Numerous factors have stimulated new enthusiasm for understanding the process of primate origins, including new fossil discoveries, improvements to methods for analyzing molecular data, and technological advances. These novel approaches have led to a better appreciation of the complexities of early primate evolution. Eight fundamental questions provide a framework for thinking about these issues. Among these topics are the phylogenetic position of Primates in Mammalia and the membership of particular fossil groups in the order. Also of central interest are questions about early primate ecology and anatomy such as the ancestral body mass, diet, locomotor mode, interactions with predators, and brain size and form. And finally, considerations of the paleontological record need to be informed by the most relevant living models, which help flesh out the story that is being told by fossils. Although much is known about all of these areas, fundamental questions still remain.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alroy J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–34 [Google Scholar]
  2. Andrews CA, Rambeloarivony H, Génin F, Masters J. 2016. Why cheirogaleids are bad models for primate ancestors: a phylogenetic reconstruction. The Dwarf and Mouse Lemurs of Madagascar: Biology, Behavior and Conservation Biogeography of the Cheirogaleidae SM Lehman, U Radespiel, E Zimmermann 94–112 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Ankel-Simons F, Rasmussen DT. 2008. Diurnality, nocturnality, and the evolution of primate visual systems. Yearb. Phys. Anthropol. 51:100–17 [Google Scholar]
  4. Atsalis S. 1999. Diet of the brown mouse lemur (Microcebus rufus) in Ranomafana National Park, Madagascar. Int. J. Primatol. 20:193–229 [Google Scholar]
  5. Bajpai S, Kay RF, Williams BA, Das DP, Kapur VV, Tiwari BN. 2008. The oldest Asian record of Anthropoidea. PNAS 105:11093–98 [Google Scholar]
  6. Beard KC. 1990. Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345:340–41 [Google Scholar]
  7. Beard KC. 1993. Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. Mammal Phylogeny: Placentals FS Szalay, MJ Novacek, MC McKenna 129–50 New York: Springer-Verlag [Google Scholar]
  8. Beard KC. 2008. The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum. PNAS 105:3815–18 [Google Scholar]
  9. Bertrand OC, Amador-Mughal F, Silcox MT. 2016. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires. Proc. R. Soc. B 283:20152316 [Google Scholar]
  10. Biknevicius AR. 1986. Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). Am. J. Phys. Anthropol. 71:157–71 [Google Scholar]
  11. Bloch JI, Boyer DM. 2002. Grasping primate origins. Science 298:1606–10 [Google Scholar]
  12. Bloch JI, Boyer DM. 2007. New skeletons of Paleocene–Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. See Ravosa & Dagosto 2007 535–81
  13. Bloch JI, Silcox MT. 2006. Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. J. Hum. Evol. 50:1–35 [Google Scholar]
  14. Bloch JI, Silcox MT, Boyer DM, Sargis EJ. 2007. New Paleocene skeletons and the relationships of plesiadapiforms to crown-clade primates. PNAS 104:1159–64 [Google Scholar]
  15. Boyer DM. 2007. A test of the visual predation hypothesis of euprimate origins using diet-correlated measures of tooth shape. J. Vert. Paleontol. 27:351A (Abstr.) [Google Scholar]
  16. Boyer DM. 2008. Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. J. Hum. Evol. 55:1118–37 [Google Scholar]
