1932

Abstract

Most tsunamis are generated by earthquakes, but in 1998, a seabed slump offshore of northern Papua New Guinea (PNG) generated a tsunami up to 15 m high that killed more than 2,200 people. The event changed our understanding of tsunami mechanisms and was the forerunner to two decades of major tsunamis that included those in Turkey, the Indian Ocean, Japan, and Sulawesi and Anak Krakatau in Indonesia. PNG provided a context to better understand these tsunamis as well as older submarine landslide events, such as Storegga (8150 BP); Alika 2 in Hawaii (120,000 BP), and Grand Banks, Canada (1929), together with those from dual earthquake/landslide mechanisms, such as Messina (1908), Puerto Rico (1928), and Japan (2011). PNG proved that submarine landslides generate devastating tsunamis from failure mechanisms that can be very different, whether singly or in combination with earthquakes. It demonstrated the critical importance of seabed mapping to identify these mechanisms as well as stimulated the development of new numerical tsunami modeling methodologies. In combination with other recent tsunamis, PNG demonstrated the critical importance of these events in advancing our understanding of tsunami hazard and risk. This review recounts how, since 1998, understanding of the tsunami hazard from submarine landslides has progressed far beyond anything considered possible at that time.

  • ▪   For submarine landslide tsunamis, advances in understanding take place incrementally, usually in response to major, sometimes catastrophic, events.
  • ▪   The Papua New Guinea tsunami in 1998, when more than 2,200 people perished, was a turning point in first recognizing the significant tsunami hazard from submarine landslides.
  • ▪   Over the past 2 to 3 years advances have also been made mainly because of improvements in numerical modeling based on older tsunamis such as Grand Banks in 1929, Messina in 1908, and Storegga at 8150 BP.
  • ▪   Two recent tsunamis in late 2018, in Sulawesi and Anak Krakatau, Indonesia, where several hundred people died, were from very unusual landslide mechanisms—dual (strike-slip and landslide) and volcanic collapse—and provide new motivations for understanding these tsunami mechanisms.
  • ▪   This is a timely, state of the art review of landslide tsunamis based on recent well-studied events and new research on older ones, which provide an important context for the recent tsunamis in Indonesia in 2018.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-015810
2021-05-30
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-063016-015810.html?itemId=/content/journals/10.1146/annurev-earth-063016-015810&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie SM, Harris JC, Grilli ST, Fabre R. 2012. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J. Geophys. Res. 117:C5C05030
    [Google Scholar]
  2. Arikawa T, Muhari A, Okumura Y, Dohi Y, Afriyanto B et al. 2018. Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake. J. Disaster Res. 13:sc20181204
    [Google Scholar]
  3. Assier-Rzadkieaicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF. 2000. Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure Appl. Geophys. 157:1707–27
    [Google Scholar]
  4. Bao H, Ampuero J-P, Meng L, Fielding EJ, Liang C et al. 2019. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat. Geosci. 12:200–5
    [Google Scholar]
