Nearly forty years after the return of the first lunar samples to Earth, improvements in laboratory detection limits made possible the first definitive discovery of magmatic water in lunar volcanic samples. The intervening decade has seen an exponential increase in the amount of data on the abundance of magmatic water, and its hydrogen isotope composition, in various rock types recovered from the Moon. Here we review these data and describe how the abundance of water in the lunar interior places important constraints on models for the high-temperature origin and evolution of the Moon.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abe Y, Ohtani E, Okuchi T, Righter K, Drake M. 2000. Water in the early Earth. Origin of the Earth and Moon RM Canup, K Righter 413–33 Tucson: Univ. Ariz. Press [Google Scholar]
  2. Ahrens TJ. 1990. Earth accretion. Origin of the Earth HE Newsom, JH Jones 211–27 Oxford, UK: Oxford Univ. Press [Google Scholar]
  3. Ahrens TJ. 1993. Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21:525–55 [Google Scholar]
  4. Albarède F, Albalat E, Lee CA. 2015. An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteorit. Planet. Sci. 50:568–77 [Google Scholar]
  5. Alexander CMO, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler RL. 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–23 [Google Scholar]
  6. Alexander CMO, Howard KT, Bowden R, Fogel ML. 2013. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochim. Cosmochim. Acta 123:244–60 [Google Scholar]
  7. Anand M, Tartèse R, Barnes J. 2014. Understanding the origin and evolution of water in the Moon through lunar sample studies. Philos. Trans. R. Soc. A 372:20130254 [Google Scholar]
  8. Armytage RMG, Georg RB, Williams HM, Halliday AN. 2012. Silicon isotopes in lunar rocks: implications for the Moon's formation and the early history of the Earth. Geochim. Cosmochim. Acta 77:504–14 [Google Scholar]
  9. Barnes JJ, Franchi IA, Anand M, Tartèse R, Starkey NA. et al. 2013. Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem. Geol. 337–38:48–55 [Google Scholar]
  10. Barnes JJ, Tartèse R, Anand M, McCubbin FM, Franchi IA. et al. 2014. The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 390:244–52 [Google Scholar]
  11. Barnes JJ, Tartèse R, Anand M, McCubbin FM, Neal CR, Franchi IA. 2016. Early degassing of lunar urKREEP by crust-breaching impact(s). Earth Planet. Sci. Lett. 447:84–94 [Google Scholar]
  12. Beard BL, Johnson CM. 1999. High precision iron isotope measurements of terrestrial and lunar materials. Geochim. Cosmochim. Acta 63:1653–60 [Google Scholar]
  13. Becker H, Horan MF, Walker RJ, Gao S, Lorand JP, Rudnick RL. 2006. Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70:4528–50 [Google Scholar]
  14. Bottke WF, Levison HF, Nesvorny D, Dones L. 2007. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?. Icarus 190:203–23 [Google Scholar]
  15. Boyce JW, Liu Y, Rossman GR, Guan Y, Eiler JM. et al. 2010. Lunar apatite with terrestrial volatile abundances. Nature 466:466–69 [Google Scholar]
  16. Boyce JW, Tomlinson SM, McCubbin FM. 2014. The lunar apatite paradox. Science 344:400–2 [Google Scholar]
  17. Boyce JW, Trieman AH, Guan Y, Ma C, Eiler JA. et al. 2015. The chlorine isotope fingerprint of the lunar magma ocean. Sci. Adv. 1:e1500380 [Google Scholar]
  18. Cameron AGW, Benz W. 1991. The origin of the Moon and the single impact hypothesis IV. Icarus 92:204–16 [Google Scholar]
  19. Cameron AGW, Ward WR. 1976. The origin of the Moon. Lunar Sci. Conf. Abstr. 7:120 [Google Scholar]
  20. Canup RM. 2004. Simulations of a late lunar-forming impact. Icarus 168:433–56 [Google Scholar]
  21. Canup RM. 2012. Forming a Moon with an Earth-like composition via a giant impact. Science 338:1052–55 [Google Scholar]
