1932

Abstract

The short-lived Hf-W isotope system has a wide range of important applications in cosmochemistry and geochemistry. The siderophile behavior of W, combined with the lithophile nature of Hf, makes the system uniquely useful as a chronometer of planetary accretion and differentiation. Tungsten isotopic data for meteorites show that the parent bodies of some differentiated meteorites accreted within 1 million years after Solar System formation. Melting and differentiation on these bodies took ∼1–3 million years and was fueled by decay of 26Al. The timescale for accretion and core formation increases with planetary mass and is ∼10 million years for Mars and >34 million years for Earth. The nearly identical 182W compositions for the mantles of the Moon and Earth are difficult to explain in current models for the formation of the Moon. Terrestrial samples with ages spanning ∼4 billion years reveal small 182W variations within the silicate Earth, demonstrating that traces of Earth's earliest formative period have been preserved throughout Earth's history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-020037
2017-08-30
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-020037.html?itemId=/content/journals/10.1146/annurev-earth-063016-020037&mimeType=html&fmt=ahah

Literature Cited

  1. Arevalo R, McDonough WF. 2008. Tungsten geochemistry and implications for understanding the Earth's interior. Earth Planet. Sci. Lett. 272:656–65 [Google Scholar]
  2. Becker M, Hezel DC, Schulz T, Elfers B-M, Münker C. 2015. Formation timescales of CV chondrites from component specific Hf–W systematics. Earth Planet. Sci. Lett. 432:472–82 [Google Scholar]
  3. Benz W, Slattery WL, Cameron AGW. 1986. The origin of the moon and the single-impact hypothesis I. Icarus 66:515–35 [Google Scholar]
  4. Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148:243–58 [Google Scholar]
  5. Borg LE, Brennecka GA, Symes SJK. 2016. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 175:150–67 [Google Scholar]
  6. Brown SM, Elkins-Tanton LT, Walker RJ. 2014. Effects of magma ocean crystallization and overturn on the development of 142Nd and 182W isotopic heterogeneities in the primordial mantle. Earth Planet. Sci. Lett. 408:319–30 [Google Scholar]
  7. Budde G, Burkhardt C, Brennecka GA, Fischer-Gödde M, Kruijer TS, Kleine T. 2016a. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454:293–303 [Google Scholar]
  8. Budde G, Kleine T, Kruijer TS, Burkhardt C, Metzler K. 2016b. Tungsten isotopic constraints on the age and origin of chondrules. PNAS 113:2886–91 [Google Scholar]
  9. Budde G, Kruijer TS, Fischer-Gödde M, Irving AJ, Kleine T. 2015. Planetesimal differentiation revealed by the Hf-W systematics of ureilites. Earth Planet. Sci. Lett. 430:316–25 [Google Scholar]
  10. Burkhardt C, Borg LE, Brennecka GA, Shollenberger QR, Dauphas N, Kleine T. 2016. A nucleosynthetic origin for the Earth's anomalous 142Nd composition. Nature 537:394–98 [Google Scholar]
  11. Burkhardt C, Kleine T, Dauphas N, Wieler R. 2012. Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: implications for Hf-W chronometry. Astrophys. J. Lett. 753:L6 [Google Scholar]
  12. Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R. 2011. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312:390–400 [Google Scholar]
  13. Burkhardt C, Kleine T, Palme H, Bourdon B, Zipfel J. et al. 2008. Hf–W mineral isochron for Ca,Al-rich inclusions: age of the solar system and the timing of core formation in planetesimals. Geochim. Cosmochim. Acta 72:6177–97 [Google Scholar]
  14. Burkhardt C, Schönbächler M. 2015. Intrinsic W nucleosynthetic isotope variations in carbonaceous chondrites: implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials. Geochim. Cosmochim. Acta 165:361–75 [Google Scholar]
