1932

Abstract

Hydrocarbon seeps, deep sea extreme environments where deeply sourced fluids discharge at the seabed, occur along continental margins across the globe. Energy-rich reduced substrates, namely hydrocarbons, support accelerated biogeochemical dynamics, creating unique geobiological habitats. Subseafloor geology dictates the surficial expression of seeps, generating hydrocarbon (gas and/or oil) seeps, brine seeps, and mud volcanoes. Biogeochemical processes across the redox spectrum are amplified at hydrocarbon seeps due to the abundance and diversity of reductant; anaerobic metabolism dominates within the sediment column since oxygen is consumed rapidly near the sediment surface. Microbial activity is constrained by electron acceptor availability, with rapid recycling required to support observed rates of hydrocarbon consumption. Geobiologic structures, from gas hydrate to solid asphalt to authigenic minerals, form as a result of hydrocarbon and associated fluid discharge. Animal-microbial associations and symbioses thrive at hydrocarbon seeps, generating diverse and dense deep sea oases that provide nutrition to mobile predators.

  • ▪   Hydrocarbon seeps are abundant deep sea oases that support immense biodiversity and where specialization and adaptation create extraordinary lifestyles.
  • ▪   Subseafloor geology shapes and defines the geochemical nature of fluid seepage and regulates the flux regime, which dictate the surface expression.
  • ▪   High rates of anaerobic oxidation of methane require coupling to multiple processes and promote diversity in the anaerobic methanotroph microbial community.
  • ▪   The recent discovery of novel phyla possessing hydrocarbon oxidation potential signals that aspects of seep biogeochemistry and geobiology remain to be discovered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-020052
2020-05-30
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-063016-020052.html?itemId=/content/journals/10.1146/annurev-earth-063016-020052&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams MA. 2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar. Pet. Geol. 22:457–77
    [Google Scholar]
  2. Abrams MA, Dahdah N. 2011. Surface sediment hydrocarbons as indicators of subsurface hydrocarbons: field calibration of existing and new surface geochemistry methods in the Marco Polo area, Gulf of Mexico. AAPG Bull 95:1907–35
    [Google Scholar]
  3. Aharon P. 1996. Origin and depositional model of barite deposits associated with hydrocarbon seeps on the Gulf of Mexico slope, offshore Louisiana. Gulf Coast Assoc. Geol. Soc. 47:13–20
    [Google Scholar]
  4. Alcazar A, Kennicutt M, Brooks JM 1989. Benthic tars in the Gulf of Mexico: chemistry and sources. Org. Geochem. 14:433–39
    [Google Scholar]
  5. Alperin MJ, Hoehler TM. 2009. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am. J. Sci. 309:869–957
    [Google Scholar]
  6. Anderson R, Scalan R, Parker P, Behrens E 1983. Seep oil and gas in Gulf of Mexico slope sediment. Science 222:619–21
    [Google Scholar]
  7. Ardyna M, Lacour L, Sergi S, d'Ovidio F, Sallée J-P et al. 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10:2451
    [Google Scholar]
  8. Arvidson RS, Morse JW, Joye SB 2004. The sulfur biogeochemistry of chemosynthetic cold seep communities, Gulf of Mexico, USA. Mar. Chem. 87:97–119
    [Google Scholar]
  9. Åström EKL, Carroll ML, Ambrose WG Jr., Sen A, Silyakova A, Carroll J 2017. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr 63:S209–31
    [Google Scholar]
  10. Bailey JV, Orphan VJ, Joye SB, Corsetti FA 2009. Chemotrophic microbial mats and their potential for preservation in the rock record. Astrobiology 9:843–59
    [Google Scholar]
  11. Ballard RD. 1977. Notes on a major oceanographic find. Oceanus 20:35–44
    [Google Scholar]
  12. Barnes RO, Goldberg ED. 1976. Methane production and consumption in anoxic marine sediments. Geology 4:297–300
    [Google Scholar]