  22. Canup RM, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412:708–12 [Google Scholar]
  23. Canup RM, Barr AC, Crawford DA. 2013. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222:200–19 [Google Scholar]
  24. Canup RM, Levison HF, Stewart GR. 1999. Evolution of a terrestrial multiple-moon system. Astron. J. 117:603 [Google Scholar]
  25. Canup RM, Visscher C, Salmon J, Fegley B Jr.. 2015. Depletion of volatile elements in the Moon due to incomplete accretion within an impact-generated disk. Nat. Geosci. 8:918–21 [Google Scholar]
  26. Carlson RW, Borg LE, Gaffney AM, Boyet M. 2014. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Philos. Trans. R. Soc. A 372:20130246 [Google Scholar]
  27. Cartigny P, Pineau F, Aubaud C, Javoy M. 2008. Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet. Sci. Lett. 265:672–85 [Google Scholar]
  28. Chakrabarti R, Jacobsen SB. 2010a. Silicon isotopes in the inner Solar System: implications for core formation, solar nebular processes and partial melting. Geochim. Cosmochim. Acta 74:6921–33 [Google Scholar]
  29. Chakrabarti R, Jacobsen SB. 2010b. The isotopic composition of magnesium in the inner Solar System. Earth Planet. Sci. Lett. 293:349–58 [Google Scholar]
  30. Chambers JE. 2004. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223:241–52 [Google Scholar]
  31. Charlier BLA, Nowell GM, Parkinson IJ, Kelley SP, Pearson DG, Burton KW. 2012. High temperature strontium stable isotope behaviour in the early solar system and planetary bodies. Earth Planet. Sci. Lett. 329–30:31–40 [Google Scholar]
  32. Charnoz S, Michaut C. 2015. Evolution of the protolunar disk: dynamics, cooling timescale and implantation of volatiles onto the Earth. Icarus 260:440–63 [Google Scholar]
  33. Chen Y, Zhang Y, Liu Y, Guan Y, Eiler J, Stolper EM. 2015. Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 427:37–46 [Google Scholar]
  34. Cooper LB, Ruscitto DM, Plank T, Wallace PJ, Syracuse EM, Manning CE. 2012. Global variations in H2O/Ce. 1. Slab surface temperatures beneath volcanic arcs. Geochem. Geophys. Geosyst. 13:Q03024 [Google Scholar]
  35. Ćuk M, Stewart ST. 2012. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–52 [Google Scholar]
  36. Day JMD, Pearson DG, Taylor LA. 2007. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315:217–19 [Google Scholar]
  37. Delano JW. 1986. Pristine lunar glasses: criteria, data and implications. J. Geophys. Res. 91:B4201–13 [Google Scholar]
  38. Delano JW, Livi K. 1981. Lunar volcanic glasses and their constraints on mare petrogenesis. Geochim. Cosmochim. Acta 45:2137–49 [Google Scholar]
  39. Desch SJ, Taylor GJ. 2013. Isotopic mixing due to interaction between the protolunar disk and the Earth's atmosphere. Lunar Planet. Sci. Conf. Abstr. 44:2566 [Google Scholar]
  40. Ding TP, Thode HG, Rees CE. 1983. Sulphur content and sulphur isotope composition of orange and black glasses in Apollo 17 drive tube 74002/1. Geochim. Cosmochim. Acta 47:491–96 [Google Scholar]
  41. Dixon JE, Clague DA. 2001. Volatiles in basaltic glasses from Loihi seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42:627–54 [Google Scholar]
  42. Dixon JE, Stolper EM, Holloway JR. 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I. Calibration and solubility models. J. Petrol. 36:1607–31 [Google Scholar]
  43. Elkins-Tanton LT, Bercovici D. 2014. Contraction or expansion of the Moon's crust during magma ocean freezing?. Philos. Trans. R. Soc. A 372:20130240 [Google Scholar]
  44. Elkins-Tanton LT, Burgess S, Yin QZ. 2011. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304:326–36 [Google Scholar]
  45. Elkins-Tanton LT, Grove TL. 2011. Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling. Earth Planet. Sci. Lett. 307:173–79 [Google Scholar]
