
  68. Kieffer SW. 1984. Seismicity at Old Faithful Geyser; an isolated source of geothermal noise and possible analogue of volcanic seismicity. J. Volcanol. Geotherm. Res. 22:59–95 [Google Scholar]
  69. Kieffer SW. 1989. Geologic nozzles. Rev. Geophys. 27:3–38 [Google Scholar]
  70. Kieffer SW, Lu X, Bethke CM, Spencer JR, Marshak S, Navrotsky A. 2006. A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764–66 [Google Scholar]
  71. Kirk RL, Brown RH, Soderblom LA. 1990. Subsurface energy storage and transport for solar-powered geysers on Triton. Science 250:424–29 [Google Scholar]
  72. Kiryukhin AV, Rychkova TV, Dubrovskaya IK. 2012. Formation of the hydrothermal system in Geysers Valley (Kronotsky Nature Reserve, Kamchatka) and triggers of the Giant Landslide. Appl. Geochem. 27:1753–66 [Google Scholar]
  73. Kiryukhin AV, Rychkova TV, Dubinina EO. 2015. An analysis of hydrogeological behavior in the Geyser Valley, Kronotskii nature reserve, Kamchatka after the disaster of June 3, 2007. J. Volcanol. Seismol 9:1–16 [Google Scholar]
  74. Krug von Nidda C. 1836. On the mineral springs of Iceland. Edinb. New Philos. J. 22:99–100 [Google Scholar]
  75. Ladd B, Ryan MC. 2016. Can CO2 trigger a thermal geyser eruption. ? Geology 44:307–10 [Google Scholar]
  76. Lasic S. 2006. Geyser model with real-time data collection. Eur. J. Phys. 27:995 [Google Scholar]
  77. Le Conte J. 1878. Geysers and how they are explained. Pop. Sci. Mon. 12:407–17 [Google Scholar]
  78. Leonov VL. 2009. Geological structure and history of Geysers Valley. Geysers Valley—Pearl of Kamchatka VM Sugrobov, NG Sugrobova, VA Droznin, GA Karpov, VL Leonov 35–39 Petropavlovsk-Kamchatsky Russ.: Kamchatpress (in Russian) [Google Scholar]
  79. Linde AT, Sacks IS. 1998. Triggering of volcanic eruptions. Nature 395:888–90 [Google Scholar]
  80. Lloyd BF. 1975. Geology of Whakarewarewa Hot Springs Wellington, NZ: Gov. Print.
  81. Lowenstern JB, Hurwitz S, McGeehin JP. 2016. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park. J. Volcanol. Geotherm. Res. 310:132–36 [Google Scholar]
  82. Lu X, Kieffer SW. 2009. Thermodynamics and mass transport in multicomponent, multiphase H2O systems of planetary interest. Annu. Rev. Earth Planet. Sci. 37:449–77 [Google Scholar]
  83. Lu X, Watson A, Gorin AV, Deans J. 2005. Measurements in a low temperature CO2-driven geysering well, viewed in relation to natural geysers. Geothermics 34:389–410 [Google Scholar]
  84. Lynne BY, Campbell KA, Moore J, Browne PRL. 2008. Origin and evolution of the Steamboat Springs siliceous sinter deposit, Nevada, USA. Sediment. Geol. 210:111–31 [Google Scholar]
