1932

Abstract

Heavily cratered surfaces on the Moon, Mars, and Mercury show that the terrestrial planets were battered by an intense bombardment during their first billion years or more, but the timing, sources, and dynamical implications of these impacts are controversial. The Late Heavy Bombardment refers to impact events that occurred after stabilization of the planetary lithospheres such that they could be preserved as craters and basins. Lunar melt rocks and meteorite shock ages point toward a discrete episode of elevated impact flux between ∼3.5 and ∼4.0–4.2 Ga, and a relative quiescence between ∼4.0–4.2 and ∼4.4 Ga. Evidence from Precambrian impact spherule layers suggests that a long-lived tail of terrestrial impactors lasted to ∼2.0–2.5 Ga. Dynamical models that include populations residual from primary accretion and destabilized by giant planet migration can potentially account for the available observations, although all have pros and cons. The most parsimonious solution to match constraints is a hybrid model with discrete early, post-accretion and later, planetary instability–driven populations of impactors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-020131
2017-08-30
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-020131.html?itemId=/content/journals/10.1146/annurev-earth-063016-020131&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott SS, Harrison TM, Schmitt AK, Mojzsis SJ. 2012. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles. PNAS 109:3413486–92 [Google Scholar]
  2. Abramov O, Mojzsis SJ. 2009. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–22 [Google Scholar]
  3. Agnor CB, Lin DNC. 2012. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745:143 [Google Scholar]
  4. Andrews-Hanna JC, Besserer J, Head JW III, Howett CJA, Kiefer WS. et al. 2014. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature 514:752068–71 [Google Scholar]
  5. Andrews-Hanna JC, Zuber MT, Banerdt WB. 2008. The Borealis basin and the origin of the martian crustal dichotomy. Nature 453:71991212–15 [Google Scholar]
  6. Bell EA, Harrison TM. 2013. Post-Hadean transitions in Jack Hills zircon provenance: a signal of the Late Heavy Bombardment?. Earth Planet. Sci. Lett. 364:1–11 [Google Scholar]
  7. Blichert-Toft J, Albarède F. 2008. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. 265:3–4686–702 [Google Scholar]
  8. Boehnke P, Harrison TM. 2016. Illusory late heavy bombardments. PNAS 113:3910802–6 [Google Scholar]
  9. Bogard DD. 1995. Impact ages of meteorites: a synthesis. Meteorit. Planet. Sci. 30:244–68 [Google Scholar]
  10. Bogard DD. 2011. K-Ar ages of meteorites: clues to parent-body thermal histories. Chem. Erde Geochem. 71:3207–26 [Google Scholar]
  11. Borg LE, Brennecka GA, Symes SJK. 2016. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 175:150–67 [Google Scholar]
  12. Borg LE, Drake MJ. 2005. A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res. E 110:12E12S03 [Google Scholar]
  13. Borg LE, Gaffney AM, Shearer CK. 2015. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50:4715–32 [Google Scholar]
  14. Bottke WF, Andrews-Hanna JC. 2017. A post-accretionary lull in large impacts on early Mars. Nat. Geosci. 10:344–48 [Google Scholar]
  15. Bottke WF, Durda DD, Nesvorný D, Jedicke R, Morbidelli A. et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus 175:1111–40 [Google Scholar]
  16. Bottke WF, Levison HF, Nesvorný D, Dones L. 2007. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?. Icarus 190:1203–23 [Google Scholar]