  46. Fitoussi C, Bourdon B. 2012. Silicon isotope evidence against an enstatite chondrite Earth. Science 335:1477–80 [Google Scholar]
  47. Füri E, Barry PH, Taylor LA, Marty B. 2015. Indigenous nitrogen in the Moon: constraints from coupled nitrogen–noble gas analyses of mare basalts. Earth Planet. Sci. Lett. 431:195–205 [Google Scholar]
  48. Füri E, Deloule E. 2016. New constraints on the production rate of cosmogenic deuterium at the Moon's surface. Lunar Planet. Sci. Conf. Abstr. 47:1351 [Google Scholar]
  49. Füri E, Deloule E, Gurenko A, Marty B. 2014. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229:109–20 [Google Scholar]
  50. Genda H, Abe Y. 2003a. Modification of a proto-lunar disk by hydrodynamic escape of silicate vapor. Earth Planets Space 55:53–57 [Google Scholar]
  51. Genda H, Abe Y. 2003b. Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164:149–62 [Google Scholar]
  52. Genda H, Abe Y. 2005. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–44 [Google Scholar]
  53. Genda H, Kokubo E, Ida S. 2012. Merging criteria for giant impacts of protoplanets. Astrophys. J. 744:137 [Google Scholar]
  54. Gonfiantini R, Stichler W, Rozanski K. 1995. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. Reference and Intercomparison Materials for Stable Isotopes of Light Elements13–29 IAEA-TECDOC-825 Vienna: Int. At. Energy Agency [Google Scholar]
  55. Greenwood JP, Itoh S, Sakamoto N, Warren P, Taylor L, Yurimoto H. 2011. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 4:1–4 [Google Scholar]
  56. Halliday AN. 2013. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105:146–71 [Google Scholar]
  57. Hallis LJ, Anand M, Greenwood RC, Miller MF, Franchi IA, Russell SS. 2010. The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim. Cosmochim. Acta 74:6885–99 [Google Scholar]
  58. Hartmann WK, Davis DR. 1975. Satellite-sized planetesimals and lunar origin. Icarus 24:504–14 [Google Scholar]
  59. Hauri EH, Saal AE, Rutherford MJ, Van Orman JA. 2015. Water in the Moon's interior: truth and consequences. Earth Planet. Sci. Lett. 409:252–64 [Google Scholar]
  60. Hauri EH, Shaw AM, Wang J, Dixon JE, King PL, Mandeville C. 2006. Matrix effects in hydrogen isotope analysis of silicate glasses by SIMS. Chem. Geol. 235:352–65 [Google Scholar]
  61. Hauri EH, Wang J, Dixon JE, King PL, Mandeville C, Newman S. 2002. SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem. Geol. 183:99–114 [Google Scholar]
  62. Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA. 2011. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213–15 [Google Scholar]
  63. Herwartz D, Pack A, Friedrichs B, Bischoff A. 2014. Identification of the giant impactor Theia in lunar rocks. Science 344:1146–50 [Google Scholar]
  64. Herzog GF, Moynier F, Albarède F, Berezhnoy AA. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochim. Cosmochim. Acta 73:5884–904 [Google Scholar]
  65. Hess PC, Parmentier EM. 1995. A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134:501–14 [Google Scholar]
  66. Hosono N, Saitoh TR, Makino J, Genda H, Ida S. 2016. The giant impact simulations with density independent smoothed particle hydrodynamics. Icarus 271:131–57 [Google Scholar]
  67. Hui H, Peslier AH, Zhang Y, Neal CR. 2013. Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 6:177–80 [Google Scholar]
  68. Humayun M, Clayton RN. 1995. Precise determination of the isotopic composition of potassium: application to terrestrial rocks and lunar soils. Geochim. Cosmochim. Acta 59:2115–30 [Google Scholar]
  69. Hunten DM. 1973. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30:1481–94 [Google Scholar]