  85. Mackenzie GS. 1811. Travels in the Island of Iceland Edinburgh: Archibald Constable & Co.
  86. Manga M, Brodsky E. 2006. Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34:263–91 [Google Scholar]
  87. Marinovic N, Lahsen A. 1984. Hoja Calama: región de Antofagasta Carta Geol. Chile No. 58, Escala 1:250.000, Serv. Nac. Geol. Min. Santiago, Chile (in Spanish):
  88. Marler GD. 1951. Exchange of function as a cause of geyser irregularity [Wyoming]. Am. J. Sci. 249:329–42 [Google Scholar]
  89. Marler GD. 1954. Does the cold of winter affect the thermal intensity of the hot springs of Yellowstone Park?. Am. J. Sci. 252:38–54 [Google Scholar]
  90. Marler GD. 1964. Effects of the Hebgen Lake earthquake of August 17, 1959 on the hot springs of the Firehole geyser basins, Yellowstone National Park. US Geol. Surv. Prof. Pap. 435:185–98 [Google Scholar]
  91. Marler GD, White DE. 1975. Seismic Geyser and its bearing on the origin and evolution of geysers and hot springs of Yellowstone National Park. Geol. Soc. Am. Bull. 86:749–59 [Google Scholar]
  92. Mason B, Pyle DM, Dade WB, Jupp T. 2004. Seasonality of volcanic eruptions. J. Geophys. Res. 109:B04206 [Google Scholar]
  93. Mastin LG. 1994. Explosive tephra emissions of Mount St. Helens, 1989–1991: the violent escape of magmatic gas following storms?. Geol. Soc. Amer. Bull. 106:175–85 [Google Scholar]
  94. Mastin LG. 1995. Thermodynamics of gas and steam-blast eruptions. Bull. Volcanol. 57:85–98 [Google Scholar]
  95. Matthews AJ, Barclay J, Carn S, Thompson G, Alexander J. et al. 2002. Rainfall-induced volcanic activity on Montserrat. Geophys. Res. Lett. 29:22–122-4 [Google Scholar]
  96. Mauk FJ, Johnston MJS. 1973. On the triggering of volcanic eruptions by Earth tides. J. Geophys. Res. 78:3356–62 [Google Scholar]
  97. McCall J. 2010. Lake Bogoria, Kenya: hot and warm springs, geysers and Holocene stromatolites. Earth-Sci. Rev. 103:71–79 [Google Scholar]
  98. McGuire WJ, Howarth RJ, Firth CR, Solow AR, Pullen AD. et al. 1997. Correlation between rate of sea-level change and frequency of explosive volcanism in the Mediterranean. Nature 389:473–76 [Google Scholar]
  99. Muffler LJP, White DE, Beeson MH, Truesdell AH. 1982. Geological map of upper Geyser Basin, Yellowstone National Park, Wyoming. Misc. Investig. Map I-1371, Scale 1:4,800, US Geol. Surv. Reston, VA:
  100. Munby AE. 1902. A model geyser. Nature 65:247 [Google Scholar]
  101. Munoz-Saez C, Manga M, Hurwitz S, Rudolph ML, Namiki A, Wang CY. 2015a. Dynamics within geyser conduits, and sensitivity to environmental perturbations: insights from a periodic geyser in the El Tatio geyser field, Atacama Desert, Chile. J. Volcanol. Geotherm. Res. 292:41–55 [Google Scholar]
  102. Munoz‐Saez C, Namiki A, Manga M. 2015b. Geyser eruption intervals and interactions: examples from El Tatio, Atacama, Chile. J. Geophys. Res. Solid Earth 120:7490–507 [Google Scholar]
  103. Munoz-Saez C, Saltiel S, Nguyen C, Gonnermann H. 2016. Hydraulic and physical properties of modern sinter deposits: El Tatio, Atacama. J. Volcanol. Geotherm. Res. 325:156–68 [Google Scholar]
  104. Murray KS. 1996. Hydrology and geochemistry of thermal waters in the Upper Napa Valley, California. Ground Water 34:1115–24 [Google Scholar]
  105. Murty TS. 1979. A mathematical model for pre-boiling convection in a geyser vent. Am. J. Sci. 279:989–92 [Google Scholar]
  106. Namiki A, Munoz-Saez C, Manga M. 2014. El Cobreloa: a geyser with two distinct eruption styles. J. Geophys. Res. Solid Earth 119:6229–48 [Google Scholar]
  107. Namiki A, Ueno Y, Hurwitz S, Manga M, Munoz‐Saez C, Murphy F. 2016. An experimental study of the role of subsurface plumbing on geothermal discharge. Geochem. Geophys. Geosys. 17:3691–716 [Google Scholar]
  108. Neuberg J. 2000. External modulation of volcanic activity. Geophys. J. Int. 142:232–40 [Google Scholar]
  109. Nicholls HR, Rinehart JS. 1967. Geophysical study of geyser action in Yellowstone National Park. J. Geophys. Res. 72:4651–63 [Google Scholar]
  110. Nimmo F, Porco C, Mitchell C. 2014. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron. J. 148:46 [Google Scholar]