  17. Boyer DM, Bloch JI. 2008. Evaluating the mitten-gliding hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons. See Sargis & Dagosto 2008 233–84
  18. Boyer DM, Evans AR, Jernvall J. 2010. Evidence of dietary differentiation among late Paleocene–early Eocene plesiadapids (Mammalia, Primates). Am. J. Phys. Anthropol. 142:194–210 [Google Scholar]
  19. Boyer DM, Seiffert ER, Gladman JT, Bloch JI. 2013. Evolution and allometry of calcaneal elongation in living and extinct primates. PLOS ONE 8:e67792 [Google Scholar]
  20. Boyer DM, Silcox MT, Bloch JI, Coleman M, Dobrota T. 2011. New skull and associated postcrania of Ignacius graybullianus (Mammalia, ?Primates) from the Eocene of Wyoming. Soc. Vertebrate Paleontol. Program Abstr 2011:76A [Google Scholar]
  21. Bunn JM, Boyer DM, Lipman Y, St. Clair EM, Jernvall J, Daubechies I. 2011. Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. Am. J. Phys. Anthropol. 145:247–61 [Google Scholar]
  22. Burger BJ. 2013. A new species of the archaic primate Zanycteris from the late Paleocene of western Colorado and the phylogenetic position of the family Picrodontidae. Peer J 1:e191 [Google Scholar]
  23. Cartmill M. 1972. Arboreal adaptations and the origin of the order Primates. The Functional and Evolutionary Biology of Primates R Tuttle 97–122 Chicago: Aldine-Atherton [Google Scholar]
  24. Cartmill M. 1974. Rethinking primate origins. Science 184:436–43 [Google Scholar]
  25. Cartmill M. 1992. New views on primate origins. Evol. Anthropol. 1:105–11 [Google Scholar]
  26. Cartmill M. 2012. Primate origins, human origins, and the end of higher taxa. Evol. Anthropol. 21:208–20 [Google Scholar]
  27. Changizi MA, Shimojo S. 2008. “X-ray vision” and the evolution of forward-facing eyes. J. Theor. Biol. 254:756–67 [Google Scholar]
  28. Charles-Dominique P, Martin RD. 1970. Evolution of lemurs and lorises. Nature 227:257–60 [Google Scholar]
  29. Chester SGB, Bloch JI, Boyer DM, Clemens WA. 2015. Oldest known euarchontan tarsals and affinities of Paleocene Purgatorius to Primates. PNAS 112:1487–92 [Google Scholar]
  30. Clemens WA. 2004. Purgatorius (Plesiadapiformes, Primates?, Mammalia), a Paleocene immigrant into northeastern Montana: stratigraphic occurrences and incisor proportions. Bull. Carnegie Mus. Nat. Hist. 36:3–13 [Google Scholar]
  31. Clutton‐Brock TH, Harvey PH. 1980. Primates, brains and ecology. J. Zool. 190:309–23 [Google Scholar]
  32. Conroy GC. 1987. Problems of body-weight estimation in fossil primates. Int. J. Primatol. 8:115–37 [Google Scholar]
  33. Covert HH. 1986. Biology of early Cenozoic primates. Comparative Primate Biology, Volume 1: Systematics, Evolution, and Anatomy DR Swindler, J Erwin 335–59 New York: Alan R. Liss [Google Scholar]
  34. Crompton RH, Sellers WI. 2007. A consideration of leaping locomotion as a means of predator avoidance in prosimian primates. Primate Anti-Predator Strategies SL Gursky, KAI Nekaris 127–45 New York: Springer [Google Scholar]
  35. Dagosto M. 1983. The postcranium of Adapis parisiensis and Leptadapis magnus (Adapiformes, Primates): adaptational and phylogenetic significance. Folia Primatol 17:35–56 [Google Scholar]
  36. Dagosto M. 2007. The postcranial morphotype of Primates. See Ravosa & Dagosto 2007, pp. 489–534 [Google Scholar]
  37. Dashzeveg D, McKenna MC. 1977. Tarsioid primate from the Early Tertiary of the Mongolian People's Republic. Acta Palaeontol. Pol. 22:119–37 [Google Scholar]