  17. Bottke WF, Vokrouhlický D, Ghent B, Mazrouei S, Robbins S, Marchi SS. 2016. On asteroid impacts, crater scaling laws, and a proposed younger surface age for Venus Presented at 47th Lunar Planet. Sci. Conf., March 22, The Woodlands, TX [Google Scholar]
  18. Bottke WF, Vokrouhlický D, Marchi S, Swindle T, Scott ERD. et al. 2015. Dating the Moon-forming impact event with asteroidal meteorites. Science 348:6232321–23 [Google Scholar]
  19. Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A. et al. 2012. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:739678–81 [Google Scholar]
  20. Chambers JE. 2007. On the stability of a planet between Mars and the asteroid belt: implications for the Planet V hypothesis. Icarus 189:386–400 [Google Scholar]
  21. Cohen BA, Swindle TD, Kring DA. 2005. Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: implications for lunar bombardment history. Meteorit. Planet. Sci. 40:5755–77 [Google Scholar]
  22. Ćuk M. 2012. Chronology and sources of lunar impact bombardment. Icarus 218:69–79 [Google Scholar]
  23. Ćuk M, Gladman BJ, Stewart ST. 2010. Constraints on the source of lunar cataclysm impactors. Icarus 207:2590–94 [Google Scholar]
  24. Dalrymple GB, Ryder G. 1993. 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. J. Geophys. Res. E. 98:E713085–95 [Google Scholar]
  25. Dalrymple GB, Ryder G. 1996. Argon-40/argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. J. Geophys. Res. E 101:E1126069–84 [Google Scholar]
  26. Delano JW, Bence AE. 1977. 4.2–4.3 AE anorthositic soil fragments: equilibrated or unequilibrated polycomponent systems?. Proc. 8th Lunar Sci. Conf., March 14–18, Houston Texas RB Merrill 2029–50 New York: Pergamon [Google Scholar]
  27. Fassett CI. 2016. Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system. J. Geophys. Res. Planets 121:1900–26 [Google Scholar]
  28. Fassett CI, Head JW, Kadish SJ, Mazarico E, Neumann GA. et al. 2012. Lunar impact basins: stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res. Planets 117:E12E00H06 [Google Scholar]
  29. Fassett CI, Minton DA. 2013. Impact bombardment of the terrestrial planets and the early history of the Solar System. Nat. Geosci. 6:520–24 [Google Scholar]
  30. Fernandes VA, Fritz J, Weiss BP, Garrick-Bethell I, Shuster DL. 2013. The bombardment history of the Moon as recorded by 40Ar-39Ar chronology. Meteorit. Planet. Sci. 48:2241–69 [Google Scholar]
  31. Fernández JA, Ip W-H. 1984. Some dynamical aspects of the accretion of Uranus and Neptune: the exchange of orbital angular momentum with planetesimals. Icarus 58:1109–20 [Google Scholar]
  32. Frey H. 2011. Previously unknown large impact basins on the Moon: implications for lunar stratigraphy.. Geol. Soc. Am. Spec. Pap. 477:53–75 [Google Scholar]
  33. Frey HV, Mannoia LM. 2013. A revised, rated and dated inventory of very large candidate impact basins on Mars Presented at 44th Lunar Planet. Sci. Conf., March 19, The Woodlands, TX [Google Scholar]
  34. Glikson AY. 2001. The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 ± 0.1 Ga bombardment of the Earth–Moon system. J. Geodyn. 32:205–29 [Google Scholar]
  35. Gnos E, Hofmann BA, Al-Kathiri A, Lorenzetti S, Eugster O. et al. 2004. Pinpointing the source of a lunar meteorite: implications for the evolution of the Moon. Science 305:5684657–59 [Google Scholar]
  36. Gomes R, Levison HF, Tsiganis K, Morbidelli A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:7041466–69 [Google Scholar]