  15. Canup RM. 2012. Forming a Moon with an Earth-like composition via a giant impact. Science 338:1052–55 [Google Scholar]
  16. Canup RM, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412:708–12 [Google Scholar]
  17. Caro G, Bourdon B. 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle crust system. Geochim. Cosmochim. Acta 74:3333–49 [Google Scholar]
  18. Chou CL. 1978. Fractionation of siderophile elements in the Earth's upper mantle. Lunar Planet. Sci. Conf. Abstr. 9:219–30 [Google Scholar]
  19. Cottrell E, Walter MJ, Walker D. 2009. Metal-silicate partitioning of tungsten at high pressure and temperature: implications for equilibrium core formation in Earth. Earth Planet. Sci. Lett. 281:275–87 [Google Scholar]
  20. Cuk M, Stewart ST. 2012. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–52 [Google Scholar]
  21. Dahl TW, Stevenson DJ. 2010. Turbulent mixing of metal and silicate during planet accretion—and interpretation of the Hf-W chronometer. Earth Planet. Sci. Lett. 295:177–86 [Google Scholar]
  22. Dauphas N, Burkhardt C, Warren PH, Fang-Zhen T. 2014. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372:20130244 [Google Scholar]
  23. Dauphas N, Chaussidon M. 2011. A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Annu. Rev. Earth Planet. Sci. 39:351–86 [Google Scholar]
  24. Dauphas N, Pourmand A. 2011. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–92 [Google Scholar]
  25. Day JMD, Pearson DG, Taylor LA. 2007. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315:217–19 [Google Scholar]
  26. Day JMD, Walker RJ. 2015. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423:114–24 [Google Scholar]
  27. Debaille V, Brandon AD, O'Neill C, Yin QZ, Jacobsen B. 2009. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat. Geosci. 2:548–52 [Google Scholar]
  28. Debaille V, Brandon AD, Yin QZ, Jacobsen B. 2007. Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars. Nature 450:525–28 [Google Scholar]
  29. Deguen R, Landeau M, Olson P. 2014. Turbulent metal-silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391:274–87 [Google Scholar]
  30. Deguen R, Olson P, Cardin P. 2011. Experiments on turbulent metal-silicate mixing in a magma ocean. Earth Planet. Sci. Lett. 310:303–13 [Google Scholar]
  31. Foley CN, Wadhwa M, Borg LE, Janney PE, Hines R, Grove TL. 2005. The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69:4557–71 [Google Scholar]
  32. Goldstein JI, Scott ERD, Chabot NL. 2009. Iron meteorites: crystallization, thermal history, parent bodies, and origin. Chem. Erde 69:293–325 [Google Scholar]
  33. Halliday AN. 2004. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427:505–9 [Google Scholar]
  34. Halliday AN. 2008. A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos. Trans. R. Soc. A 366:4163–81 [Google Scholar]
  35. Halliday AN, Rehkämper M, Lee DC, Yi W. 1996. Early evolution of the Earth and Moon: new constraints from Hf-W isotope geochemistry. Earth Planet. Sci. Lett. 142:75–89 [Google Scholar]
  36. Hansen BMS. 2009. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703:1131–40 [Google Scholar]
  37. Harper CL, Jacobsen SB. 1996. Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60:1131–53 [Google Scholar]
  38. Harper CL, Volkening J, Heumann KG, Shih CY, Wiesmann H. 1991. 182Hf-182W: new cosmochronometric constraints on terrestrial accretion, core formation, the astrophysical site of the r-process, and the origin of the Solar System. Lunar Planet. Sci. Conf. Abstr. 22:515–16 [Google Scholar]
  39. Hartmann WK, Davis DR. 1975. Satellite-sized planetesimals and lunar origin. Icarus 24:504–14 [Google Scholar]