  38. De Queiroz K, Gauthier J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst. Zool. 39:307–22 [Google Scholar]
  39. Dunbar RIM, Schultz S. 2007. Understanding primate brain evolution. Phil. Trans. R. Soc. B 362:649–58 [Google Scholar]
  40. Dunn RH, Sybalsky JM, Conroy GC, Rasmussen DT. 2006. Hindlimb adaptations in Ourayia and Chipetaia, relatively large-bodied omomyine primates from the Middle Eocene of Utah. Am. J. Phys. Anthropol 131:303–10 [Google Scholar]
  41. Estes R. 1976. Middle Paleocene lower vertebrates from the Tongue River Formation, southeastern Montana. J. Paleontol. 50:500–20 [Google Scholar]
  42. Evans AR, Wilson GP, Fortelius M, Jernvall J. 2007. High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81 [Google Scholar]
  43. Falk D. 2007. Evolution of the primate brain. Handbook of Paleoanthropology 2 W Henke, I Tattersall 1133–1622 Heidelberg, Ger.: Springer [Google Scholar]
  44. Fleagle JG. 2013. Primate Adaptation and Evolution New York: Academic, 3rd ed.. [Google Scholar]
  45. Fleagle JG, Kay RF. 1985. The paleobiology of catarrhines. Ancestors: The Hard Evidence E Delson 23–36 New York: Alan R. Liss [Google Scholar]
  46. Flynn JJ. 1998. Early Cenozoic Carnivora (“Miacoidea”). Evolution of Tertiary Mammals of North America, Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals CM Janis, KM Scott, LL Jacobs 110–23 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  47. Fox RC, Scott CS. 2011. A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada. J. Paleontol. 85:537–48 [Google Scholar]
  48. Fox RC, Scott CS, Buckley GA. 2015. A “giant” purgatoriid (Plesiadapiformes) from the Paleocene of Montana, USA: mosaic evolution in the earliest primates. Palaeontology 58:277–91 [Google Scholar]
  49. Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH. 2009. Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and paleobiology. PLOS ONE 4:e5723 [Google Scholar]
  50. Franzen JL, Wilde V. 2003. First gut content of a fossil primate. J. Hum. Evol. 44:373–78 [Google Scholar]
  51. Gebo DL. 2004. A shrew‐sized origin for primates. Yearb. Phys. Anthropol. 47:40–62 [Google Scholar]
  52. Gebo DL, Dagosto M, Beard KC, Qi T. 2000. The smallest primates. J. Hum. Evol. 38:585–94 [Google Scholar]
  53. Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B. et al. 1998. Nouvelles données sur les mammifères du Thanetien et de l'Ypresien du Bassin d'Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27:155–202 [Google Scholar]
  54. Gidley JW. 1923. Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. Proc. U.S. Nat. Mus. 63:1–38 [Google Scholar]
  55. Gingerich PD. 1974. Function of pointed premolars in Phenacolemur and other mammals. J. Dent. Res. 53:497 [Google Scholar]
  56. Gingerich PD. 1976. Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Univ. Mich. Pap. Paleontol. 15:1–141 [Google Scholar]
  57. Gingerich PD. 1998. Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. The Emergence of Whales JGM Thewissen 423–49 New York: Plenum Press [Google Scholar]
  58. Gingerich PD. 2015. Reply to comment on “Primates in the Eocene” by Gilbert and Maiolino 2015. Palaeobiodivers Palaeoenviron 95:243–46 [Google Scholar]
  59. Gingerich PD, Dashzeveg D, Russell DE. 1991. Dentition and systematic relationships of Altanius orlovi (Mammalia, Primates) from the early Eocene of Mongolia. Géobios 24:637–46 [Google Scholar]
  60. Gingerich PD, Franzen JL, Habersetzer J, Hurum JH, Smith BH. 2010. Darwinius masillae is a Haplorhine—Reply to Williams et al., 2010. J. Hum. Evol. 59:574–79 [Google Scholar]