  37. Grange ML, Pidgeon RT, Nemchin AA, Timms NE, Meyer C. 2013. Interpreting U–Pb data from primary and secondary features in lunar zircon. Geochim. Cosmochim. Acta 101:112–32 [Google Scholar]
  38. Harrison TM. 2009. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37:479–505 [Google Scholar]
  39. Hartmann WK, Ryder G, Dones L, Grinspoon D. 2000. The time-dependent intense bombardment of the primordial Earth/Moon system. Origin of the Earth and Moon RM Canup, K Righter 493–512 Tucson, AZ: Univ. Ariz. Press [Google Scholar]
  40. Haskin LA. 1998. The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. E 103:E11679–89 [Google Scholar]
  41. Haskin LA, Korotev RL, Rockow KM, Jolliff BL. 1998. The case for an Imbrium origin of the Apollo thorium-rich impact-melt breccias. Meteorit. Planet. Sci. 33:5959–75 [Google Scholar]
  42. Head JW III, Fassett CI, Kadish SJ, Smith DE, Zuber MT. et al. 2010. Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329:59981504–7 [Google Scholar]
  43. Hiesinger H, Head JW III. 2006. New views of lunar geoscience: an introduction and overview. Rev. Mineral. Geochem. 60:1–81 [Google Scholar]
  44. Holden P, Lanc P, Ireland TR, Harrison TM, Foster JJ, Bruce Z. 2009. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int. J. Mass Spectrom. 286:2–353–63 [Google Scholar]
  45. Hudgins JA, Kelley SP, Korotev RL, Spray JG. 2011. Mineralogy, geochemistry, and 40Ar-39Ar geochronology of lunar granulitic breccia northwest Africa 3163 and paired stones: comparisons with Apollo samples. Geochim. Cosmochim. Acta 75:102865–81 [Google Scholar]
  46. Hudgins JA, Spray JG, Kelley SP, Korotev RL, Sherlock SC. 2008. A laser probe 40Ar/39Ar and INAA investigation of four Apollo granulitic breccias. Geochim. Cosmochim. Acta 72:5781–98 [Google Scholar]
  47. Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M. et al. 2013. Origin and age of the earliest martian crust from Meteorite NWA 7533. Nature 503:7477513–16 [Google Scholar]
  48. James OB. 1981. Petrologic and age relations of the Apollo 16 rocks: implications for subsurface geology and the age of the Nectaris basin. Proc. 12th Lunar Planet. Sci. Conf., March 16–20, Houston, TX RB Merrill, R Ridings 209–33 New York: Pergamon [Google Scholar]
  49. Jessberger EK, Hueneke JC, Podosek FA, Wasserburg G. 1974. High resolution argon analysis of neutron-irradiated Apollo 16 rocks and separated minerals. Proc. 5th Lunar Planet. Sci. Conf., March 18–22, 1974, Houston, TX RB Merrill, R Ridings 1419–49 New York: Pergamon [Google Scholar]
  50. Jessberger EK, Kirsten T, Staudacher T. 1977. One rock and many ages—further K-Ar data on consortium breccia 73215. Proc. 8th Lunar Sci. Conf., March 14–18, Houston, TX RB Merrill 2567–80 New York: Pergamon [Google Scholar]
  51. Johnson BC, Collins GS, Minton DA, Bowling TJ, Simonson BM, Zuber MT. 2016. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus 271:350–59 [Google Scholar]
  52. Johnson BC, Melosh HJ. 2012. Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485:739675–77 [Google Scholar]
  53. Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA. 2000. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophysical Res. E 105:E24197–216 [Google Scholar]
  54. Jourdan F. 2012. The 40Ar/39Ar dating technique applied to planetary sciences and terrestrial impacts. Aust. J. Earth Sci. 59:2199–224 [Google Scholar]
  55. Joy KH, Arai T. 2013. Lunar meteorites: new insights into the geological history of the Moon. Astron. Geophys. 54:44.28–4.32 [Google Scholar]
  56. Joy KH, Kring DA, Bogard DD, McKay DS, Zolensky ME. 2011. Re-examination of the formation ages of the Apollo 16 regolith breccias. Geochim. Cosmochim. Acta 75:227208–25 [Google Scholar]