  13. Beal EJ, House CH, Orphan VJ 2009. Manganese- and iron-dependent marine methane oxidation. Science 325:184–87
    [Google Scholar]
  14. Bergquist DC, Williams FM, Fisher CR 2000. Longevity record for deep-sea invertebrate. Nature 403:499–500
    [Google Scholar]
  15. Bernard BB, Brooks JM, Sackett WM 1976. Natural gas seepage in the Gulf of Mexico. Earth Planet. Sci. Lett. 31:48–54
    [Google Scholar]
  16. Bertics VJ, Loscher CR, Salonen I, Dale AW, Schmitz RA, Treude T 2013. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences 10:1243–58
    [Google Scholar]
  17. Beulig F, Røy H, McGlynn SE, Jørgensen BB 2019. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME J 13:250–62
    [Google Scholar]
  18. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–26
    [Google Scholar]
  19. Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6:725–34
    [Google Scholar]
  20. Borin S, Brusetti L, Mapelli F, D'Auria G, Brusa T et al. 2009. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. PNAS 106:239151–56
    [Google Scholar]
  21. Borrel G, Adam PS, McKay JJ, Chen L-X, Sierra-Garcia IN et al. 2019. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4:603–13
    [Google Scholar]
  22. Bose A, Rogers DR, Adams MM, Joye SB, Girguis PR 2013. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction in seep sediments. Front. Microbiol. 4:386
    [Google Scholar]
  23. Boswell R, Collett TS, Frye M, Shedd WW, McConnell DR, Shelander D 2012. Subsurface gas hydrates in the northern Gulf of Mexico. Mar. Pet. Geol. 34:4–30
    [Google Scholar]
  24. Bowden DA, Rowden AA, Thurber AR, Baco AR, Levin LA, Smith CR 2013. Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: composition, succession, and vulnerability to human activities. PLOS ONE 8:e76869
    [Google Scholar]
  25. Bowles MW, Hunter KS, Samarkin V, Joye SB 2016. Patterns and variability in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope, Northern Gulf of Mexico. Deep Sea Res. II 129:31–40
    [Google Scholar]
  26. Bowles MW, Joye SB. 2011. High rates of denitrification and nitrate removal in cold seep sediments. ISME J 5:565–67
    [Google Scholar]
  27. Bowles MW, Samarkin VA, Bowles KML, Joye SB 2010. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments in ex situ incubations. Geochim. Cosmochim. Acta 75:500–19
    [Google Scholar]
  28. Bowles MW, Samarkin VA, Hunter KS, Dowell E, Teske AP et al. 2019. Remarkable capacity for anaerobic oxidation of methane at high methane concentration. Geophys. Res. Lett. 46:12192–201
    [Google Scholar]
  29. Brooks JM, Anderson AL, Sassen R, Kennicutt MC, Guinasso NL 1994. Hydrate occurrences in shallow subsurface cores from continental slope sediments. Ann. N.Y. Acad. Sci. 715:381–91
    [Google Scholar]
  30. Brooks JM, Kennicutt MC, Fisher CR, Macko SA, Cole K et al. 1987. Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–42
    [Google Scholar]
  31. Brooks JM, Wiesenburg DA, Roberts H, Carney RS, MacDonald IR et al. 1990. Salt, seeps and symbiosis in the Gulf of Mexico. EOS Trans. AGU 71:1772–73
    [Google Scholar]
  32. Brun J-P, Fort X. 2018. Growth of continental shelves at salt margins. Front. Earth Sci. 6:209
    [Google Scholar]
  33. Bruning M, Sahling H, MacDonald IR, Ding F, Bohrmann G 2010. Origin, distribution, and alteration of asphalts at Chapopote Knoll, Southern Gulf of Mexico. Mar. Pet. Geol. 27:51093–106
    [Google Scholar]
  34. Callender WR, Staff GM, Powell EN, MacDonald IR 1990. Gulf of Mexico hydrocarbon seep communities. V. Biofacies and shell orientation of autochthonous shell beds below storm wave base. Palaios 5:2–14
    [Google Scholar]
  35. Clark JF, Washburn L, Emery KS 2010. Variability of gas composition and flux intensity in natural marine hydrocarbon seeps. Geo-Mar. Lett. 30:379–88
    [Google Scholar]
  36. Claypool GE, Kaplan IR. 1974. The origin and distribution of methane in marine sediments. Natural Gases in Marine Sediments IR Kaplan 99–139 New York: Plenum