  61. Gingerich PD, Gunnell GF. 1992. A new skeleton of Plesiadapis cookei. . Display Case 6:1–2 [Google Scholar]
  62. Gingerich PD, Gunnell GF. 2005. Brain of Plesiadapis cookei (Mammalia, Proprimates): surface morphology and encephalization compared to those of Primates and Dermoptera. Contrib. Mus. Paleontol. Univ. Mich. 31:185–95 [Google Scholar]
  63. Goodman SM, O'Connor S, Langrand O. 1993. A review of predation on lemurs: implication for the evolution of social behavior in small, nocturnal primates. Lemur Social Systems and their Ecological Basis M Kappeler, JU Ganzhorn 51–66 New York: Plenum Press [Google Scholar]
  64. Gregory WK. 1910. The orders of mammals. Bull. Am. Mus. Nat. Hist. 27:1–524 [Google Scholar]
  65. Gunnell GF. 1989. Evolutionary history of Microsyopoidea (Mammalia, ?Primates) and the relationship between Plesiadapiformes and Primates. Univ. Mich. Pap. Paleontol. 27:1–157 [Google Scholar]
  66. Gurche JA. 1982. Early primate brain evolution. Primate Brain Evolution: Methods and Concepts E Armstrong, D Falk 227–46 New York: Plenum [Google Scholar]
  67. Halliday TJ, Upchurch P, Goswami A. 2017. Resolving the relationships of Paleocene placental mammals. Biol. Rev. 92:521–50 [Google Scholar]
  68. Harrington AR, Silcox MT, Yapuncich GS, Boyer DM, Bloch JI. 2016. First virtual endocasts of adapiform primates. J. Hum. Evol. 99:52–78 [Google Scholar]
  69. Hoffstetter R. 1977. Phylogénie des primates. Bull. Mém. Soc. Anthropol. Paris 4:327–46 [Google Scholar]
  70. Hooker JJ, Russell DE, Phelizon A. 1999. A new family of Plesiadapiformes (Mammalia) from the Old World lower Paleogene. Palaeontology 42:377–407 [Google Scholar]
  71. Isbell LA. 2006. Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 51:1–35 [Google Scholar]
  72. Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A. et al. 2007. Molecular and genomic data identify the closest living relative of primates. Science 318:792–94 [Google Scholar]
  73. Jefferies RPS. 1979. The origin of chordates—a methodological essay. The Origin of Major Invertebrate Groups MR House 443–47 New York: Academic [Google Scholar]
  74. Jerison HJ. 1961. Quantitative analysis of evolution of the brain in mammals. Science 133:1012–14 [Google Scholar]
  75. Jerison HJ. 2012. Digitized fossil brains: neocorticalization. Biolinguistics 6:383–92 [Google Scholar]
  76. Johnsgard PA. 1988. North American Owls: Biology and Natural History Washington, DC: Smithson. Inst. Press [Google Scholar]
  77. Kaas JH. 2002. Convergences in the modular and areal organization of the forebrain of mammals: implications for the reconstruction of forebrain evolution. Brain Behav. Evol. 59:262–72 [Google Scholar]
  78. Kay RF. 1984. On the use of anatomical features to infer foraging behavior in extinct primates. Adaptations for Foraging in Non-Human Primates: Contributions to and Organismal Biology of Prosimians, Monkeys, and Apes PS Rodman, CGH Cant 21–53 New York: Columbia Univ. Press [Google Scholar]
  79. Kay RF, Cartmill M. 1977. Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J. Hum. Evol. 6:19–53 [Google Scholar]
  80. Kay RF, Kirk EC. 2000. Osteological evidence for the evolution of activity pattern and visual acuity in Primates. Am. J. Phys. Anthropol. 113:235–62 [Google Scholar]
  81. Kihm AJ, Tornow MA. 2014. First occurrence of plesiadapiform primates from the Chadronian (latest Eocene). Paludicola 9:176–82 [Google Scholar]