  5. Baratta M. 1910. La Catastrofe Sismica Calabro Messinese (28 Dicembre 1908). Rome: Presso Soc. Geograf. Ital.
    [Google Scholar]
  6. Bent AL. 1995. A complex double-couple source mechanism for the Ms 7.2 1929 Grand Banks earthquake. Bull. Seismol. Soc. Am. 85:1003–20
    [Google Scholar]
  7. Billi A, Funiciello R, Minelli L, Faccenna C, Neri G et al. 2008. On the cause of the 1908 Messina tsunami, southern Italy. Geophys. Res. Lett. 35:L06301
    [Google Scholar]
  8. Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI 2005. The Storegga Slide tsunami—comparing field observations with numerical simulations. Mar. Pet. Geol. 22:195–208
    [Google Scholar]
  9. Bondevik S, Mangerud J, Dawson S, Dawson A, Lohne Ø. 2003. Record-breaking height for 8000-year-old tsunami in the North Atlantic. Eos Trans. AGU 84:289–93
    [Google Scholar]
  10. Bondevik S, Svendsen JI, Mangerud JAN. 1997. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology 44:1115–31
    [Google Scholar]
  11. Boston B, Moore GF, Nakamura Y, Kodaira S. 2017. Forearc slope deformation above the Japan Trench megathrust: implications for subduction erosion. Earth Planet. Sci. Lett. 462:26–34
    [Google Scholar]
  12. Bryn P, Berg K, Forsberg CF, Solheim A, Lien R 2005. Explaining the Storegga Slide. Mar. Pet. Geol. 22:11–19
    [Google Scholar]
  13. Bugge T, Befring S, Belderson RH, Eidvin T, Jansen E et al. 1987. A giant three-stage submarine slide off Norway. Geomar. Lett. 7:191–98
    [Google Scholar]
  14. Carvajal M, Araya-Cornejo C, Sepúlveda I, Melnick D, Haase JS 2019. Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake. Geophys. Res. Lett. 46:5117–26
    [Google Scholar]
  15. Clague D. 2001. Tsunamis. A Synthesis of Geological Hazards in Canada, ed. GR Brooks 27–42 Ottawa, Can: Geol. Surv. Can.
    [Google Scholar]
  16. Dawson AG, Long D, Smith DE. 1988. The Storegga Slides: evidence from eastern Scotland for a possible tsunami. Mar. Geol. 82:271–76
    [Google Scholar]
  17. EMODnet Bathymetry Consort 2018. EMODnet digital bathymetry (DTM 2018). EMODnet high resolution seabed mapping project, updated Sept. 14. https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6
    [Crossref]
  18. Favalli M, Boschi E, Mazzarini F, Pareschi MT. 2009. Seismic and landslide source of the 1908 Straits of Messina tsunami (Sicily, Italy). Geophys. Res. Lett. 36:L16304
    [Google Scholar]
  19. Felton EA, Crook KAW, Keating BH. 2000. The Hulopoe gravel, Lanai, Hawaii: new sedimentological data and their bearing on the “giant wave” (mega-tsunami) emplacement hypothesis. Pure Appl. Geophys. 157:1257–84
    [Google Scholar]
  20. Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA. 2005. The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar. Geol. 215:45–57
    [Google Scholar]
  21. Frederik MC, Adhitama R, Hananto ND, Sahabuddin S, Irfan M et al. 2019. First results of a bathymetric survey of Palu Bay, Central Sulawesi, Indonesia following the tsunamigenic earthquake of 28 September 2018. Pure Appl. Geophys. 176:83277–90
    [Google Scholar]
  22. Fryer GJ, Watts P, Pratson LF. 2004. Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar. Geol. 203:201–18
    [Google Scholar]
  23. Fujii Y, Satake K, Sakai SI, Shinohara M, Kanazawa T. 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:55
    [Google Scholar]
  24. Fujiwara T, dos Santos Ferreira C, Bachmann AK, Strasser M, Wefer G et al. 2017. Seafloor displacement after the 2011 Tohoku-oki earthquake in the northern Japan Trench examined by repeated bathymetric surveys. Geophys. Res. Lett. 44:11833–39
    [Google Scholar]
  25. Geist EL. 2000. Origin of the 17 July 1998 Papua New Guinea tsunami: earthquake or landslide?. Seismol. Res. Lett. 71:344–51