    [Google Scholar]
  37. Claypool GE, Milkov A, Lee Y-J, Torres M 2006. Microbial methane generation and gas transport in shallow sediments of an accretionary complex, Southern Hydrate Ridge (ODP Leg 204), offshore Oregon, USA. Proc. Ocean Drill. Program Sci. Results 204:1–52
    [Google Scholar]
  38. Collett T, Johnson A, Knapp C, Boswell R 2008. Natural gas hydrates—a review. Natural Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards T Collett, A Johnson, C Knapp, R Boswell 266–86 Tulsa, OK: AAPG
    [Google Scholar]
  39. Cordes EE, Bergquist DC, Fisher CR 2009. Macro-ecology of Gulf of Mexico cold seeps. Annu. Rev. Mar. Sci. 1:143–68
    [Google Scholar]
  40. Cordes EE, McGinley MP, Podowski EL, Becker EL 2008. Coral communities in the deep Gulf of Mexico. Deep Sea Res. I 55:777–87
    [Google Scholar]
  41. Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ 2014. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ. Microbiol. 16:3012–29
    [Google Scholar]
  42. Dekas AE, Poretsky RS, Orphan VJ 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–26
    [Google Scholar]
  43. Dimitrov LI. 2002. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 59:49–76
    [Google Scholar]
  44. Dimitrov LI. 2003. Mud volcanoes—a significant source of atmospheric methane. Geo-Mar. Lett. 23:155–61
    [Google Scholar]
  45. Dombrowski N, Teske AP, Baker BJ 2018. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9:4999
    [Google Scholar]
  46. Dong X, Greening C, Rattray JE, Chakraborty A, Chuvochina M et al. 2019. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10:1816
    [Google Scholar]
  47. D'souza NA, Subramaniam A, Juhl AR, Hafez M, Chekalyuk A et al. 2019. Elevated surface chlorophyll associated with natural oil slicks in the Gulf of Mexico. Nat. Geosci. 9:215–18
    [Google Scholar]
  48. Dubilier N, Bergin C, Lott C 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6:725–40
    [Google Scholar]
  49. Duperron S, Nadalig T, Caprais J-C, Sibuet M, Fiala-Médioni A et al. 2005. Dual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the Gabon continental margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills. Appl. Environ. Microbiol. 71:1694–700
    [Google Scholar]
  50. Eiler JM. 2007. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262:309–27
    [Google Scholar]
  51. Emeis K-C, Brüchert V, Currie B, Endler R, Ferdelman T et al. 2004. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont. Shelf Res. 24:627–42
    [Google Scholar]
  52. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–48
    [Google Scholar]
  53. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. PNAS 113:12792–96
    [Google Scholar]
  54. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ et al. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–38
    [Google Scholar]
  55. Feng D, Roberts HH, Joye SB, Heydari EE 2014. Formation of low-magnesium calcite at cold seeps in an aragonite sea. Terra Nova 26:150–56
    [Google Scholar]
  56. Fisher CR. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2:399–436
    [Google Scholar]
  57. Fisher CR, MacDonald IR, Sassen R, Young CM, Macko SA et al. 2000. Methane ice worms: Hesiocaeca methanicola colonizing fossil fuel reserves. Naturwissenschaften 87:184–87
    [Google Scholar]
  58. Fisher CR, Roberts HH, Cordes EE, Bernard BB 2007. Cold seeps and associated communities in the Gulf of Mexico. Oceanography 20:118–29
    [Google Scholar]
  59. Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S et al. 2015. Structure and drivers of cold seep ecosystems. Oceanography 22:92–109
    [Google Scholar]
  60. Garcia-Pineda O, MacDonald I, Silva M, Shedd W, Asl SD, Schumaker B 2015. Transience and persistence of natural hydrocarbon seepage in Mississippi Canyon, Gulf of Mexico. Deep Sea Res. II 129:119–29
    [Google Scholar]
  61. Grünke S, Lichtschlag A, de Beer D, Felden J, Ramette A et al. 2012. Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9:2947–60