  82. Kirk EC. 2006. Visual influences on primate encephalization. J. Hum. Evol. 51:76–90 [Google Scholar]
  83. Kirk EC, Daghighi P, Macrini TE, Bhullar BAS, Rowe TB. 2014. Cranial anatomy of the Duchesnean primate Rooneyia viejaensis: new insights from high resolution computed tomography. J. Hum. Evol. 74:82–95 [Google Scholar]
  84. Kirk EC, Kay RF. 2004. The evolution of high visual acuity in the Anthropoidea. Anthropoid Origins: New Visions CF Ross, RF Kay 539–602 Boston: Kluwer [Google Scholar]
  85. Kurochkin EN, Dyke GJ. 2011. The first fossil owls (Aves: Strigiformes) from the Paleogene of Asia and a review of the fossil record of Strigiformes. Paleontol. J. 45:445–58 [Google Scholar]
  86. Landry SO. 1967. Disappearance of multituberculates. Syst. Zool. 16:172–73 [Google Scholar]
  87. Le Gros Clark WE. 1926. On the anatomy of the pen‐tailed tree‐shrew (Ptilocercus lowii.). Proc. Zool. Soc. Lond. 96:1179–309 [Google Scholar]
  88. Liu L, Yu L, Pearl DK, Edwards SV. 2009. Estimating species phylogenies using coalescence times among species. Syst. Biol. 58:468–77 [Google Scholar]
  89. Long A, Bloch JI, Silcox MT. 2015. Quantification of neocortical ratios in stem primates. Am. J. Phys. Anthropol. 157:363–73 [Google Scholar]
  90. López-Torres S, Selig KR, Prufrock KA, Lin D, Silcox MT. 2017. Dental topographic analysis of paromomyid (Plesiadapiformes, Primates) cheek teeth: more than 15 million years of changing surfaces and shifting ecologies. Hist. Biol. http://dx.doi.org/10.1080/08912963.2017.1289378 [Crossref] [Google Scholar]
  91. Luo Z. 1991. Variability of dental morphology and the relationships of the earliest arctocyonid species. J. Vert. Paleontol. 11:452–71 [Google Scholar]
  92. Maas MC, Krause DW, Strait SG. 1988. The decline and extinction of Plesiadapiformes (Mammalia: ?Primates) in North America: Displacement or replacement. ? Paleobiology 14:410–31 [Google Scholar]
  93. Maiolino S, Boyer DM, Bloch JI, Gilbert CC, Groenke J. 2012. Evidence for a grooming claw in a North American adapiform primate: implications for anthropoid origins. PLOS ONE 7:e29135 [Google Scholar]
  94. Martin RD. 1990. Primate Origins and Evolution: A Phylogenetic Reconstruction London: Chapman & Hall [Google Scholar]
  95. Masters JC, Génin F, Silvestro D, Lister AM, DelPero M. 2014. The red island and the seven dwarfs: Body size reduction in Cheirogaleidae. J. Biogeogr. 41:1833–47 [Google Scholar]
  96. Matthew WD. 1917. A Paleocene bat. Bull. Am. Mus. Nat. Hist. 37:569–71 [Google Scholar]
  97. Mayr G. 2005. The Paleogene fossil record of birds in Europe. Biol. Rev. Camb. Philos. Soc. 80:515–42 [Google Scholar]
  98. McKenna MC. 1966. Paleontology and the origin of primates. Folia Primatol 4:1–25 [Google Scholar]
  99. McKenna MC. 1975. Toward a phylogenetic classification of the Mammalia. Phylogeny of the Primates WP Luckett, FS Szalay 21–46 New York: Plenum Press [Google Scholar]
  100. Meng J, Hu Y, Li C. 2003. The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull. Am. Mus. Nat. Hist. 275:1–247 [Google Scholar]
  101. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA. et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521–24 [Google Scholar]
  102. Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M. et al. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–51 [Google Scholar]