  40. Hevey PJ, Sanders IS. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41:95–106 [Google Scholar]
  41. Horan MF, Smoliar MI, Walker RJ. 1998. 182W and 187Re-187Os systematics of iron meteorites: chronology for melting, differentiation, and crystallization in asteroids. Geochim. Cosmochim. Acta 62:545–54 [Google Scholar]
  42. Humayun M, Campbell AJ. 2002. The duration of ordinary chondrite metamorphism inferred from tungsten microdistribution in metal. Earth Planet. Sci. Lett. 198:225–43 [Google Scholar]
  43. Jacobsen SB. 2005. The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33:531–70 [Google Scholar]
  44. Johnson BC, Minton DA, Melosh HJ, Zuber MT. 2015. Impact jetting as the origin of chondrules. Nature 517:339–41 [Google Scholar]
  45. Kita NT, Ushikubo T. 2012. Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47:1108–19 [Google Scholar]
  46. Kleine T, Hans U, Irving AJ, Bourdon B. 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim. Cosmochim. Acta 84:186–203 [Google Scholar]
  47. Kleine T, Mezger K, Münker C, Palme H, Bischoff A. 2004a. 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: chronology of core formation and mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68:2935–46 [Google Scholar]
  48. Kleine T, Mezger K, Palme H, Scherer E, Münker C. 2004b. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228:109–23 [Google Scholar]
  49. Kleine T, Mezger K, Palme H, Scherer E, Münker C. 2005a. Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochim. Cosmochim. Acta 69:5805–18 [Google Scholar]
  50. Kleine T, Mezger K, Palme H, Scherer E, Münker C. 2005b. The W isotope composition of eucrites metal: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites. Earth Planet. Sci. Lett. 231:41–52 [Google Scholar]
  51. Kleine T, Münker C, Mezger K, Palme H. 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–55 [Google Scholar]
  52. Kleine T, Palme H, Mezger K, Halliday AN. 2005c. Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science 310:1671–74 [Google Scholar]
  53. Kleine T, Rudge JF. 2011. Chronometry of meteorites and the formation of the Earth and Moon. Elements 7:41–46 [Google Scholar]
  54. Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K. et al. 2009. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73:5150–88 [Google Scholar]
  55. Kleine T, Touboul M, Van Orman JA, Bourdon B, Maden C. et al. 2008. Hf-W thermochronometry: closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth Planet. Sci. Lett. 270:106–18 [Google Scholar]
  56. König S, Münker C, Hohl S, Paulick H, Barth AR. et al. 2011. The Earth's tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75:2119–36 [Google Scholar]
  57. Kruijer TS, Fischer-Gödde M, Kleine T, Sprung P, Leya I, Wieler R. 2013. Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals. Earth Planet. Sci. Lett. 361:162–72 [Google Scholar]
  58. Kruijer TS, Kleine T. 2016. Tungsten isotope dichotomy among iron meteorite parent bodies: implications for the timescales of accretion and core formation. Meet. Meteorit. Soc. Abstr. 79:6449 [Google Scholar]
  59. Kruijer TS, Kleine T, Borg LE, Brennecka GA, Fischer-Gödde M. et al. 2016. Coupled 142Nd-182W evidence for early crust formation on Mars. Lunar Planet. Sci. Conf. Abstr. 47:2115 [Google Scholar]
  60. Kruijer TS, Kleine T, Fischer-Godde M, Burkhardt C, Wieler R. 2014a. Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth Planet. Sci. Lett. 403:317–27 [Google Scholar]
  61. Kruijer TS, Kleine T, Fischer-Gödde M, Sprung P. 2015. Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–37 [Google Scholar]