  57. Kaib NA, Chambers JE. 2016. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 455:3561–69 [Google Scholar]
  58. Kennedy T, Jourdan F, Bevan AWR, Mary Gee MA, Frew A. 2013. Impact history of the HED parent body(ies) clarified by new 40Ar/39Ar analyses of four HED meteorites and one anomalous basaltic achondrite. Geochim. Cosmochim. Acta 115:162–82 [Google Scholar]
  59. Kenny GG, Whitehouse MJ, Kamber BS. 2016. Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology 44:6435–38 [Google Scholar]
  60. Kirchoff MR, Chapman CR, Marchi S, Curtis KM, Enke B, Bottke WF. 2013. Ages of large lunar impact craters and implications for bombardment. Icarus 225:325–41 [Google Scholar]
  61. Korotev RL. 1994. Compositional variation in Apollo 16 impact-melt breccias and inferences for the geology and bombardment history of the central highlands of the Moon. Geochim. Cosmochim. Acta 58:183931–69 [Google Scholar]
  62. Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL. et al. 2010. A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328:347–51 [Google Scholar]
  63. Levison HF, Bottke WF, Gounelle M, Morbidelli A, Nesvorný D, Tsiganis K. 2009. Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460:7253364–66 [Google Scholar]
  64. Levison HF, Dones L, Chapman CR, Stern SA, Duncan MJ, Zahnle K. 2001. Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune?. Icarus 151:286–306 [Google Scholar]
  65. Lisse CM, Wyatt MC, Chen CH, Morlok A, Watson DM. et al. 2012. Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η Corvi at ∼1 Gyr. Astrophys. J. 747:93 [Google Scholar]
  66. Liu D, Jolliff BL, Zeigler RA, Korotev RL, Wan Y. et al. 2012. Comparative zircon U–Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet. Sci. Lett. 319–20:277–86 [Google Scholar]
  67. Lowe DR, Byerly GR, Kyte FT. 2014. Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42:747–50 [Google Scholar]
  68. Malhotra R. 1993. The origin of Pluto's peculiar orbit. Nature 365:6449819–21 [Google Scholar]
  69. Marchi S, Bottke WF, Cohen BA, Wünnemann K, Kring DA. et al. 2013. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6:4303–7 [Google Scholar]
  70. Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K. et al. 2014. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511:7511578–82 [Google Scholar]
  71. Marchi S, Bottke WF, Kring DA, Morbidelli A. 2012. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325–26:27–38 [Google Scholar]
  72. Marinova MM, Aharonson O, Asphaug E. 2008. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453:71991216–19 [Google Scholar]
  73. Masiero JR, Mainzer AK, Bauer JM, Grav T, Nugent CR, Stevenson R. 2013. Asteroid family identification using the Hierarchical Clustering Method and WISE/NEOWISE physical properties. Astrophys. J. 770:7 [Google Scholar]
  74. Maurer P, Eberhardt P, Geiss J, Grögler N, Stettler A. et al. 1978. Pre-Imbrian craters and basins: ages, compositions and excavation depths of Apollo 16 breccias. Geochim. Cosmochim. Acta 42:111687–720 [Google Scholar]
  75. Melosh HJ. 1989. Impact Cratering: A Geologic Process New York: Oxford Univ. Press [Google Scholar]
  76. Merle RE, Nemchin AA, Grange ML, Whitehouse MJ, Pidgeon RT. 2014. High resolution U-Pb ages of Ca-phosphates in Apollo 14 breccias: implications for the age of the Imbrium impact. Meteorit. Planet. Sci. 49:122241–51 [Google Scholar]
  77. Miljković K, Wieczorek MA, Collins GS, Laneuville M, Neumann GA. et al. 2013. Asymmetric distribution of lunar impact basins caused by variations in target properties. Science 342:724–26 [Google Scholar]