  103. Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P. 2013. The oldest known primate skeleton and early haplorhine evolution. Nature 498:60–64 [Google Scholar]
  104. Ni X, Li Q, Li L, Beard KC. 2016. Oligocene primates from China reveal divergence between African and Asian primate evolution. Science 352:673–77 [Google Scholar]
  105. Ni X, Wang Y, Hu Y, Li C. 2004. A euprimate skull from the early Eocene of China. Nature 427:65–68 [Google Scholar]
  106. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A. et al. 2013. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–67 [Google Scholar]
  107. Orliac MJ, Ladevèze S, Gingerich PD, Lebrun R, Smith T. 2014. Endocranial morphology of Paleocene Plesiadapis tricuspidens and evolution of the early primate brain. Proc. R. Soc. B 281:20132792 [Google Scholar]
  108. Prufrock KA, Boyer DM, Silcox MT. 2016a. The first major primate extinction: an evaluation of paleoecological dynamics of North American stem primates using a homology free measure of tooth shape. Am. J. Phys. Anthropol. 159:683–97 [Google Scholar]
  109. Prufrock KA, López-Torres S, Silcox MT, Boyer DM. 2016b. Surfaces and spaces: trouble-shooting the study of dietary niche space overlap between North American stem primates and rodents. Surf. Topogr.: Metrol. Prop. 4:024005 [Google Scholar]
  110. Rage JC. 2013. Mesozoic and Cenozoic squamates of Europe. Palaeobio Palaeoenv 93:517–34 [Google Scholar]
  111. Rage JC, Folie A, Rana RS, Singh H, Rose KD, Smith T. 2008. A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontol. Pol. 53:391–403 [Google Scholar]
  112. Ramdarshan A, Merceron G, Marivaux L. 2012. Spatial and temporal ecological diversity amongst Eocene primates of France: evidence from teeth. Am. J. Phys. Anthropol. 147:201–16 [Google Scholar]
  113. Ramdarshan A, Orliac MJ. 2016. Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain. Am. J. Phys. Anthropol. 159:5–16 [Google Scholar]
  114. Rasmussen DT. 1990. Primate origins: lessons from a neotropical marsupial. Am. J. Primatol. 22:263–77 [Google Scholar]
  115. Rasmussen DT, Sussman RW. 2007. Parallelisms among primates and possums. See Ravosa & Dagosto 2007 775–803
  116. Rasolooarison RM, Goodman SM, Ganzhorn JU. 2000. Taxonomic revision of mouse lemurs (Microcebus) in the western portions of Madagascar. Int. J. Primatol. 21:963–1019 [Google Scholar]
  117. Ravosa MJ, Dagosto M. 2007. Primate Origins: Adaptations and Evolution New York: Springer [Google Scholar]
  118. Rose KD. 1995. The earliest primates. Evol. Anthropol. 3:159–73 [Google Scholar]
  119. Rose KD, Bown TM. 1996. A new plesiadapiform (Mammalia: Plesiadapiformes) from the early Eocene of the Bighorn Basin, Wyoming. Ann. Carnegie Mus. 65:305–21 [Google Scholar]
  120. Rose KD, Chester SGB, Dunn RH, Boyer DM, Bloch JI. 2011. New fossils of the oldest North American euprimate Teilhardina brandti (Omomyidae) from the Paleocene-Eocene Thermal Maximum. Am. J. Phys. Anthropol. 146:281–305 [Google Scholar]
  121. Rose KD, Chew AE, Dunn RH, Kraus MJ, Fricke HC, Zack SP. 2012. Earliest Eocene mammalian fauna from the Paleocene-Eocene Thermal Maximum at Sand Creek Divide, southern Bighorn Basin, Wyoming. Univ. Mich. Pap. Paleontol. 36:1–122 [Google Scholar]
  122. Rose KD, Rana RS, Sahni A, Kumar K, Missiaen P. et al. 2009. Early Eocene primates from Gujarat, India. J. Hum. Evol. 56:366–404 [Google Scholar]
  123. Rowe N, Myers M. 2016. All the World's Primates Charlestown, RI: Primate Conserv., Inc http://www.alltheworldsprimates.org. [Google Scholar]
