1932

Abstract

The detection and characterization of large populations of pebbles in protoplanetary disks have motivated the study of pebble accretion as a driver of planetary growth. This review covers all aspects of planet formation by pebble accretion, from dust growth over planetesimal formation to the accretion of protoplanets and fully grown planets with gaseous envelopes. Pebbles are accreted at a very high rate—orders of magnitude higher than planetesimal accretion—and the rate decreases only slowly with distance from the central star. This allows planetary cores to start their growth in much more distant positions than their final orbits. The giant planets orbiting our Sun and other stars, including systems of wide-orbit exoplanets, can therefore be formed in complete consistency with planetary migration. We demonstrate how growth tracks of planetary mass versus semimajor axis can be obtained for all the major classes of planets by integrating a relatively simple set of governing equations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-020226
2017-08-30
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-020226.html?itemId=/content/journals/10.1146/annurev-earth-063016-020226&mimeType=html&fmt=ahah

Literature Cited

  1. Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP. 2009. Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700:1502–23 [Google Scholar]
  2. Bai XN, Stone JM. 2010. Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation. Astrophys. J. 722:1437–59 [Google Scholar]
  3. Baruteau C, Crida A, Paardekooper SJ, Masset F, Guilet J. et al. 2014. Planet-disk interactions and early evolution of planetary systems. Protostars and Planets VI H Beuther, RS Klessen, CP Dullemond, T Hennig 667–89 Tucson: Univ. Ariz. Press [Google Scholar]
  4. Benítez-Llambay P, Masset F, Koenigsberger G, Szulágyi J. 2015. Planet heating prevents inward migration of planetary cores. Nature 520:63–65 [Google Scholar]
  5. Benz W, Ida S, Alibert Y, Lin D, Mordasini C. 2014. Planet population synthesis. In Protostars and Planets VI H Beuther, RS Klessen, CP Dullemond, T Hennig 691–713 Tucson: Univ. Ariz. Press [Google Scholar]
  6. Birnstiel T, Fang M, Johansen A. 2016. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205:41–75 [Google Scholar]
  7. Birnstiel T, Klahr H, Ercolano B. 2012. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539:A148 [Google Scholar]
  8. Birnstiel T, Ormel CW, Dullemond CP. 2011. Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. Astron. Astrophys. 525:A11 [Google Scholar]
  9. Bitsch B, Johansen A. 2016. Influence of the water content in protoplanetary discs on planet migration and formation. Astron. Astrophys. 590:A101 [Google Scholar]
  10. Bitsch B, Johansen A, Lambrechts M, Morbidelli A. 2015a. The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575:A28 [Google Scholar]
  11. Bitsch B, Lambrechts M, Johansen A. 2015b. The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582:A112 [Google Scholar]
  12. Blum J, Wurm G. 2008. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46:21–56 [Google Scholar]
  13. Boss AP. 2001. Gas giant protoplanet formation: disk instability models with thermodynamics and radiative transfer. Astrophys. J. 563:367–73 [Google Scholar]
  14. Bottke WF, Durda DD, Nesvorný D, Jedicke R, Morbidelli A. et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus 175:111–40 [Google Scholar]
  15. Brauer F, Dullemond CP, Henning T. 2008. Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. Astron. Astrophys. 480:859–77 [Google Scholar]
  16. Brauer F, Dullemond CP, Johansen A, Henning T, Klahr H, Natta A. 2007. Survival of the mm-cm size grain population observed in protoplanetary disks. Astron. Astrophys. 469:1169–82 [Google Scholar]
  17. Buchhave LA, Latham DW, Johansen A, Bizzarro M, Torres G. et al. 2012. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486:375–77 [Google Scholar]
  18. Cameron AGW. 1978. Physics of the primitive solar accretion disk. Moon Planets 18:5–40 [Google Scholar]
  19. Carrera D, Johansen A, Davies MB. 2015. How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579:A43 [Google Scholar]
  20. Chamberlin TC. 1916. The planetesimal hypothesis. J. R. Astron. Soc. Can. 10:473–97 [Google Scholar]
  21. Chambers JE. 2016. Pebble accretion and the diversity of planetary systems. Astrophys. J. 825:63 [Google Scholar]
  22. Chiang E, Laughlin G. 2013. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–55 [Google Scholar]