    [Google Scholar]
  26. Glimsdal S, Pedersen GK, Harbitz CB, Løvholt F. 2013. Dispersion of tsunamis: Does it really matter?. Nat. Hazards Earth Syst. Sci. 13:1507–26
    [Google Scholar]
  27. Grauert M, Björck S, Bondevik S. 2001. Storegga tsunami deposits in a coastal lake on Suouroy, the Faroe Islands. Boreas 30:263–71
    [Google Scholar]
  28. Grigg RW, Jones AT. 1997. Uplift caused by lithospheric flexure in the Hawaiian Archipelago as revealed by elevated coral deposits. Mar. Geol. 141:11–25
    [Google Scholar]
  29. Grilli ST, Harris JC, Bakhsh TST, Masterlark TL, Kyriakopoulos C et al. 2013. Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure Appl. Geophys. 170:1333–59
    [Google Scholar]
  30. Grilli ST, Tappin DR, Carey S, Watt SFL, Ward SN et al. 2019. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep. 9:11946
    [Google Scholar]
  31. Grilli ST, Vogelmann S, Watts P. 2002. Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides. Eng. Anal. Boundary Elem. 26:4301–13
    [Google Scholar]
  32. Haflidason H, Sejrup HP, Nygård A, Mienert J, Bryn P et al. 2004. The Storegga Slide: architecture, geometry and slide development. Mar. Geol. 213:201–34
    [Google Scholar]
  33. Hampton M. 1972. The role of subaqueous debris flow in generating turbidity currents. J. Sed. Res. 42:775–993
    [Google Scholar]
  34. Hampton MA, Lee HJ, Locat J. 1996. Submarine landslides. Rev. Geophys. 34:33–59
    [Google Scholar]
  35. Harbitz CB. 1992. Model simulation of tsunamis generated by the Storegga Slides. Mar. Geol. 105:1–21
    [Google Scholar]
  36. Heezen BC, Ewing M. 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. Am. J. Sci. 250:849–73
    [Google Scholar]
  37. Hill J, Collins GS, Avdis A, Kramer SC, Piggott MD. 2014. How does multiscale modelling and inclusion of realistic palaeobathymetry affect numerical simulation of the Storegga Slide tsunami?. Ocean Model. 83:11–25
    [Google Scholar]
  38. Hunt JE, Tappin DR, Watt SFL, Susilohadi S, Novellino A et al. 2021. Submarine observations landslide megablocks show half of the island of Anak Krakatau island failed on December 22nd 2018. Nat. Commun. In press
    [Google Scholar]
  39. Hurukawa N, Tsuji Y, Waluyo B 2003. The 1998 Papua New Guinea earthquake and its fault plane estimated from relocated aftershocks. Landslide Tsunamis: Recent Findings and Research Directions J-P Bardet, F Imamura, CE Synolakis, EA Okal, HL Davies 1829–41 Boston: Birkhauser
    [Google Scholar]
  40. Imamura F, Gica E, Takashi T, Shuto N. 1995. Numerical simulation of the 1992 Flores tsunami: interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island. Pure Appl. Geophys. 144:555–68
    [Google Scholar]
  41. Jamelot A, Gailler A, Heinrich P, Vallage A, Champenois J. 2019. Tsunami simulations of the Sulawesi Mw 7.5 event: comparison of seismic sources issued from a tsunami warning context versus post-event finite source. Pure Appl. Geophys. 176:3351–76
    [Google Scholar]
  42. Jiang L, Leblond PH. 1992. The coupling of a submarine slide and the surface wave which it generates. J. Geophys. Res. 97:C812731–44
    [Google Scholar]
  43. Jiang L, Leblond PH. 1994. Three-dimensional modelling of tsunami generation due to submarine mudslide. J. Phys. Oceanogr. 24:559–73
    [Google Scholar]
  44. Johnson C, Mader CL. 1994. Modeling of the 105 Ka Lanai tsunami. Sci. Tsunami Hazards 12:33–38
    [Google Scholar]
  45. Johnson JM, Satake K. 1997. Estimation of seismic moment and slip distribution of the April 1, 1946 Aleutian tsunami earthquake. J. Geophys. Res. 102:B611765–74
    [Google Scholar]
  46. Kanamori H. 1972. Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6:346–59
    [Google Scholar]