    [Google Scholar]
  62. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D'Auria G et al. 2007. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ. Microbiol. 9:801–13
    [Google Scholar]
  63. Hansel CM, Ferdelman TG, Tebo BM 2015. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11:409–14
    [Google Scholar]
  64. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J et al. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–70
    [Google Scholar]
  65. Hawley ER, Piao H, Scott NM, Malfatti S, Pagani I et al. 2014. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. Stand. Genom. Sci. 9:1259–74
    [Google Scholar]
  66. Heeschen KU, Collier RW, de Angelis MA, Suess E, Rehder G et al. 2005. Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin. Glob. Biogeochem. Cycles 19:GB2016
    [Google Scholar]
  67. Hinrichs K-U, Hayes JM, Bach W, Spivack AJ, Hmelo LR et al. 2006. Biological formation of ethane and propane in the deep marine subsurface. PNAS 103:14684–89
    [Google Scholar]
  68. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF 1999. Methane-consuming archaebacteria in marine sediments. Science 398:802–5
    [Google Scholar]
  69. Hoehler TM, Alperin MJ, Albert DB, Martens CS 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8:451–64
    [Google Scholar]
  70. Horsfield B, Rullkötter J. 1994. Diagenesis, catagenesis and metagenesis of organic matter. The Petroleum System—From Source to Trap LB Magoon, WG Dow 189–99 Tulsa, OK: AAPG
    [Google Scholar]
  71. Hovland M, MacDonald IR, Rueslåtten H, Johnsen HK, Mortera C, Naehr TH 2005. Chapopote asphalt-volcano may have been generated by supercritical water. EOS Trans. AGU 86:42397–402
    [Google Scholar]
  72. Hudec MR, Jackson MPA. 2006. Advance of allochthonous salt sheets in passive margins and orogens. AAPG Bull 90:11535–64
    [Google Scholar]
  73. Ijiri A, Inagaki F, Kubo Y, Adhikari RR, Hattori S et al. 2018. Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. Sci. Adv. 4:eaao4631
    [Google Scholar]
  74. Iversen N, Jørgensen BB. 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30:944–55
    [Google Scholar]
  75. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F 2013. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon seeps. ISME J 7:885–95
    [Google Scholar]
  76. Jaekle U, Zedelius J, Wilkes H, Musat F 2015. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Front. Microbiol. 6:116
    [Google Scholar]
  77. Jahren AH, Conrad CP, Aren NC, Mora G, Lithgow-Bertelloni C 2005. A plate tectonic mechanism for methane hydrate release along subduction zones. Earth Planet. Sci. Lett. 236:691–704
    [Google Scholar]
  78. Johansen C, Todd AC, MacDonald IR 2017. Time series video analysis of bubble release processes at natural hydrocarbon seeps in the Northern Gulf of Mexico. Mar. Pet. Geol. 82:21–34
    [Google Scholar]
  79. Jones DS, Flood BE, Bailey JE 2015. Metatranscriptomic insights into polyphosphate metabolism in marine sediments. ISME J 10:1015–19
    [Google Scholar]
  80. Jørgensen BB, Kasten S. 2006. Sulfur cycling and methane oxidation. Marine Geochemistry HD Schulz, M Zabel 271–309 Berlin: Springer
    [Google Scholar]
  81. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN et al. 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205:219–38
    [Google Scholar]
  82. Joye SB, Bowles MW, Samarkin VA, Hunter KS, Niemann H 2010. Biogeochemical signatures and microbial activity of different cold seep habitats along the Gulf of Mexico lower slope. Deep Sea Res. II 57:1990–2001
    [Google Scholar]
  83. Joye SB, Bracco A, Özgökmen T, Chanton JP, Grosell M et al. 2016. The Gulf of Mexico ecosystem, six years after the Macondo blowout. Deep Sea Res. II 129:4–19
    [Google Scholar]
  84. Joye SB, Kleindienst S. 2017. Hydrocarbon seep ecosystems. Life in Extreme Environments J Kallmeyer 33–52 Berlin: DeGruyter Publ.