  78. Minton DA, Jackson AP, Asphaug E, Fassett CI, Richardson JE. 2015a. Debris from Borealis basin formation as the primary impactor population of Late Heavy Bombardment Presented at Early Sol. Syst. Impact Bombard. III, Feb. 4–5, Houston, TX [Google Scholar]
  79. Minton DA, Richardson JE, Fassett CI. 2015b. Re-examining the main asteroid belt as the primary source of ancient lunar craters. Icarus 247:172–90 [Google Scholar]
  80. Morbidelli A, Bottke WF, Nesvorný D, Levison HF. 2009. Asteroids were born big. Icarus 204:2558–73 [Google Scholar]
  81. Morbidelli A, Marchi S, Bottke WF, Kring DA. 2012. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–56:144–51 [Google Scholar]
  82. Morbidelli A, Petit J-M, Gladman B, Chambers J. 2001. A plausible cause of the late heavy bombardment. Meteorit. Planet. Sci. 36:371–80 [Google Scholar]
  83. Morbidelli A, Walsh KJ, O'Brien DP, Minton DA, Bottke WF. 2015. The dynamical evolution of the asteroid belt. Asteroids IV P Michel, F DeMeo, WF Bottke 493–508 Tucson: Univ. Ariz. Press [Google Scholar]
  84. Muehlberger WR, Hörz F, Sevier JR, Ulrich GE. 1980. Mission objectives for geological exploration of the Apollo 16 landing site. Proc. Conf. Lunar Highlands Crust, November 14–16, Houston, TX JJ Papike, RB Merrill 1–49 New York: Pergamon [Google Scholar]
  85. Nemchin AA, Pidgeon RT, Healy D, Grange ML, Whitehouse MJ, Vaughan J. 2009. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteorit. Planet. Sci. 44:111717–34 [Google Scholar]
  86. Nesvorný D, Morbidelli A. 2012. Statistical study of the early solar system's instability with four, five, and six giant planets. Astron. J. 144:117 [Google Scholar]
  87. Nesvorný D, Roig F, Bottke WF. 2017. Modeling the historical flux of planetary impactors. Astron. J. 153:103 [Google Scholar]
  88. Nesvorný D, Vokrouhlický D. 2016. Neptune's orbital migration was grainy, not smooth. Astrophys. J. 825:94 [Google Scholar]
  89. Nesvorný D, Vokrouhlický D, Morbidelli DA, Bottke WF. 2009. Asteroidal source of L chondrite meteorites. Icarus 200:698–701 [Google Scholar]
  90. Neukum G, Ivanov BA, Hartmann WK. 2001. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96:1–455–86 [Google Scholar]
  91. Neumann GA, Zuber MT, Wieczorek MA, Head JW, Baker DMH. et al. 2015. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci. Adv. 1:9e1500852 [Google Scholar]
  92. Nimmo F, Hart SD, Korycansky DG, Agnor CB. 2008. Implications of an impact origin for the martian hemispheric dichotomy. Nature 453:71991220–23 [Google Scholar]
  93. Norman MD, Duncan RA, Huard JJ. 2006. Identifying impact events within the lunar cataclysm from 40Ar–39Ar ages and compositions of Apollo 16 impact melt rocks. Geochim. Cosmochim. Acta 70:246032–49 [Google Scholar]
  94. Norman MD, Duncan RA, Huard JJ. 2010. Imbrium provenance for the Apollo 16 Descartes terrain: argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta 74:2763–83 [Google Scholar]
  95. Norman MD, Nemchin AA. 2014. A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet. Sci. Lett. 388:387–98 [Google Scholar]
  96. Norman MD, Taylor LA, Shih C-Y, Nyquist LE. 2016. Crystal accumulation in a 4.2 Ga lunar impact melt. Geochim. Cosmochim. Acta 172:410–29 [Google Scholar]
  97. Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR. 2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–38 [Google Scholar]