  124. Sargis EJ. 2004. New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol. Anthropol. 13:56–66 [Google Scholar]
  125. Sargis EJ, Boyer DM, Bloch JI, Silcox MT. 2007. Evolution of pedal grasping in primates. J. Hum. Evol. 53:103–7 [Google Scholar]
  126. Sargis EJ, Dagosto M. 2008. Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. New York: Springer-Verlag [Google Scholar]
  127. Scott CS, Fox RC, Redman CM. 2016. A new species of the basal plesiadapiform Purgatorius (Mammalia, Primates) from the early Paleocene Ravenscrag Formation, Cypress Hills, southwest Saskatchewan, Canada: further taxonomic and dietary diversity in the earliest primates. Can. J. Earth Sci. 53:343–54 [Google Scholar]
  128. Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M. 1990. Altiatlasius koulchii n. gen et sp., primate omomyidé du Paléocène supérieur du Maroc, et les origines des euprimates. Palaeontographica 212:1–24 [Google Scholar]
  129. Silcox MT. 2001. A phylogenetic analysis of Plesiadapiformes and their relationship to Euprimates and other archontans PhD dissertation Johns Hopkins Univ. Sch. Med. Baltim., MD: [Google Scholar]
  130. Silcox MT. 2007. Primate taxonomy, plesiadapiforms, and approaches to primate origins. See Ravosa & Dagosto 2007 143–78
  131. Silcox MT. 2008. The biogeographic origins of Primates and Euprimates: East, west, north, or south of Eden?. See Sargis & Dagosto 2008 199–231
  132. Silcox MT, Benham AE, Bloch JI. 2010a. Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive brains. J. Hum. Evol. 58:505–21 [Google Scholar]
  133. Silcox MT, Bloch JI, Boyer DM, Chester SGB, López-Torres S. 2017. The evolutionary radiation of plesiadapiforms. Evol. Anthropol. 26:74–94 [Google Scholar]
  134. Silcox MT, Bloch JI, Boyer DM, Houde P. 2010b. Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria) and the relationships of the Apatemyidae to other mammals. Zool. J. Linn. Soc. 160:773–825 [Google Scholar]
  135. Silcox MT, Boyer DM, Bloch JI, Sargis EJ. 2007. Revisiting the adaptive origins of primates (again). J. Hum. Evol. 53:321–24 [Google Scholar]
  136. Silcox MT, Dalmyn CK, Bloch JI. 2009. Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. PNAS 106:10987–92 [Google Scholar]
  137. Silcox MT, Dalmyn CK, Hrenchuk A, Bloch JI, Boyer DM, Houde P. 2011. Endocranial morphology of Labidolemur kayi (Apatemyidae, Apatotheria) and its relevance to the study of brain evolution in Euarchontoglires. J. Vertebr. Paleontol. 31:1314–25 [Google Scholar]
  138. Silcox MT, Sargis EJ, Bloch JI, Boyer DM. 2015. Primate origins and supraordinal relationships: morphological evidence. Handbook of Palaeoanthropology W Henke, I Tattersall 1053–81 Heidelberg: Springer, 2nd ed.. [Google Scholar]
  139. Simons EL, Ettel PC. 1970. Gigantopithecus. Sci. Am. 222:76–85 [Google Scholar]
  140. Simpson GG. 1933. The “plagiaulacoid” type of mammalian dentition a study of convergence. J. Mammal. 14:97–107 [Google Scholar]
  141. Simpson GG. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350 [Google Scholar]
  142. Smith T, Rose KD, Gingerich PD. 2006. Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. PNAS 103:11223–27 [Google Scholar]
  143. Soligo C, Martin RD. 2006. Adaptive origins of primates revisited. J. Hum. Evol. 50:414–30 [Google Scholar]
  144. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J. et al. 2012. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLOS ONE 7:e49521 [Google Scholar]