  111. Nishimura T, Ichihara M, Ueki S. 2006. Investigation of the Onikobe geyser, NE Japan, by observing the ground tilt and flow parameters. Earth Planets Space 58:21–24 [Google Scholar]
  112. Noguchi K, Aikawa K, Lloyd EF, Simpson B, van der Werff P. 1983. Measurement of the orifice temperature of the Te Horu geyser in Whakarewarewa, New Zealand. Proc. 4th Int. Symp. Water-Rock Interact.363–66
  113. O'Hara KD, Esawi EK. 2013. Model for the eruption of the Old Faithful geyser, Yellowstone National Park. GSA Today 23:4–9 [Google Scholar]
  114. Pasvanoglu S. 1998. Geochemical study of the Geysir geothermal field in Haukadalur, S-Iceland. United Nations University Fellows Reports 1998 LS Georgsson 281–318 Reykjavík, Icel.: UN Univ. Geotherm. Train. Program [Google Scholar]
  115. Peale AC. 1884. The world's geyser-regions. Pop. Sci. Mon. 25:15 [Google Scholar]
  116. Persoff P, Pruess K. 1995. Two‐phase flow visualization and relative permeability measurement in natural rough‐walled rock fractures. Water Resour. Res. 31:1175–86 [Google Scholar]
  117. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J. et al. 2006. Cassini observes the active south pole of Enceladus. Science 311:1393–401 [Google Scholar]
  118. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R. 2011. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–22 [Google Scholar]
  119. Rawson H, Pyle DM, Mather TA, Smith VC, Fontijn K. et al. 2016. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile. Geology 44:251–54 [Google Scholar]
  120. Renaut RW, Jones B. 2011. Sinter. Encyclopedia of Geobiology J Reitner, V Thiel 808–13 Dordrecht, Neth.: Springer [Google Scholar]
  121. Renaut RW, Owen RB. 2005. The geysers of Lake Bogoria, Kenya Rift Valley, Africa. GOSA Trans 9:2–16 [Google Scholar]
  122. Renaut RW, Owen RB, Ego JK. 2008. Recent changes in geyser activity at Loburu, Lake Bogoria, Kenya Rift Valley. GOSA Trans 10:4–14 [Google Scholar]
  123. Rinehart JS. 1965. Earth tremors generated by Old Faithful Geyser. Science 150:494–96 [Google Scholar]
  124. Rinehart JS. 1969. Thermal and seismic indications of Old Faithful Geyser's inner workings. J. Geophys. Res. 74:566–73 [Google Scholar]
  125. Rinehart JS. 1972a. Fluctuations in geyser activity caused by variations in Earth tidal forces, barometric pressure, and tectonic stresses. J. Geophys. Res. 77:342–50 [Google Scholar]
  126. Rinehart JS. 1972b. Reply to “Comments on paper by John S. Rinehart, ‘Fluctuations in geyser activity caused by Earth tidal forces, barometric pressure, and tectonic stresses.’”. J. Geophys. Res. 77:5830–31 [Google Scholar]
  127. Rinehart JS. 1980. Geysers and Geothermal Energy New York: Springer-Verlag
  128. Rojstaczer S, Galloway DL, Ingebritsen SE, Rubin DM. 2003. Variability in geyser eruptive timing and its causes: Yellowstone National Park. Geophys. Res. Lett. 30:1953 [Google Scholar]
  129. Rudolph ML, Manga M, Hurwitz S, Johnston MJ, Karlstrom L, Wang CY. 2012. Mechanics of Old Faithful Geyser, Calistoga, California. Geophys. Res. Lett. 39:L24308 [Google Scholar]
  130. Scott BJ, Cody AD. 2000. Response of the Rotorua geothermal system to exploitation and varying management regimes. Geothermics 29:573–92 [Google Scholar]
  131. Sherzer WH. 1933. An interpretation of Bunsen's geyser theory. J. Geol. 41:501–12 [Google Scholar]
  132. Shteinberg A, Manga M, Korolev E. 2013. Measuring pressure in the source region for geysers, Geyser Valley, Kamchatka. J. Volcanol. Geotherm. Res. 264:12–16 [Google Scholar]
  133. Silver PG, Valette-Silver NJ. 1992. Detection of hydrothermal precursors to large Northern California earthquakes. Science 257:1363–68 [Google Scholar]
  134. Soderblom LA, Kieffer SW, Becker TL, Brown RH, Cook AF. et al. 1990. Triton's geyser-like plumes: discovery and basic characterization. Science 250:410–15 [Google Scholar]
  135. Sohn RA, Thomson RE, Rabinovich AB, Mihaly SF. 2009. Bottom pressure signals at the TAG deep‐sea hydrothermal field: evidence for short-period, flow‐induced ground deformation. Geophys. Res. Lett. 36:L19301 [Google Scholar]