  47. Kawamura K, Sasaki T, Kanamatsu T, Sakaguchi A, Ogawa Y. 2012. Large submarine landslides in the Japan Trench: a new scenario for additional tsunami generation. Geophys. Res. Lett. 39:L05308
    [Google Scholar]
  48. Kawata Y, Benson BC, Borrero JL, Davies HL, De Lange WP et al. 1999. Tsunami in Papua New Guinea was as intense as first thought. Eos Trans. AGU 80:101104–5
    [Google Scholar]
  49. Kulikov EA, Rabinovich AB, Thomson RE, Bornhold BD. 1996. The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. J. Geophys. Res. 101:C36609–15
    [Google Scholar]
  50. Lay T. 2018. A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophysics 733:4–36
    [Google Scholar]
  51. Leblond PH, Jones A. 1995. Underwater landslides ineffective at tsunami generation. Sci. Tsunami Hazards 13:25–26
    [Google Scholar]
  52. Lee HJ, Kayen RE, Gardner JV, Locat J 2003. Characteristics of several tsunamigenics submarine landslides. Submarine Mass Movements and Their Consequences: 1st International Symposium, ed. J Locat, J Mienert 357–66 Dordrecht, Neth: Kluwer
    [Google Scholar]
  53. Liu PL, Higuera P, Husrin S, Prasetya GS, Prihantono J et al. 2020. Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides 17:2085–98
    [Google Scholar]
  54. López-Venegas AM, Brink UST, Geist EL. 2008. Submarine landslide as the source for the October 11, 1918 Mona Passage tsunami: observations and modeling. Mar. Geol. 254:35–46
    [Google Scholar]
  55. Løvholt F, Bondevik S, Laberg JS, Kim J, Boylan N. 2017. Some giant submarine landslides do not produce large tsunamis. Geophys. Res. Lett. 44:8463–72
    [Google Scholar]
  56. Løvholt F, Pedersen G, Harbitz CB, Glimsdal S, Kim J. 2015. On the characteristics of landslide tsunamis. Philos. Trans. R. Soc. A 373:20140376
    [Google Scholar]
  57. Løvholt F, Schulten I, Mosher D, Harbitz C, Krastel S. 2018. Modelling the 1929 Grand Banks slump and landslide tsunami. Geolog. Soc. Lond. Spec. Publ. 477:315–31
    [Google Scholar]
  58. MacInnes BT, Gusman AR, Leveque RJ, Tanioka Y. 2013. Comparison of earthquake source models for the 2011 Tohoku event using tsunami simulations and near-field observations. Bull. Seismol. Soc. Am. 103:1256–74
    [Google Scholar]
  59. Marani MP, Gamberi F, Bortoluzzi G, Carrara G, Ligi M, Penitenti D 2004. Seafloor bathymetry of the Ionian Sea. From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin 44 MP Marani, F Gamberi, E Bonatti, plate 3 Rome: APAT
    [Google Scholar]
  60. McMurtry GM, Fryer GJ, Tappin DR, Wilkinson IP, Williams M et al. 2004a. Megatsunami deposits on Kohala volcano, Hawaii, from flank collapse of Mauna Loa. Geology 32:741–44
    [Google Scholar]
  61. McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F. 2004b. Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar. Geol. 203:219–33
    [Google Scholar]
  62. Moore AL. 2000. Landward fining in onshore gravel as evidence for a late Pleistocene tsunami on Molokai, Hawaii. Geology 28:247–50
    [Google Scholar]
  63. Moore GW, Moore JG. 1988. Large-scale bedforms in boulder gravel produced by giant waves in Hawaii. Geol. Soc. Am. Spec. Pap. 229:101–10
    [Google Scholar]
  64. Mosher DC, Piper DJW 2007. Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. Submarine Mass Movements and Their Consequences: 3rd International Symposium, ed. V Lykousis, D Sakellariou, J Locat 77–88 Dordrecht, Neth: Springer
    [Google Scholar]
  65. Muhari A, Imamura F, Arikawa T, Hakim AR, Afriyanto B. 2018. Solving the puzzle of the September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the initial field survey data. J. Disaster Res. 13:sc20181108
    [Google Scholar]
  66. Murty TS. 1977. Seismic sea waves—tsunamis. Bull. Fish. Res. Board Can. 198:337
    [Google Scholar]