  62. Kruijer TS, Sprung P, Kleine T, Leya I, Burkhardt C, Wieler R. 2012. Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochim. Cosmochim. Acta 99:287–304 [Google Scholar]
  63. Kruijer TS, Touboul M, Fischer-Godde M, Bermingham KR, Walker RJ, Kleine T. 2014b. Protracted core formation and rapid accretion of protoplanets. Science 344:1150–54 [Google Scholar]
  64. Kunihiro T, Rubin AE, McKeegan KD, Wasson JT. 2004. Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids. Geochim. Cosmochim. Acta 68:2947–57 [Google Scholar]
  65. Lee DC, Halliday AN. 1995. Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature 378:771–74 [Google Scholar]
  66. Lee DC, Halliday AN. 1996. Hf-W isotopic evidence for rapid accretion and differentiation in the early Solar System. Science 274:1876–79 [Google Scholar]
  67. Lee DC, Halliday AN. 1997. Core formation on Mars and differentiated asteroids. Nature 388:854–57 [Google Scholar]
  68. Lee DC, Halliday AN, Leya I, Wieler R, Wiechert U. 2002. Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet. Sci. Lett. 198:267–74 [Google Scholar]
  69. Lee DC, Halliday AN, Singletary SJ, Grove TL. 2009. 182Hf-182W chronometry and early differentiation of the ureilite parent body. Earth Planet. Sci. Lett. 288:611–18 [Google Scholar]
  70. Lee DC, Halliday AN, Snyder GA, Taylor LA. 1997. Age and origin of the moon. Science 278:1098–103 [Google Scholar]
  71. Levison HF, Kretke KA, Walsh KJ, Bottke WF. 2015. Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. PNAS 112:14180–85 [Google Scholar]
  72. Leya I, Wieler R, Halliday AN. 2000. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry. Earth Planet. Sci. Lett. 175:1–12 [Google Scholar]
  73. Leya I, Wieler R, Halliday AN. 2003. The influence of cosmic-ray production on extinct nuclide systems. Geochim. Cosmochim. Acta 67:529–41 [Google Scholar]
  74. Liu J, Touboul M, Ishikawa A, Walker RJ, Graham Pearson D. 2016. Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: implications for early Earth processes and W recycling. Earth Planet. Sci. Lett. 448:13–23 [Google Scholar]
  75. Markowski A, Quitté G, Halliday AN, Kleine T. 2006. Tungsten isotopic compositions of iron meteorites: chronological constraints vs. cosmogenic effects. Earth Planet. Sci. Lett. 242:1–15 [Google Scholar]
  76. Markowski A, Quitté G, Kleine T, Halliday A, Bizzarro M, Irving AJ. 2007. Hf-W chronometry of angrites and the earliest evolution of planetary bodies. Earth Planet. Sci. Lett. 262:214–29 [Google Scholar]
  77. McDonough WF. 2003. Compositional model for the Earth's core. Treatise on Geochemistry, Vol. 2: The Mantle and Core KK Turekian, HD Holland 547–68 New York: Elsevier [Google Scholar]
  78. McDonough WF, Sun SS. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  79. Mezger K, Debaille V, Kleine T. 2013. Core formation and mantle differentiation on Mars. Space Sci. Rev. 174:27–48 [Google Scholar]
  80. Mittlefehldt DW, McCoy TJ, Goodrich CA, Kracher A. 1998. Non-chondritic meteorites from asteroidal bodies. Rev. Mineral. Geochem. 36:4.1–4.195 [Google Scholar]
  81. Morishima R, Golabek GJ, Samuel H. 2013. N-body simulations of oligarchic growth of Mars: implications for Hf-W chronology. Earth Planet. Sci. Lett. 366:6–16 [Google Scholar]
  82. Nakajima M, Stevenson DJ. 2015. Melting and mixing states of the Earth's mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427:286–95 [Google Scholar]
  83. Newsom HE. 1986. Constraints on the origin of the Moon from the abundance of molybdenum and other siderophile elements. Origin of the Moon WK Hartmann, RJ Phillips, GJ Taylor 203–29 Houston: Lunar Planet. Inst. [Google Scholar]
  84. Newsom HE, Sims KWW, Noll P, Jaeger W, Maehr S, Beserra T. 1996. The depletion of W in the bulk silicate Earth: constraints on core formation. Geochim. Cosmochim. Acta 60:1155–69 [Google Scholar]