  136. Saptadji N, O'Sullivan J, Krzyzosiak W, O'Sullivan M. 2016. Numerical modelling of Pohutu geyser, Rotorua, New Zealand. Geothermics 64:401–9 [Google Scholar]
  137. Spencer JR, Barr AC, Esposito LW, Helfenstein P, Ingersoll AP. et al. 2009. Enceladus: an active cryovolcanic satellite. Saturn from Cassini-Huygens M Dougherty, L Esposito, S Krimigis 683–724 Dordrecht, Neth.: Springer [Google Scholar]
  138. Spencer JR, Nimmo F. 2013. Enceladus: an active ice world in the Saturn system. Annu. Rev. Earth Planet. Sci. 41:693–717 [Google Scholar]
  139. Spitale JN, Porco CC. 2007. Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature 449:695–97 [Google Scholar]
  140. Steinberg AS. 1999. An experimental study of geyser eruption periodicity. Dokl. Phys. 44:47–50 [Google Scholar]
  141. Steinberg GS. 1980. The enthalpy of the heat-carrying fluids and the energy of eruption of velican geyser, Kamchatka, U.S.S.R. J. Volcanol. Geotherm. Res. 8:267–83 [Google Scholar]
  142. Steinberg GS, Merzhanov AG, Steinberg AS. 1981. Geyser process: its theory, modeling and field experiment. Part 1. Theory of the geyser process. Mod. Geol. 8:67–70 [Google Scholar]
  143. Steinberg GS, Merzhanov AG, Steinberg AS, Rasina AA. 1982. Geyser process: its theory, modeling and field experiment. Part 2. A laboratory model of a geyser. Mod. Geol. 8:71–74 [Google Scholar]
  144. Steingisser A, Marcus WA. 2009. Human impacts on geyser basins. Yellowstone Sci 17:7–17 [Google Scholar]
  145. Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B. et al. 2010. Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapaca and Antofagasta regions (northern Chile). J. Volcanol. Geotherm. Res. 192:1–15 [Google Scholar]
  146. Thiéry R, Mercury L. 2009. Explosive properties of water in volcanic and hydrothermal systems. J. Geophys. Res. 114:B05205 [Google Scholar]
  147. Thorkelsson T. 1928. On the geyser theory. Philos. Mag. 5:441–44 [Google Scholar]
  148. Toramaru A, Maeda K. 2013. Mass and style of eruptions in experimental geysers. J. Volcanol. Geotherm. Res. 257:227–39 [Google Scholar]
  149. Torfason H. 1985. The Great Geysir, Geysir Reykjavík, Icel.: Conserv. Comm.
  150. Tryon MD, Brown KM, Torres ME, Tréhu AM, McManus J, Collier RW. 1999. Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia. Geology 27:1075–78 [Google Scholar]
  151. Vandemeulebrouck J, Hurst AW, Scott BJ. 2008. The effects of hydrothermal eruptions and a tectonic earthquake on a cycling crater lake (Inferno Crater Lake, Waimangu, New Zealand). J. Volcanol. Geotherm. Res. 178:271–75 [Google Scholar]
  152. Vandemeulebrouck J, Roux P, Cros E. 2013. The plumbing of Old Faithful Geyser revealed by hydrothermal tremor. Geophys. Res. Lett. 40:1989–93 [Google Scholar]
  153. Vandemeulebrouck J, Sohn RA, Rudolph ML, Hurwitz S, Manga M. et al. 2014. Eruptions at Lone Star Geyser, Yellowstone National Park, USA. Part 2. Constraints on subsurface dynamics. J. Geophys. Res. Solid Earth 119:8688–707 [Google Scholar]
  154. Walter TR, Amelung F. 2007. Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35:539–42 [Google Scholar]
  155. Watson ZT, Han WS, Keating EH, Jung NH, Lu M. 2014. Eruption dynamics of CO2-driven cold-water geysers: Crystal, Tenmile geysers in Utah and Chimayó geyser in New Mexico. Earth Planet. Sci. Lett. 408:272–84 [Google Scholar]
  156. Weed WH. 1912. Geysers Washington, DC: Dep. Int.
  157. Weir GJ, Young RM, McGavin PN. 1992. A simple model for Geyser Flat, Whakarewarewa. Geothermics 21:281–304 [Google Scholar]
  158. White DE. 1967. Some principles of geyser activity, mainly from Steamboat Springs, Nevada. Am. J. Sci. 265:641–84 [Google Scholar]
  159. White DE. 1992. The Beowawe geysers, Nevada, before geothermal development Bull. 1998, US Geol. Surv. Washington, DC:
  160. White DE, Marler GD. 1972. Comments on paper by John S. Rinehart, ‘Fluctuations in geyser activity caused by earth tidal forces, barometric pressure, and tectonic stresses.’. J. Geophys. Res 77:5825–29 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error