    [Google Scholar]
  85. Joye SB, MacDonald IR, Montoya JP, Peccini M 2005. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2:637–71
    [Google Scholar]
  86. Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs K-U et al. 2009. Surprising metabolic variability in seafloor brines revealed by carbon and sulfur cycling. Nat. Geosci. 2:349–54
    [Google Scholar]
  87. Judd A, Hovland M, Dimitrov LI, Garcia Gil S, Jukes V 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–26
    [Google Scholar]
  88. Kahn LM, Silver EA, Orange DL, Kochevar R, McAdoo BG 1996. Surficial evidence of fluid expulsion from the Costa Rica accretionary prism. Geophys. Res. Lett. 23:887–90
    [Google Scholar]
  89. Kappler A, Bryce C. 2017. Cryptic biogeochemical cycles: unraveling hidden redox reactions. Environ. Microbiol. 19:842–46
    [Google Scholar]
  90. Karaca D, Hensen C, Wallman K 2010. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochem. Geophys. Geosyst. 11:Q08S27
    [Google Scholar]
  91. Kato S, Hashimoto K, Watanabe K 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. PNAS 109:2510042–46
    [Google Scholar]
  92. Kennicutt MC. 2017. Oil and gas seeps in the Gulf of Mexico. Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill C Ward 275–358 New York: Springer
    [Google Scholar]
  93. Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63:311–34
    [Google Scholar]
  94. Kopf AJ. 2002. Significance of mud volcanism. Rev. Geophys. 40:2–152
    [Google Scholar]
  95. Kramer KV, Shedd WW. 2017. A 1.4-billion-pixel map of the Gulf of Mexico seafloor. EOS Trans. AGU 98:101029
    [Google Scholar]
  96. Lapham L, Wilson R, Riedel M, Paull CK, Holmes ME 2013. Temporal variability of in situ methane concentrations in gas hydrate bearing sediments near Bullseye Vent, Northern Cascadia Margin. Geochem. Geophys. Geosyst. 14:2445–59
    [Google Scholar]
  97. Leifer I, Boles JR, Luyendyk BP, Clark JF 2004. Transient discharges from marine hydrocarbon seeps: spatial and temporal variability. Environ. Geol. 46:1038–52
    [Google Scholar]
  98. Levin LA, Baco AR, Bowden DA, Colaco A, Cordes EE et al. 2016. Hydrothermal vents and cold seeps: rethinking the sphere of influence. Front. Mar. Sci. 3:72
    [Google Scholar]
  99. Litchschlag A, Felden J, Bruchert V, Boetius A, de Beer D 2010. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Håkon Mosby Mud Volcano (Barents Sea). Limnol. Oceanogr. 55:931–49
    [Google Scholar]
  100. MacDonald IR, Bohrmann G, Escobar E, Abegg F, Blanchon P et al. 2004. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304:999–1002
    [Google Scholar]
  101. MacDonald IR, Buthman DB, Sager W, Peccini MB 2000. Pulsed oil discharge from a mud volcano. Geology 28:907–10
    [Google Scholar]
  102. MacDonald IR, Garcia-Pineda O, Beet A, Asl SD, Feng L et al. 2015. Natural and unnatural oil slicks in the Gulf of Mexico. J. Geophys. Res. Oceans 120:8364–80
    [Google Scholar]
  103. MacDonald IR, Reilly JF, Guinasso NL, Brooks JM, Carney RS et al. 1990. Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–99
    [Google Scholar]
  104. Marlow JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ 2014. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat. Commun. 5:5094
    [Google Scholar]
  105. Martens CS, Berner RA. 1974. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–69
    [Google Scholar]
  106. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–34
    [Google Scholar]
  107. Meister P, Wiedling J, Lott C, Bach W, Kuhfuß H et al. 2018. Anaerobic methane oxidation inducing carbonate precipitation at abiogenic methane seeps in the Tuscan archipelago (Italy). PLOS ONE 13:e0207305
    [Google Scholar]
  108. Milkov AV. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167:29–42
    [Google Scholar]