  67. Nakamura Y, Fujiwara T, Kodaira S, Miura S, Obana K 2020. Correlation of frontal prism structures and slope failures near the trench axis with shallow megathrust slip at the Japan Trench. Sci. Rep 10:11607
    [Google Scholar]
  68. Nakata K, Katsumata A, Muhari A. 2020. Submarine landslide source models consistent with multiple tsunami records of the 2018 Palu tsunami, Sulawesi, Indonesia. Earth Planets Space 72:44
    [Google Scholar]
  69. Newman AV, Okal EA. 1998. Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes. J. Geophys. Res. 103:B1126885–98
    [Google Scholar]
  70. Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75:1135–54
    [Google Scholar]
  71. Omori F. 1909. Preliminary report on the Messina-Reggio earthquake of Dec. 28, 1908. Bull. Imp. Earthq. Investig. Comm 3:237–45
    [Google Scholar]
  72. Pakoksung K, Suppasri A, Imamura F, Athanasius C, Omang A, Muhari A. 2019. Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a two-layer model. Pure Appl. Geophys. 176:3323–50
    [Google Scholar]
  73. Piper DJW, Shor AN, Clarke JEH. 1988. The 1929 Grand Banks earthquake, slump and turbidity current. Geol. Soc. Am. Spec. Pap. 229:77–92
    [Google Scholar]
  74. Plafker G, Kachadoorian R, Eckel EB, Mayo LR. 1969. Effects of the earthquake of March 27, 1964 on various communities Prof. Pap. 542-G US Geol. Surv. Washington, DC:
    [Google Scholar]
  75. Platf. Promot. Early Warn 2006. Tsunami: What is tsunami?. International Strategy for Disaster Reduction. https://www.unisdr.org/2006/ppew/tsunami/what-is-tsunami/backinfor-brief.htm
    [Google Scholar]
  76. Priyanto WS, Hunt JE, Hanif M, Tappin DR, Permana H et al. 2021. Bathymetry and shallow seismic imaging of the 2018 flank collapse of Anak Krakatau. Front. Earth Sci 8:649
    [Google Scholar]
  77. Rubin KH, Fletcher CH, Sherman C. 2000. Fossiliferous Lana'i deposits formed by multiple events rather than a single giant tsunami. Nature 408:675–81
    [Google Scholar]
  78. Ruff L, Kamamori H. 1980. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23:240–52
    [Google Scholar]
  79. Ruffman A, Hann V. 2006. The Newfoundland tsunami of November 18, 1929: an examination of the twenty-eight deaths of the “South Coast Disaster. .” Nfld. Labrador Stud. 21:1719–26
    [Google Scholar]
  80. Ryan WBF, Heezen BC. 1965. Ionian sea submarine canyons and the 1908 Messina turbidity current. Geol. Soc. Am. Bull. 76:915–32
    [Google Scholar]
  81. Schambach L, Grilli ST, Tappin DR. 2020a. New high-resolution modeling of the 2018 Palu tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a dual source. Front. Earth Sci. 8:627
    [Google Scholar]
  82. Schambach L, Grilli ST, Tappin DR, Gangemi MD, Barbaro G 2020b. New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source. Mar. Geol. 421:106093
    [Google Scholar]
  83. Schulten I, Mosher DC, Krastel S, Piper DJW, Kienast M. 2018. Surficial sediment failures due to the 1929 Grand Banks Earthquake, St Pierre Slope. Geol. Soc. Lond. Spec. Publ. 477:583–96
    [Google Scholar]
  84. Smith DE, Foster IDL, Long D, Shi S. 2007. Reconstructing the pattern and depth of flow onshore in a palaeotsunami from associated deposits. Sediment. Geol. 200:362–71
    [Google Scholar]
  85. Socquet A, Hollingsworth J, Pathier E, Bouchon M. 2019. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 12:192–99
    [Google Scholar]
  86. Solheim A, Bryn P, Sejrup HP, Mienert J, Berg K. 2005. Ormen Lange—an integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar. Pet. Geol. 22:1–9
    [Google Scholar]
  87. Song X, Zhang Y, Shan X, Liu Y, Gong W, Qu C. 2019. Geodetic observations of the 2018 Mw 7.5 Sulawesi earthquake and its implications for the kinematics of the Palu Fault. Geophys. Res. Lett. 46:4212–20
    [Google Scholar]