  85. Nimmo F, Agnor CB. 2006. Isotopic outcomes of N-body accretion simulations: constraints on equilibration processes during large impacts from Hf/W observations. Earth Planet. Sci. Lett. 243:26–43 [Google Scholar]
  86. Nimmo F, Kleine T. 2007. How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation. Icarus 191:497–504 [Google Scholar]
  87. Nimmo F, Kleine T. 2015. Early differentiation and core formation: processes and timescales. Geophys. Monogr. Ser. 212:83–102 [Google Scholar]
  88. Nimmo F, O'Brien DP, Kleine T. 2010. Tungsten isotopic evolution during late-stage accretion: constraints on Earth-Moon equilibration. Earth Planet. Sci. Lett. 292:363–70 [Google Scholar]
  89. Norman EB, Schramm DN. 1983. 182Hf chronometer for the early Solar System. Nature 304:515–57 [Google Scholar]
  90. Pahlevan K, Stevenson DJ. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262:438–49 [Google Scholar]
  91. Palme H, O'Neill HSC. 2014. Cosmochemical estimates of mantle composition. Treatise on Geochemistry, Vol. 2: The Mantle and Core HD Holland, KK Turekian 1–39 New York: Elsevier. , 2nd ed.. [Google Scholar]
  92. Palme H, Rammensee W. 1981. The significance of W in planetary differentiation processes: evidence from new data on eucrites. Lunar Planet. Sci. Conf. Abstr. 12:949–64 [Google Scholar]
  93. Puchtel IS, Blichert-Toft J, Touboul M, Horan MF, Walker RJ. 2016a. The coupled 182W-142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17:2168–93 [Google Scholar]
  94. Puchtel IS, Touboul M, Blichert-Toft J, Walker RJ, Brandon AD. et al. 2016b. Lithophile and siderophile element systematics of Earth's mantle at the Archean-Proterozoic boundary: evidence from 2.4 Ga komatiites. Geochim. Cosmochim. Acta 180:227–55 [Google Scholar]
  95. Qin L, Dauphas N, Horan MF, Leya I, Carlson RW. 2015. Correlated cosmogenic W and Os isotopic variations in Carbo and implications for Hf–W chronology. Geochim. Cosmochim. Acta 153:91–104 [Google Scholar]
  96. Qin L, Dauphas N, Wadhwa M, Markowski A, Gallino R. et al. 2008b. Tungsten nuclear anomalies in planetesimal cores. Astrophys. J. 674:1234–41 [Google Scholar]
  97. Qin L, Dauphas N, Wadhwa M, Masarik J, Janney PE. 2008a. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth Planet. Sci. Lett. 273:94–104 [Google Scholar]
  98. Reufer A, Meier MMM, Benz W, Wieler R. 2012. A hit-and-run giant impact scenario. Icarus 221:296–99 [Google Scholar]
  99. Righter K, Shearer CK. 2003. Magmatic fractionation of Hf and W: constraints on the timing of core formation and differentiation in the Moon and Mars. Geochim. Cosmochim. Acta 67:2497–507 [Google Scholar]
  100. Rizo H, Walker RJ, Carlson RW, Horan MF, Mukhopadhyay S. et al. 2016a. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352:809–12 [Google Scholar]
  101. Rizo H, Walker RJ, Carlson RW, Touboul M, Horan MF. et al. 2016b. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim. Cosmochim. Acta 175:319–36 [Google Scholar]
  102. Roszjar J, Whitehouse MJ, Srinivasan G, Mezger K, Scherer EE. et al. 2016. Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon. Earth Planet. Sci. Lett. 452:216–26 [Google Scholar]
  103. Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F. et al. 2011. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301:31–42 [Google Scholar]
  104. Rudge JF, Kleine T, Bourdon B. 2010. Broad bounds on Earth's accretion and core formation constrained by geochemical models. Nat. Geosci. 3:439–43 [Google Scholar]
  105. Sanders IS, Scott ERD. 2012. The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals. ? Meteorit. Planet. Sci. 47:2170–92 [Google Scholar]