  98. Nyquist LE, Shih C-Y, Reese YD. 2011. Dating melt rock 63545 by Rb-Sr and Sm-Nd: age of Imbrium; SPA dress rehearsal Presented at 42nd Lunar Planet. Sci. Conf., March 11, The Woodlands, TX [Google Scholar]
  99. Papanastassiou DA, Wasserburg GJ. 1972. The Rb-Sr age of a crystalline rock from Apollo 16. Earth Planet. Sci. Lett. 16:2289–98 [Google Scholar]
  100. Parker A. New Horizons Sci. Team 2015. Crater implications for planet origins. Presented at New Horizons Press Conf., Annu. AAS/Div. Planet. Sci. Meet., 47th, Nov. 9th Washington, DC: http://pluto.jhuapl.edu/News-Center/Press-Conferences/November-9-2015.php [Google Scholar]
  101. Premo WR, Tatsumoto M, Misawa K, Nakamuka N, Kita NI. 1999. Pb-isotopic systematics of lunar highland rocks (>3.9 Ga): constraints on early lunar evolution. Int. Geol. Rev. 41:295–128 [Google Scholar]
  102. Robbins SJ. 2014. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403:188–98 [Google Scholar]
  103. Robbins SJ, Hynek BM, Lillis RJ, Bottke W. 2013. The large crater impact history of Mars: the effect of different model crater age techniques. Icarus 225:173–84 [Google Scholar]
  104. Roig F, Nesvorný D. 2015. The evolution of asteroids in the jumping-Jupiter migration model. Astron. J. 150:186 [Google Scholar]
  105. Roig F, Nesvorný D, Desouza SR. 2016. Jumping Jupiter can explain Mercury's orbit. Astrophys. J. Lett. 820:2L30 [Google Scholar]
  106. Ryder G. 1990. Lunar samples, lunar accretion, and the early bombardment history of the Moon. Eos 71:313–23 [Google Scholar]
  107. Ryder G. 2002. Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. E 107:E46–16-3 [Google Scholar]
  108. Ryder G, Koeberl C, Mojzsis SJ. 2000. Heavy bombardment on the Earth at 3.85 Ga: the search for petrographic and geochemical evidence. Origin of the Earth and Moon RM Canup, K Righter 475–92 Tucson: Univ. Ariz. Press [Google Scholar]
  109. Schaeffer GA, Schaeffer OA. 1977. 39Ar-40Ar ages of lunar rocks. Proc. 8th Lunar Sci. Conf., March 14–18, Houston, TX RB Merril 2253–300 New York: Pergamon [Google Scholar]
  110. Schaeffer OA, Husain L. 1974. Chronology of lunar basin formation. Proc. 5th Lunar Sci. Conf., March 18–22, Houston, TX1541–55 New York: Pergamon [Google Scholar]
  111. Shuster DL, Balco G, Cassata WS, Fernandes VA, Garrick-Bethell I, Weiss BP. 2010. A record of impacts preserved in the lunar regolith. Earth Planet. Sci. Lett. 290:155–65 [Google Scholar]
  112. Simonson BM, Glass BP. 2004. Spherule layers—records of ancient impacts. Annu. Rev. Earth Planet. Sci. 32:329–61 [Google Scholar]
  113. Snape JF, Nemchin AA, Grange ML, Bellucci JJ, Thiessen F, Whitehouse MJ. 2016. Phosphate ages in Apollo 14 breccias: resolving multiple impact events with high precision U–Pb SIMS analyses. Geochim. Cosmochim. Acta 174:13–29 [Google Scholar]
  114. Spudis PD. 1984. Apollo 16 site geology and impact melts: implications for the geologic history of the lunar highlands. J. Geophys. Res. B 89:C95–107 [Google Scholar]
  115. Spudis PD. 1993. The Geology of Multi-Ring Impact Basins: the Moon and Other Planets Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  116. Spudis PD, Wilhelms DE, Robinson MS. 2011. The sculptured hills of the Taurus highlands: implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res. E 116:12E00H03 [Google Scholar]
  117. Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve RAF. 2006. Cratering history and lunar chronology. Rev. Mineral. Geochem. 60:1519–96 [Google Scholar]
  118. Strom RG, Malhotra R, Ito T, Yoshida F, Kring DA. 2005. The origin of planetary impactors in the inner solar system. Science 309:1847–50 [Google Scholar]