  70. Hunten DM, Pepin RO, Walker JCG. 1987. Mass fractionation in hydrodynamic escape. Icarus 69:532–49 [Google Scholar]
  71. Ida S, Canup RM, Stewart GR. 1997. Lunar accretion from an impact-generated disk. Nature 389:353–57 [Google Scholar]
  72. Jacobson SA, Morbidelli A, Raymond SN, O'Brien DP, Walsh KJ, Rubie DC. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature 508:84–87 [Google Scholar]
  73. Jutzi M, Asphaug E. 2012. Forming the lunar farside highlands by accretion of a companion moon. Nature 476:69–72 [Google Scholar]
  74. Kaib NA, Cowan NB. 2015. The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252:161–74 [Google Scholar]
  75. Kerridge JF. 1985. Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim. Cosmichim. Acta 49:1707–14 [Google Scholar]
  76. Krähenbühl U, Ganapathy R, Morgan JW, Anders E. 1973a. Volatile elements in Apollo 16 samples: implications for highlands volcanism and the accretion history of the Moon. Geochim. Cosmochim. Acta 2:1325–48 [Google Scholar]
  77. Krähenbühl U, Ganapathy R, Morgan JW, Anders E. 1973b. Volatile elements in Apollo 16 samples: possible evidence for outgassing of the Moon. Scienc 180:858–61 [Google Scholar]
  78. Kruijer TS, Kleine T, Fischer-Godde M, Sprung P. 2015. Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–37 [Google Scholar]
  79. Liu Y, Spicuzza MJ, Craddock PR, Day JMD, Valley JW. et al. 2010. Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim. Cosmochim. Acta 74:6249–62 [Google Scholar]
  80. Lock S, Stewart ST, Leinhardt ZM, Mace M, Ćuk M. 2015. The post-impact state of the Moon-forming giant impact: favourable aspects of high-angular momentum models. Lunar Planet. Sci. Conf. Abstr. 46:2193 [Google Scholar]
  81. Lodders K, Fegley B Jr.. 1998. The Planetary Scientist's Companion New York: Oxford Univ. Press [Google Scholar]
  82. Lugmair GW, Shukolyukov A. 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62:2863–86 [Google Scholar]
  83. MacDonald G. 1960. Stress history of the Moon. Planet. Space Sci. 2:249–55 [Google Scholar]
  84. Mastrobuono-Battisti A, Perets HB, Raymond SN. 2015. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520:212–15 [Google Scholar]
  85. McCubbin FM, Jolliff BJ, Nekvasil H, Carpenter PK, Zeigler RA. et al. 2011. Fluorine and chlorine abundances in lunar apatite: implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochim. Cosmochim. Acta 75:5073–93 [Google Scholar]
  86. McCubbin FM, Nekvasil H, Jolliff BL, Carpenter PK, Zeigler RA. 2008. A survey of lunar apatite volatile contents for determining bulk lunar water: How dry is “bone dry”?. Lunar Planet. Sci. Conf. Abstr. 39:1788 [Google Scholar]
  87. McCubbin FM, Nekvasil H, Lindsley DH. 2007. Is there evidence for water in lunar magmatic minerals? A crystal chemical investigation. Lunar Planet. Sci. Conf. Abstr. 38:1354 [Google Scholar]
  88. McCubbin FM, Steele A, Hauri EH, Nekvasil H, Yamashita S, Hemley RJ. 2010. Nominally hydrous magmatism on the Moon. PNAS 107:11223–28 [Google Scholar]
  89. McCubbin FM, Vander Kaaden KE, Tartèse R, Boyce JW, Mikhail S. et al. 2015a. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000°C. Am. Mineral. 100:1790–802 [Google Scholar]
  90. McCubbin FM, Vander Kaaden KE, Tartèse R, Klima RL, Liu Y. et al. 2015b. Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs. Am. Mineral. 100:1668–1707 [Google Scholar]
  91. McDonough WF, Sun SS. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  92. Merlivat L, Lelu M, Nief G, Roth E. 1976. Spallation deuterium in rock 70215. Lunar Planet. Sci. Conf. Abstr. 7:649–58 [Google Scholar]
  93. Meyer J, Elkins-Tanton L, Wisdom J. 2010. Coupled thermal-orbital evolution of the early Moon. Icarus 208:1–10 [Google Scholar]