  23. Chiang E, Youdin AN. 2010. Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38:493–522 [Google Scholar]
  24. Coleman GAL, Nelson RP. 2016. On the formation of compact planetary systems via concurrent core accretion and migration. MNRAS 457:2480–500 [Google Scholar]
  25. Crida A, Morbidelli A. 2007. Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration. MNRAS 377:1324–36 [Google Scholar]
  26. D'Angelo G, Weidenschilling SJ, Lissauer JJ, Bodenheimer P. 2014. Growth of Jupiter: enhancement of core accretion by a voluminous low-mass envelope. Icarus 241:298–312 [Google Scholar]
  27. Dodson-Robinson SE, Veras D, Ford EB, Beichman CA. 2009. The formation mechanism of gas giants on wide orbits. Astrophys. J. 707:79–88 [Google Scholar]
  28. Drażkowska J, Alibert Y, Moore B. 2016. Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594:A105 [Google Scholar]
  29. Drażkowska J, Dullemond CP. 2014. Can dust coagulation trigger streaming instability?. Astron. Astrophys. 572:A78 [Google Scholar]
  30. Drażkowska J, Windmark F, Dullemond CP. 2013. Planetesimal formation via sweep-up growth at the inner edge of dead zones. Astron. Astrophys. 556:A37 [Google Scholar]
  31. Fabrycky DC, Murray-Clay RA. 2010. Stability of the directly imaged multiplanet system HR 8799: resonance and masses. Astrophys. J. 710:1408–21 [Google Scholar]
  32. Fischer DA, Valenti J. 2005. The planet-metallicity correlation. Astrophys. J. 622:1102–17 [Google Scholar]
  33. Fressin F, Torres G, Charbonneau D, Bryson ST, Christiansen J. et al. 2013. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766:81 [Google Scholar]
  34. Gorti U, Hollenbach D, Dullemond CP. 2015. The impact of dust evolution and photoevaporation on disk dispersal. Astrophys. J. 804:29 [Google Scholar]
  35. Gotberg Y, Davies MB, Mustill A, Johansen A, Church RP. 2016. Long-term stability of the HR 8799 planetary system without resonant lock. arXiv:1606.07819 [astro-ph.EP]
  36. Greenberg R, Bottke WF, Carusi A, Valsecchi GB. 1991. Planetary accretion rates—analytical derivation. Icarus 94:98–111 [Google Scholar]
  37. Greenzweig Y, Lissauer JJ. 1990. Accretion rates of protoplanets. Icarus 87:40–77 [Google Scholar]
  38. Guillot T. 2005. The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33:493–530 [Google Scholar]
  39. Guillot T, Ida S, Ormel CW. 2014. On the filtering and processing of dust by planetesimals. I. Derivation of collision probabilities for non-drifting planetesimals. Astron. Astrophys. 572:A72 [Google Scholar]
  40. Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP. 2010. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513:A56 [Google Scholar]
  41. Hartmann L, Calvet N, Gullbring E, D'Alessio P. 1998. Accretion and the evolution of T Tauri disks. Astrophys. J. 495:385–400 [Google Scholar]
  42. Hayashi C. 1981. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70:35–53 [Google Scholar]
  43. Hayashi C, Nakazawa K, Nakagawa Y. 1985. Formation of the solar system. Protostars and Planets II DC Black, MS Matthews 1100–53 Tucson: Univ. Ariz. Press [Google Scholar]
  44. Helled R, Bodenheimer P. 2014. The formation of Uranus and Neptune: challenges and implications for intermediate-mass exoplanets. Astrophys. J. 789:69 [Google Scholar]
  45. Helled R, Bodenheimer P, Podolak M, Boley A, Meru F. et al. 2014. Giant planet formation, evolution, and internal structure. In Protostars and Planets VI H. Beuther, RS Klessen, CP Dullemond, T Henning 643–66 Tucson: Univ. Ariz. Press [Google Scholar]
  46. Ida S, Guillot T, Morbidelli A. 2016. The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 591:A72 [Google Scholar]
  47. Ikoma M, Nakazawa K, Emori H. 2000. Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537:1013–25 [Google Scholar]
  48. Johansen A, Blum J, Tanaka H, Ormel C, Bizzarro M, Rickman H. 2014. The multifaceted planetesimal formation process. In Protostars and Planets VI H. Beuther RS Klessen, CP Dullemond, T Henning 547–70 Tucson: Univ. Ariz. Press [Google Scholar]
  49. Johansen A, Lacerda P. 2010. Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. MNRAS 404:475–85 [Google Scholar]
  50. Johansen A, Mac Low MM, Lacerda P, Bizzarro M. 2015. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1:1500109 [Google Scholar]
  51. Johansen A, Oishi JS, Mac Low MM, Klahr H, Henning T, Youdin A. 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–25 [Google Scholar]
  52. Johansen A, Youdin A. 2007. Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. Astrophys. J. 662:627–41 [Google Scholar]