  119. Strom RG, Malhotra R, Xiao Z-Y, Ito T, Yoshida F, Ostrach LR. 2015. The inner solar system cratering record and the evolution of impactor populations. Res. Astron. Astrophys. 15:407 [Google Scholar]
  120. Swindle TD, Isachsen CE, Weirich JR, Kring DA. 2009. 40Ar-39Ar ages of H-chondrite impact melt breccias. Meteorit. Planet. Sci. 44:5747–62 [Google Scholar]
  121. Swindle TD, Kring DA, Weirich JR. 2014. 40Ar/39Ar ages of impacts involving ordinary chondrites. Geol. Soc. Lond. Spec. Pub. 378:333–47 [Google Scholar]
  122. Tanaka KL, Skinner JA Jr., Doh JM, Irwin RP III, Kolb EJ. et al. 2014. Geologic map of Mars Sci. Invest. Map 3292, US Geol. Surv., Reston, VA. https://doi.org/10.3133/sim3292 [Crossref] [Google Scholar]
  123. Taylor GJ, Warren P, Ryder G, Delano J, Pieters C, Lofgren G. 1991. Lunar rocks. Lunar Sourcebook G Heiken, D Vaniman, BM French 183–284 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  124. Tera F, Papanastassiou DA, Wasserburg GJ. 1974. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22:1–21 [Google Scholar]
  125. Thommes EW, Duncan MJ, Levison HF. 1999. The formation of Uranus and Neptune in the Jupiter–Saturn region of the solar system. Nature 402:6762635–38 [Google Scholar]
  126. Thomson BJ, Head JW III. 2001. Utopia Basin, Mars: characterization of topography and morphology and assessment of the origin and evolution of basin internal structure. J. Geophys. Res. E 106:E1023209–30 [Google Scholar]
  127. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2009. Tungsten isotopes in ferroan anorthosites: implications for the age of the Moon and lifetime of its magma ocean. Icarus 199:2245–49 [Google Scholar]
  128. Trail D, Mojzsis SJ, Harrison TM. 2007. Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim. Cosmochim. Acta 71:164044–65 [Google Scholar]
  129. Tsiganis K, Gomes R, Morbidelli A, Levison HF. 2005. Origin of the orbital architecture of the giant planets of the solar system. Nature 435:7041459–61 [Google Scholar]
  130. Turner G. 1979. A Monte Carlo fragmentation model for the production of meteorites: implications for gas retention ages. Proc. 10th Lunar Planet. Sci. Conf., March 19–23, Houston, TX NW Hinners 1917–41 New York: Pergamon [Google Scholar]
  131. Vaniman DT, Papike JJ. 1980. Lunar highland melt rocks: chemistry, petrology and silicate mineralogy. Proc. Conf. Lunar Highlands Crust, November 14–16, Houston, TX JJ Papike, RB Merrill 271–337 New York: Pergamon [Google Scholar]
  132. Vokrouhlický D, Bottke WF, Nesvorný D. 2016. Capture of trans-Neptunian planetesimals in the main asteroid belt. Astron. J. 152:39 [Google Scholar]
  133. Walsh KJ, Morbidelli A, Raymond SN, O'Brien DP, Mandell AM. 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475:206–9 [Google Scholar]
  134. Wetherill GW. 1975. Late heavy bombardment of the moon and terrestrial planets. Proc. 6th Lunar Sci. Conf., March 17–21, Houston, TX1539–61 New York: Pergamon [Google Scholar]
  135. Wieczorek MA, Jolliff BL, Khan A, Pritchard ME, Weiss BP. et al. 2006. The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60:221–364 [Google Scholar]
  136. Wilhelms DE. 1987. The geologic history of the Moon Prof. Pap. 1348, US Geol. Surv Reston, VA: [Google Scholar]
  137. Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E. et al. 2007. Emergence of a habitable planet. Space Sci. Rev. 129:1–335–78 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-020131
Loading
/content/journals/10.1146/annurev-earth-063016-020131
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error