  94. Michael P. 1995. Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131:301–20 [Google Scholar]
  95. Morbidelli A, Chambers J, Lunine JI, Petit JM, Robert F. et al. 2000. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35:1309–20 [Google Scholar]
  96. Mortimer JI, Verchovsky AB, Anand M, Gilmour I, Pillinger CT. 2015. Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon and noble gases in lunar basalts: insights into interior and surface processes on the Moon. Icarus 225:3–17 [Google Scholar]
  97. Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:101–4 [Google Scholar]
  98. Nakajima M. 2016. Origin of the Earth and Moon PhD Thesis Calif. Inst. Technol. [Google Scholar]
  99. Nakajima M, Stevenson DJ. 2014a. Hydrodynamic escape does not prevent the “wet” Moon formation. Lunar Planet. Sci. Conf. Abstr. 45:2770 [Google Scholar]
  100. Nakajima M, Stevenson DJ. 2014b. Investigation of the initial state of the Moon-forming disk: bridging SPH simulations and hydrostatic models. Icarus 233:259–67 [Google Scholar]
  101. Nakajima M, Stevenson DJ. 2015. Melting and mixing states of the Earth's mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427:286–95 [Google Scholar]
  102. Nesvorny D, Jenniskens P, Levison HF, Bottke WF, Vokrouchilcky D, Gounelle M. 2010. Cometary origin of the zodiacal cloud and carbonaceous meteorites: implications for hot debris disks. Astrophys. J. 713:816–36 [Google Scholar]
  103. Nyquist LE, Shih CY. 1992. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56:2213–34 [Google Scholar]
  104. O'Brien DP, Walsh KJ, Morbidelli A, Raymond SN, Mandell AM. 2014. Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239:74–84 [Google Scholar]
  105. Pahlevan K. 2014. Isotopes as tracers of the sources of the lunar material and processes of lunar origin. Philos. Trans. R. Soc. A 372:20130257 [Google Scholar]
  106. Pahlevan K, Karato SI, Fegley B. 2016. Speciation and dissolution of hydrogen in the proto-lunar disk. Earth Planet. Sci. Lett. 445:104–13 [Google Scholar]
  107. Pahlevan K, Stevenson DJ. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262:438–49 [Google Scholar]
  108. Paniello RC, Day JMD, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature 490:376–79 [Google Scholar]
  109. Parker EN. 1963. Hydrostatic properties of a coronal atmosphere. Interplanetary Dynamical Processes41–50 New York: Wiley [Google Scholar]
  110. Peplowski PN, Evans L, Hauck SA, McCoy TJ, Boynton WV. et al. 2011. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution. Science 333:1850–52 [Google Scholar]
  111. Prettyman TH, Hagerty JJ, Elphic RC, Feldman WC, Lawrence DJ. et al. 2006. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. 111:E12007 [Google Scholar]
  112. Reedy RC. 1981. Cosmic-ray-produced stable nuclides: various production rates and their implications. Lunar Planet. Sci. Conf. Abstr. 12:871–73 [Google Scholar]
  113. Reufer A, Meier MMM, Benz W, Wieler R. 2012. A hit-and-run giant impact scenario. Icarus 221:296–99 [Google Scholar]
  114. Ringwood AE. 1992. Volatile and siderophile element geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111:537–55 [Google Scholar]
  115. Ringwood AE, Kesson SE. 1977. Basaltic magmatism and the bulk composition of the Moon. Moon 16:425–64 [Google Scholar]
  116. Robert F, Epstein S. 1982. The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous chondrites. Geochim. Cosmochim. Acta 46:81–95 [Google Scholar]
  117. Robinson KL, Barnes JJ, Nagashima K, Thomen A, Franchi IA. et al. 2016. Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188:244–60 [Google Scholar]
  118. Robinson KL, Taylor GJ. 2014. Heterogeneous distribution of water in the Moon. Nat. Geosci. 7:401–8 [Google Scholar]