  106. Scherstén A, Elliott T, Hawkesworth C, Russell SS, Masarik J. 2006. Hf-W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241:530–42 [Google Scholar]
  107. Schoenberg R, Kamber BS, Collerson KD, Eugster O. 2002. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66:3151–60 [Google Scholar]
  108. Scott ERD, Wasson JT. 1975. Classification and properties of iron meteorites. Rev. Geophys. 13:527–46 [Google Scholar]
  109. Srinivasan G, Whitehouse MJ, Weber I, Yamaguchi A. 2007. The crystallization age of eucrite zircon. Science 317:345–47 [Google Scholar]
  110. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–9 [Google Scholar]
  111. Touboul M, Liu J, O'Neil J, Puchtel IS, Walker RJ. 2014. New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chem. Geol. 383:63–75 [Google Scholar]
  112. Touboul M, Puchtel IS, Walker RJ. 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–69 [Google Scholar]
  113. Touboul M, Puchtel IS, Walker RJ. 2015a. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520:530–33 [Google Scholar]
  114. Touboul M, Sprung P, Aciego SM, Bourdon B, Kleine T. 2015b. Hf–W chronology of the eucrite parent body. Geochim. Cosmochim. Acta 156:106–21 [Google Scholar]
  115. Touboul M, Walker RJ. 2012. High precision tungsten isotope measurement by thermal ionization mass spectrometry. Int. J. Mass Spectrom. 309:109–17 [Google Scholar]
  116. Treiman AH, Drake MJ, Janssens M-J, Wolf R, Ebihara M. 1986. Core formation in the Earth and Shergottite parent body (SPB): chemical evidence from basalts. Geochim. Cosmochim. Acta 50:1071–91 [Google Scholar]
  117. Trieloff M, Jessberger EK, Herrwerth I, Hopp J, Fiéni C. et al. 2003. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422:502–6 [Google Scholar]
  118. Vockenhuber C, Oberli F, Bichler M, Ahmad I, Quitté G. et al. 2004. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys. Rev. Lett. 93:172501 [Google Scholar]
  119. Wade J, Wood BJ. 2005. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236:78–95 [Google Scholar]
  120. Wade J, Wood BJ. 2016. The oxidation state and mass of the Moon-forming impactor. Earth Planet. Sci. Lett. 442:186–93 [Google Scholar]
  121. Walker RJ. 2012. Evidence for homogeneous distribution of osmium in the protosolar nebula. Earth Planet. Sci. Lett. 351–52:36–44 [Google Scholar]
  122. Walker RJ. 2014. Siderophile element constraints on the origin of the Moon. Philos. Trans. R. Soc. A 372:20130258 [Google Scholar]
  123. Walsh KJ, Morbidelli A, Raymond SN, O'Brien DP, Mandell AM. 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475:206–9 [Google Scholar]
  124. Wasson JT, Huber H. 2006. Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core. Geochim. Cosmochim. Acta 70:6153–67 [Google Scholar]
  125. Willbold M, Elliott T, Moorbath S. 2011. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477:195–99 [Google Scholar]
  126. Willbold M, Mojzsis SJ, Chen HW, Elliott T. 2015. Tungsten isotope composition of the Acasta Gneiss Complex. Earth Planet. Sci. Lett. 419:168–77 [Google Scholar]
  127. Wittig N, Humayun M, Brandon AD, Huang S, Leya I. 2013. Coupled W-Os-Pt isotope systematics in IVB iron meteorites: in situ neutron dosimetry for W isotope chronology. Earth Planet. Sci. Lett. 361:152–61 [Google Scholar]
  128. Yin QZ, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albarède F. 2002. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–52 [Google Scholar]
  129. Yu G, Jacobsen SB. 2011. Fast accretion of the Earth with a late Moon-forming giant impact. PNAS 108:17604–9 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-020037
Loading
/content/journals/10.1146/annurev-earth-063016-020037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error