  109. Miyazaki J, Higa R, Toki T, Ashi J, Tsunogai U et al. 2009. Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, offshore of Japan. Appl. Environ. Microbiol. 75:7153–62
    [Google Scholar]
  110. Niemann H, Duarte J, Hensen C, Omoregie E, Magalhães VH et al. 2006a. Microbial methane turnover at mud volcanoes of the Gulf of Cádiz. Geochim. Cosmochim. Acta 70:5336–55
    [Google Scholar]
  111. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T et al. 2006b. Novel microbial communities of the Haakon Mosby mud volcano and their role as methane sink. Nature 443:854–58
    [Google Scholar]
  112. Orcutt BN, Boetius A, Lugo SK, MacDonald IR, Samarkin VA, Joye SB 2004. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates. Chem. Geol. 205:3239–51
    [Google Scholar]
  113. Orcutt BN, Lapham LL, Delaney J, Sarode N, Marshall KS et al. 2017. Microbial response to oil enrichment in Gulf of Mexico sediment measured using a novel long-term benthic lander system. Elem. Sci. Anthr. 5:18
    [Google Scholar]
  114. Orcutt BN, Samarkin VA, Boetius A, Elvert M, Joye SB 2005. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico methane seeps. Geochim. Cosmochim. Acta 69:4267–81
    [Google Scholar]
  115. Oremland RS, Whiticar MJ, Strohmaier FE, Kiene RP 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim. Cosmochim. Acta 52:1895–904
    [Google Scholar]
  116. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–87
    [Google Scholar]
  117. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C et al. 1984. Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–67
    [Google Scholar]
  118. Pilcher RS, Blumstein RD. 2007. Brine volume and salt dissolution rates in Orca Basin, northeast Gulf of Mexico. AAPG Bull 91:823–33
    [Google Scholar]
  119. Pohlman JW, Bauer JE, Waite WF, Osburn CL, Chapman NR 2011. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nat. Geosci. 4:37–41
    [Google Scholar]
  120. Riedinger N, Brunner B, Krastel S, Arnold GL, Wehrmann LM et al. 2017. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: the Argentine continental margin. Front. Earth Sci. 5:33
    [Google Scholar]
  121. Ristova PP, Wenzhofer F, Ramette A, Felden J, Boetius A 2014. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea). ISME J 9:1306–18
    [Google Scholar]
  122. Roberts HH, Aharon P. 1994. Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Mar. Lett. 14:135–48
    [Google Scholar]
  123. Roberts HH, Carney RS. 1997. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. Bull. Soc. Econ. Geol. 92:863–79
    [Google Scholar]
  124. Roberts HH, Feng D, Shedd WW, Chen D 2009. Pervasive authigenic carbonate deposition at hydrocarbon seeps of the northern Gulf of Mexico: geomorphic, petrographic, and geochemical characteristics. Gulf Coast Assoc. Geol. Soc. Trans. 59:653–61
    [Google Scholar]
  125. Roberts HH, Hardage BA, Shedd WW, Hunt J Jr 2006. Seafloor reflectivity—an important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Lead. Edge 25:620–28
    [Google Scholar]
  126. Ruff SE, Arnds J, Knittel K, Amann R, Wegener G et al. 2013. Microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLOS ONE 8:9e72627
    [Google Scholar]
  127. Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A 2015. Global dispersion and local diversification of the methane seep microbiome. PNAS 112:4015–20
    [Google Scholar]
  128. Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K et al. 2018. In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J 13:197–213
    [Google Scholar]
  129. Ruppel CD, Dickens GR, Castellini DG, Gilhooly W, Lizarralde D 2005. Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys. Res. Lett. 32:L04605
    [Google Scholar]
  130. Shokes RF, Trabant PK, Presley BJ, Reid DF 1977. Anoxic, hypersaline basin in the northern Gulf of Mexico. Science 196:1443–46