  88. Stearns HT. 1978. Quaternary Shorelines in the Hawaiian Islands Honolulu, HI: Bernice P. Bishop Mus.
    [Google Scholar]
  89. Stein S, Okal EA. 2007. Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull. Seismol. Soc. Am. 97:1AS279–95
    [Google Scholar]
  90. Sweet S, Silver EA 2003. Tectonics and slumping in the source region of the 1998 Papua New Guinea tsunami from seismic reflection images. Landslide Tsunamis: Recent Findings and Research Directions J-P Bardet, F Imamura, CE Synolakis, EA Okal, HL Davies 1945–68 Boston: Birkhauser
    [Google Scholar]
  91. Synolakis CE, Bardet J-P, Borrero JC, Davies HL, Okal EA et al. 2002. The slump origin of the 1998 Papua New Guinea tsunami. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 458:763–89
    [Google Scholar]
  92. Tanioka Y, Satake K. 1996. Tsunami generation by horizontal displacement of ocean bottom. Geophys. Res. Lett. 23:861–64
    [Google Scholar]
  93. Tappin DR. 2010. Digital elevation models in the marine domain: investigating the offshore tsunami hazard from submarine landslides. Geol. Soc. Lond. Spec. Publ. 345:181–101
    [Google Scholar]
  94. Tappin DR. 2017. Tsunamis from submarine landslides. Geol. Today 33:190–200
    [Google Scholar]
  95. Tappin DR 2020. Chemosynthetic seep communities triggered by seabed slumping off of northern Papua New Guinea. Seafloor Geomorphology as Benthic Habitat, ed. PT Harris, E Baker 875–87 Cambridge, MA: Elsevier
    [Google Scholar]
  96. Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T et al. 2014. Did a submarine landslide contribute to the 2011 Tohoku tsunami?. Mar. Geol. 357:344–61
    [Google Scholar]
  97. Tappin DR, Matsumoto T, Watts P, Satake K, McMurtry GM et al. 1999. Sediment slump likely caused 1998 Papua New Guinea tsunami. Eos Trans. AGU 80:329–40
    [Google Scholar]
  98. Tappin DR, Watts P, Grilli ST. 2008. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat. Hazards Earth Syst. Sci. 8:243–66
    [Google Scholar]
  99. Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T. 2001. The Sissano, Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar. Geol. 175:1–23
    [Google Scholar]
  100. Tinti S, Armigliato A. 2003. The use of scenarios to evaluate the tsunami impact in southern Italy. Mar. Geol. 199:221–43
    [Google Scholar]
  101. Ulrich T, Vater S, Madden EH, Behrens J, Van Dinther Y et al. 2019. Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami. Pure Appl. Geophys. 176:4069–109
    [Google Scholar]
  102. Walter TR, Haghshenas-Haghighi M, Schneider FM, Coppola D, Motagh M et al. 2019. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 10:4339
    [Google Scholar]
  103. Watts P. 1998. Wavemaker curves for tsunamis generated by underwater landslides. J. Waterw. Port Coast. Ocean Eng. 124:127–37
    [Google Scholar]
  104. Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR. 2003. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat. Hazards Earth Syst. Sci. 3:391–402
    [Google Scholar]
  105. Yamazaki Y, Cheung KF, Lay T. 2018. A self-consistent fault slip model for the 2011 Tohoku earthquake and tsunami. J. Geophys. Res. Solid Earth 123:1435–58
    [Google Scholar]
  106. Yeh H, Imamura F, Synolakis C, Tsuji Y, Liu P, Shi S. 1993. The Flores Island tsunamis. Eos Trans. AGU 74:369–73
    [Google Scholar]
  107. Yeh H, Liu P, Briggs M, Synolakis C. 1994. Propagation and amplification of tsunami at coastal boundaries. Nature 372:353–55
    [Google Scholar]
  108. Zengaffinen T, Løvholt F, Pedersen G, Harbitz CB. 2020. Effects of rotational submarine slump dynamics on tsunami genesis—new insight from idealized models and the 1929 Grand Banks event. Geol. Soc. Lond. Spec. Publ. 500:41–61
    [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-015810
Loading
/content/journals/10.1146/annurev-earth-063016-015810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error