  119. Rutherford MJ, Head JW, Saal AE, Wilson L, Hauri EH. 2015. A revised model for the ascent and eruption of gas-saturated lunar picritic magma based on experiments and lunar sample data. Lunar Planet. Sci. Conf. Abstr. 46:1446 [Google Scholar]
  120. Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MC, Cooper RF. 2008. Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior. Nature 454:192–95 [Google Scholar]
  121. Saal AE, Hauri EH, Van Orman JA, Rutherford MJ. 2013. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340:1317–20 [Google Scholar]
  122. Salmon J, Canup RM. 2012. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760:83 [Google Scholar]
  123. Salmon J, Canup RM. 2014. Accretion of the Moon from non-canonical discs. Philos. Trans. R. Soc. A 372:20130256 [Google Scholar]
  124. Schlichting HE, Sari R, Yalinewich A. 2015. Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247:81–94 [Google Scholar]
  125. Schlichting HE, Warren PH, Yin QZ. 2012. The last stages of terrestrial planet formation: dynamical friction and the late veneer. Astrophys. J. 752:8 [Google Scholar]
  126. Schönbächler M, Lee DC, Rehkämper M, Halliday AN, Fehr MA. et al. 2003. Zirconium isotope evidence for incomplete admixing of r-process components in the solar nebula. Earth Planet. Sci. Lett. 216:467–81 [Google Scholar]
  127. Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS. 2007. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–65 [Google Scholar]
  128. Sharp ZD, Draper DS. 2013. The chlorine abundance of Earth: implications for a habitable planet. Earth Planet. Sci. Lett. 369–70:71–77 [Google Scholar]
  129. Sharp ZD, Mercer JA, Jones JH, Brearley AJ, Selverstone J. et al. 2013. The chlorine isotope composition of chondrites and Earth. Geochim. Cosmochim. Acta 107:189–204 [Google Scholar]
  130. Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YQ. 2010. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329:1050–53 [Google Scholar]
  131. Shuvalov V. 2009. Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44:1095–105 [Google Scholar]
  132. Solomon SC. 1986. On the early thermal state of the Moon. Origin of the Moon. Proceedings of the Conference, Kona, HI, Oct. 13–16, 1984 WK Hartmann, RJ Phillips, GJ Taylor 435–52 Houston: Lunar Planet. Inst. [Google Scholar]
  133. Solomon SC, Longhi J. 1977. Magma oceanography. 1. Thermal evolution. Lunar Sci. Conf. Abstr. 8:884 [Google Scholar]
  134. Spangler RR, Delano JW. 1984. History of the Apollo 15 yellow impact glass and sample 15426 and 15427. J. Geophys. Res. 89:B478–86 [Google Scholar]
  135. Spangler RR, Warasila R, Delano JW. 1984. 39Ar-40Ar ages for the Apollo 15 green and yellow volcanic glasses. J. Geophys. Res. 89:B487–97 [Google Scholar]
  136. Spicuzza MJ, Day JMD, Taylor LA, Valley JW. 2007. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253:254–65 [Google Scholar]
  137. Stewart ST, Lock SJ, Mukhopadhyay S. 2014. Atmospheric loss and volatile fractionation during giant impacts. Lunar Planet. Sci. Conf. Abstr. 45:2869 [Google Scholar]
  138. Tartèse R, Anand M. 2013. Late delivery of chondritic hydrogen into the lunar mantle: insights from mare basalts. Earth Planet. Sci. Lett. 361:480–86 [Google Scholar]
  139. Tartèse R, Anand M, Barnes JJ, Starkey NA, Franchi IA, Sano Y. 2013. The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: implications for the volatile inventory of the Moon. Geochim. Cosmochim. Acta 122:58–74 [Google Scholar]
  140. Tartèse R, Anand M, Joy KH, Franchi IA. 2014a. H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteorit. Planet. Sci. 49:2266–89 [Google Scholar]
  141. Tartèse R, Anand M, McCubbin FM, Elardo SM, Shearer CK, Franchi IA. 2014b. Apatites in lunar KREEP basalts: the missing link to understanding the H isotope systematics of the Moon. Geology 42:363–66 [Google Scholar]