  145. Springer MS, Murphy WJ, Eizirik E, O'Brien SJ. 2003. Placental mammal diversification and the Cretaceous–Tertiary boundary. PNAS 100:1056–61 [Google Scholar]
  146. Stanhope MJ, Waddell VG, Madsen O, de Jong W, Hedges SB. et al. 1998. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. PNAS 95:9967–72 [Google Scholar]
  147. Sussman RW. 1991. Primate origins and the evolution of angiosperms. Am. J. Phys. Anthropol. 23:209–23 [Google Scholar]
  148. Sussman RW, Rasmussen DT, Raven PH. 2013. Rethinking primate origins again. Am. J. Primatol. 75:95–106 [Google Scholar]
  149. Szalay FS. 1969. Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull. Am. Mus. Nat. Hist. 140:195–330 [Google Scholar]
  150. Szalay FS. 1974. A new species and genus of early Eocene primate from North America. Folia Primatol 22:243–50 [Google Scholar]
  151. Szalay FS. 1976. Systematics of the Omomyidae (Tarsiiformes, Primates): taxonomy, phylogeny, and adaptations. Bull. Am. Mus. Nat. Hist. 156:157–449 [Google Scholar]
  152. Szalay FS. 1977. Phylogenetic relationships and a classification of the eutherian Mammalia. Major Patterns in Vertebrate Evolution MK Hecht, PC Goody, BM Hecht 315–74 New York: Plenum Press [Google Scholar]
  153. Szalay FS, Dagosto M. 1980. Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol 34:1–45 [Google Scholar]
  154. Szalay FS, Delson E. 1979. Evolutionary History of the Primates New York: Academic [Google Scholar]
  155. Szalay FS, Drawhorn G. 1980. Evolution and diversification of the Archonta in an arboreal milieu. Comparative Biology and Evolutionary Relationships of Tree Shrews WP Luckett 133–69 New York: Plenum Press [Google Scholar]
  156. Szalay FS, Rosenberger AL, Dagosto M. 1987. Diagnosis and differentiation of the order primates. Yearb. Phys. Anthropol. 30:75–105 [Google Scholar]
  157. Tavaré S, Marshall CR, Will O, Soligo C, Martin RD. 2002. Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416:726–29 [Google Scholar]
  158. Urbani B, Youlatos D. 2013. Positional behavior and substrate use of Micromys minutus (Rodentia: Muridae): insights for understanding primate origins. J. Hum. Evol. 64:130–36 [Google Scholar]
  159. Van Valen LM, Sloan RE. 1965. The earliest primates. Science 150:743–45 [Google Scholar]
  160. Van Valkenburgh B. 1999. Major patterns in the history of carnivorous mammals. Annu. Rev. Earth Planet. Sci. 27:463–93 [Google Scholar]
  161. von Koenigswald W, Schierning H-P. 1987. The ecological niche of early Tertiary apatemyids—extinct group of mammals. Nature 326:595–96 [Google Scholar]
  162. Waddell PJ, Kishino H, Ota R. 2001. A phylogenetic foundation for comparative mammalian genomics. Genome Inf 12:141–54 [Google Scholar]
  163. Waddell PJ, Okada N, Hasegawa M. 1999. Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48:1–5 [Google Scholar]
  164. Williams BA, Kay RF, Kirk EC, Ross CF. 2010. Darwinius masillae is a strepsirrhine—a reply to Franzen et al. 2009. J. Hum. Evol 59:567–73 [Google Scholar]
  165. Williams JA. 1985. Morphology and variation in the posterior dentition of Picrodus silberlingi (Picrodontidae). Folia Primatol 45:48–58 [Google Scholar]
  166. Winchester JM. 2016. MorphoTester: an open source application for morphological topographic analysis. PLOS ONE 11:e0147649 [Google Scholar]
  167. Zihlman AL, McFarland RK. 2000. Body mass in lowland gorillas: a quantitative analysis. Am. J. Phys. Anthropol. 113:61–78 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error