  53. Johansen A, Youdin A, Mac Low MM. 2009. Particle clumping and planetesimal formation depend strongly on metallicity. Astrophys. J. 704:L75–79 [Google Scholar]
  54. Kary DM, Lissauer JJ, Greenzweig Y. 1993. Nebular gas drag and planetary accretion. Icarus 106:288–307 [Google Scholar]
  55. Kretke KA, Levison HF. 2014. Challenges in forming the Solar System's giant planet cores via pebble accretion. Astron. J. 148:109 [Google Scholar]
  56. Krijt S, Ormel CW, Dominik C, Tielens AGGM. 2015. Erosion and the limits to planetesimal growth. Astron. Astrophys. 574:A83 [Google Scholar]
  57. Lambrechts M, Johansen A. 2012. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544:A32 [Google Scholar]
  58. Lambrechts M, Johansen A. 2014. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572:A107 [Google Scholar]
  59. Lambrechts M, Johansen A, Morbidelli A. 2014. Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572:A35 [Google Scholar]
  60. Levison HF, Kretke KA, Duncan MJ. 2015a. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322–24 [Google Scholar]
  61. Levison HF, Kretke KA, Walsh KJ, Bottke WF. 2015b. Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. PNAS 112:14180–85 [Google Scholar]
  62. Levison HF, Thommes E, Duncan MJ. 2010. Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139:1297–314 [Google Scholar]
  63. Lin MK, Youdin AN. 2015. Cooling requirements for the vertical shear instability in protoplanetary disks. Astrophys. J. 811:17 [Google Scholar]
  64. Lissauer JJ. 1987. Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–65 [Google Scholar]
  65. Lissauer JJ, Fabrycky DC, Ford EB, Borucki WJ, Fressin F. et al. 2011. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58 [Google Scholar]
  66. Machida MN, Kokubo E, Inutsuka SI, Matsumoto T. 2010. Gas accretion onto a protoplanet and formation of a gas giant planet. MNRAS 405:1227–43 [Google Scholar]
  67. Marois C, Macintosh B, Barman T, Zuckerman B, Song I. et al. 2008. Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348 [Google Scholar]
  68. Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T. 2010. Images of a fourth planet orbiting HR 8799. Nature 468:1080–83 [Google Scholar]
  69. Martin RG, Livio M. 2012. On the evolution of the snow line in protoplanetary discs. MNRAS 425:L6–9 [Google Scholar]
  70. Mayer L, Quinn T, Wadsley J, Stadel J. 2002. Formation of giant planets by fragmentation of protoplanetary disks. Science 298:1756–59 [Google Scholar]
  71. Mayor M, Marmier M, Lovis C, Udry S, Ségransan D. et al. 2011. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:1109.2497 [astro-ph.EP]
  72. Mizuno H. 1980. Formation of the giant planets. Prog. Theor. Phys. 64:544–57 [Google Scholar]
  73. Morbidelli A, Bitsch B, Crida A, Gounelle M, Guillot T. et al. 2016. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267:368–76 [Google Scholar]
  74. Morbidelli A, Bottke WF, Nesvorný D, Levison HF. 2009. Asteroids were born big. Icarus 204:558–73 [Google Scholar]
  75. Morbidelli A, Lambrechts M, Jacobson S, Bitsch B. 2015. The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores. Icarus 258:418–29 [Google Scholar]
  76. Morbidelli A, Nesvorny D. 2012. Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron. Astrophys. 546:A18 [Google Scholar]
  77. Musiolik G, Teiser J, Jankowski T, Wurm G. 2016. Collisions of CO2 ice grains in planet formation. Astrophys. J. 818:16 [Google Scholar]
  78. Muto T, Inutsuka S. 2009. Orbital evolution of a particle interacting with a single planet in a protoplanetary disk. Astrophys. J. 695:1132–50 [Google Scholar]
  79. Nayakshin S. 2010. Formation of planets by tidal downsizing of giant planet embryos. MNRAS 408:L36–40 [Google Scholar]
  80. Nelson RP, Gressel O, Umurhan OM. 2013. Linear and non-linear evolution of the vertical shear instability in accretion discs. MNRAS 435:2610–32 [Google Scholar]
  81. Ogihara M, Morbidelli A, Guillot T. 2015. A reassessment of the in situ formation of close-in super-Earths. Astron. Astrophys. 578:A36 [Google Scholar]
  82. Okuzumi S, Tanaka H, Kobayashi H, Wada K. 2012. Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752:106 [Google Scholar]
  83. Ormel CW, Cuzzi JN. 2007. Closed-form expressions for particle relative velocities induced by turbulence. Astron. Astrophys. 466:413–20 [Google Scholar]
  84. Ormel CW, Klahr HH. 2010. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520:A43 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-020226
Loading
/content/journals/10.1146/annurev-earth-063016-020226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error