  142. Taylor GJ, Boynton W, Brückner J, Wänke H, Dreibus G. et al. 2006a. Bulk composition and early differentiation of Mars. J. Geophys. Res. 111:E03S10 [Google Scholar]
  143. Taylor GJ, Stopar JD, Boynton WV, Karunatillake S, Keller JM. et al. 2006b. Variations in K/Th on Mars. J. Geophys. Res. 111:E03S06 [Google Scholar]
  144. Taylor SR. 1979. Lunar and terrestrial potassium and uranium abundances: implications for the fission hypothesis. Lunar Planet. Sci. Conf. Abstr. 10:2017–30 [Google Scholar]
  145. Tera F, Papanastassiou DA, Wasserburg GJ. 1974. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22:1–21 [Google Scholar]
  146. Tera F, Wasserburg GJ. 1976. Lunar ball games and other sports. Lunar Sci. Conf. Abstr. 7:858–60 [Google Scholar]
  147. Thode HG, Rees CE. 1976. Sulphur isotopes in grain size fractions of lunar soils. Lunar Sci. Conf. Abstr. 7:459–68 [Google Scholar]
  148. Thompson C, Stevenson DJ. 1988. Gravitational instability in two-phase disks and the origin of the Moon. Astrophys. J. 333:452–81 [Google Scholar]
  149. Touboul M, Puchtel IS, Walker RJ. 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–69 [Google Scholar]
  150. Ustunisik G, Nekvasil H, Lindsley D. 2011. Differential degassing of H2O, Cl, F, and S: potential effects on lunar apatite. Am. Mineral. 96:1650–53 [Google Scholar]
  151. Ustunisik G, Nekvasil H, Lindsley DH, McCubbin FM. 2015. Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface: implications for the composition and Cl isotopic values of lunar apatite. Am. Mineral. 100:1717–27 [Google Scholar]
  152. Valdes MC, Moreira M, Foriel J, Moynier F. 2014. The nature of Earth's building blocks as revealed by calcium isotopes. Earth Planet. Sci. Lett. 394:135–45 [Google Scholar]
  153. Visscher C, Fegley B Jr.. 2013. Chemistry of impact-generated silicate melt-vapor debris disks. Astrophys. J. Lett. 767:L12 [Google Scholar]
  154. Wada K, Kokubo E, Makino J. 2006. High-resolution simulations of a Moon-forming impact and post-impact evolution. Astrophys. J. 638:1180–86 [Google Scholar]
  155. Wang K, Jacobsen SB. 2016. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538:487–90 [Google Scholar]
  156. Wetzel DT, Hauri EH, Saal AE, Rutherford MJ. 2015. Carbon content and degassing history of the lunar volcanic glasses. Nat. Geosci. 8:755–58 [Google Scholar]
  157. Wiechert U, Halliday AN, Lee DC, Snyder GA, Taylor LA, Rumble D. 2001. Oxygen isotopes and the Moon-forming giant impact. Science 294:345–48 [Google Scholar]
  158. Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ. et al. 2013. The crust of the Moon as seen by GRAIL. Science 339:671–75 [Google Scholar]
  159. Willbold M, Elliott T, Moorbath S. 2011. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477:195–98 [Google Scholar]
  160. Wisdom J, Tian Z. 2015. Early evolution of the Earth-Moon system with a fast-spinning Earth. Icarus 256:138–46 [Google Scholar]
  161. Wolf R, Anders E. 1980. Moon and Earth: compositional differences inferred from siderophiles, volatiles, and alkalis in basalts. Geochim. Cosmochim. Acta 44:2111–24 [Google Scholar]
  162. Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A. 2016. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351:493–96 [Google Scholar]
  163. Zahnle KJ, Kasting JF, Pollack JB. 1988. Evolution of a steam atmosphere during Earth's accretion. Icarus 74:62–97 [Google Scholar]
  164. Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5:251–55 [Google Scholar]
  165. Zhang N, Parmentier EM, Liang Y. 2013. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J. Geophys. Res. Planets 118:1789–804 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error