    [Google Scholar]
  131. Siegert M, Kruger M, Teichert B, Wiedicke M, Schippers A 2011. Anaerobic oxidation of methane at a marine methane seep in a forearc sediment basin off Sumatra, Indian Ocean. Front. Microbiol. 2:249
    [Google Scholar]
  132. Singh R, Guzman MS, Bose A 2017. Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review. Front. Microbiol. 8:2056
    [Google Scholar]
  133. Smith JP, Coffin RB. 2014. Methane flux and authigenic carbonate in shallow sediments overlying methane hydrate bearing strata in Alaminos Canyon, Gulf of Mexico. Energies 7:6118–41
    [Google Scholar]
  134. Solomon EA, Kastner M, MacDonald IR, Leifer I 2009. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nat. Geosci. 2:8561–65
    [Google Scholar]
  135. Stevens EWN, Bailey JV, Flood BE, Jones DS, Gilhooley WP III et al. 2015. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Geobiology 13:588–603
    [Google Scholar]
  136. Suess E. 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int. J. Earth Sci. 103:1889–916
    [Google Scholar]
  137. Suess E, Carson B, Ritger SD, Moore JC, Jones ML et al. 1985. Biological communities at vent sites along the subduction zone off Oregon. Biol. Soc. Wash. Bull. 6:475–84
    [Google Scholar]
  138. Sundquist ET, Visser K. 2003. The geologic history of the carbon cycle. Treatise on Geochemistry, Vol. 8: The Oceans and Marine Geochemistry, WH Schlesinger, HD Holland, KK Turekian 425–72 Boston, MA: Elsevier
    [Google Scholar]
  139. Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB 2003. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol. Prog. Ser. 264:1–14
    [Google Scholar]
  140. Wang Y, Wegener G, Hou J, Wang F, Xiao X 2019. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4:595–602
    [Google Scholar]
  141. Weeks SJ, Currie B, Bakun A 2002. Massive emissions of toxic gas in the Atlantic. Nature 415:493–94
    [Google Scholar]
  142. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–90
    [Google Scholar]
  143. Whiticar MJ. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161:291–314
    [Google Scholar]
  144. Valentine D, Farwell C, Reddy CM, Hill TM 2010. Asphalt volcanoes as a potential source of methane to late Pleistocene coastal waters. Nat. Geosci. 3:345–48
    [Google Scholar]
  145. Vallino J, Algar CK. 2016. The thermodynamics of marine biogeochemical cycles: Lotka revisited. Annu. Rev. Mar. Sci. 8:333–56
    [Google Scholar]
  146. Vigneron A, Alsop EB, Cruaud P, Pilibert G, King B et al. 2017. Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Sci. Rep. 7:16015
    [Google Scholar]
  147. Vigneron A, L'Haridon S, Godfroy A, Roussel EG, Cragg BA et al. 2015. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps. Appl. Environ. Microbiol. 81:3451–59
    [Google Scholar]
  148. Xie F, Wu Q, Wang L, Shi Z, Zhang C et al. 2019. Passive continental margin basins and the controls on formation of evaporites: a case study of the Gulf of Mexico Basin. Carbonates Evaporites 34:405–18
    [Google Scholar]
  149. Zhuang G-C, Montgomery A, Sibert RJ, Rogener M-K, Samarkin VA, Joye SB 2018. Effects of pressure, methane concentration, sulfate reduction activity, and temperature on methane production in surface sediments of the Gulf of Mexico. Limnol. Oceanogr. 63:2080–92
    [Google Scholar]
  150. Zwicker J, Smrzka D, Himmler T, Monien P, Gier S et al. 2018. Rare earth elements as tracers for microbial activity and early diagenesis: a new perspective from carbonate cements of ancient methane-seep deposits. Chem. Geol. 501:77–85
    [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-020052
Loading
/content/journals/10.1146/annurev-earth-063016-020052
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error