During my career, our knowledge of erupting geysers and volcanoes in the Solar System has exploded. In this prefatory, I tell how I became fascinated with high-speed processes through studying meteorite impact dynamics, and then how my initial idea of studying Old Faithful geyser as a volcanic analog led me to work not only on the dynamics of eruption of Mount St. Helens in 1980 but also on geysers erupting on Io (a fiery satellite of Jupiter), Triton (a frigid satellite of Neptune), and Enceladus (an active satellite of Saturn). Unforeseeably, the study of these events also led to work on mineral thermodynamics and the hydraulics and geomorphic evolution of rapids in the Grand Canyon. This is a narrative, not a formal review article, but the reader can find references in the Related Resources section to explore topics in more detail.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abramov O, Mojzsis SJ. 2016. Thermal effects of impact bombardments on Noachian Mars. Earth Planet. Sci. Lett. 442:108–20 [Google Scholar]
  2. Akaogi M, Oohata M, Kojitani H, Kawaji H. 2011. Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary. Am. Mineral. 96:1325–30 [Google Scholar]
  3. Alvarez LW, Alvarez W, Asaro F, Michel HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: experiment and theory. Science 208:1095–108 [Google Scholar]
  4. Alvarez W, Claeys P, Kieffer SW. 1995. Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater. Science 269:930–35 [Google Scholar]
  5. Artemieva N, Pierazzo E. 2009. The Canyon Diablo impact event. Projectile motion through the atmosphere. Meteorit. Planet. Sci. 44:25–42 [Google Scholar]
  6. Artemieva N, Pierazzo E. 2011. The Canyon Diablo impact event. 2. Projectile fate and target melting upon impact. Meteorit. Planet. Sci. 46:805–29 [Google Scholar]
  7. Artemieva NA, Wünnemann K, Krien F, Reimold WU, Stöffler D. 2013. Ries crater and suevite revisited—observations and modeling. Part II. Modeling. Meteorit. Planet. Sci. 48:590–627 [Google Scholar]
  8. Assoc. Press. 1983. Three die as Colorado River surges; interstate blocked. New York Times, June 27 http://www.nytimes.com/1983/06/27/us/3-die-as-colorado-river-surges-interstate-blocked.html [Google Scholar]
  9. Baroni S, de Gironcoli S, Corso AD. 2001. Phonons and related crystal properties from density-functional theory. Rev. Mod. Phys. 73:525–62 [Google Scholar]
  10. Bell MS. 2016. CO2 release due to impact devolatilization of carbonate: results of shock experiments. Meteorit. Planet. Sci. 51:619–46 [Google Scholar]
  11. Bellucci JJ, Nemchin AA, Whitehouse MJ, Snape JF, Kielman RB. et al. 2016. A Pb isotopic resolution to the Martian meteorite age paradox. Earth Planet. Sci. Lett. 433:241–48 [Google Scholar]
  12. Bercovici D, Michaut C. 2010. Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophys. J. Int. 182:843–64 [Google Scholar]
  13. Birch F, Kennedy GC. 1972. Notes on geyser temperatures in Iceland and Yellowstone National Park. Geophys. Monogr. Ser. 16:329–36 [Google Scholar]
  14. Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ. et al. 2014. Pressure-temperature evolution of primordial solar system solids during impact-induced compaction. Nat. Commun. 5:5451 [Google Scholar]
  15. Borisov AA, Dubinina EO. 2014. Effect of network-forming cations on the oxygen isotope fractionation between silicate melts: experimental study at 1400–1570°C. Petrology 22:359–80 [Google Scholar]
  16. Bouquet A, Mousis O, Waite JH, Picaud S. 2015. Possible evidence for a methane source in Enceladus’ ocean. Geophys. Res. Lett. 42:1334–39 [Google Scholar]
  17. Brand BD, Bendaña S, Self S, Pollock N. 2016. Topographic controls on pyroclastic density current dynamics: insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA). J. Volcanol. Geotherm. Res. 321:1–17 [Google Scholar]
  18. Brodsky EE, Kanamori H, Sturtevant B. 1999. A seismically constrained mass discharge rate for the initiation of the May 18, 1980 Mount St. Helens eruption. J. Geophys. Res. 104:B1229387–400 [Google Scholar]
  19. Calder ES, Sparks RSJ, Gardeweg MC. 2000. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J. Volcanol. Geotherm. Res. 104:201–35 [Google Scholar]
  20. Caudron C, Lecocq T, Syahbana DK, McCausland W, Watlet A. et al. 2015. Stress and mass changes at a “wet” volcano: example during the 2011–2012 volcanic unrest at Kawah Ijen volcano (Indonesia). J. Geophys. Res. Solid Earth 120:5117–34 [Google Scholar]
  21. Chakraborty P, Gioia G, Kieffer S. 2006. Volcán Reventador's unusual umbrella. Geophys. Res. Lett. 33:L05313 [Google Scholar]
  22. Chang L, Liu X, Liu H, Kojitani H, Wang S. 2013. Vibrational mode analysis and heat capacity calculation of K2SiSi3O9-wadeite. Phys. Chem. Minerals 40:563–74 [Google Scholar]
  23. Chouet B. 1988. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. J. Geophys. Res. 93:B54375–400 [Google Scholar]
  24. Clayton RN, Kieffer SW. 1991. Oxygen isotopic thermometer calibrations. Geochem. Soc. Spec. Publ. 3:3–10 [Google Scholar]
  25. Cusano P, Petrosino S, Saccorotti G. 2008. Hydrothermal origin for sustained long-period (LP) activity at Campi Flegrei Volcanic Complex, Italy. J. Volcanol. Geotherm. Res. 4:1035–44 [Google Scholar]
  26. Davies JHFL, Stern RA, Heaman LM, Rojas X, Walton EL. 2015. Resolving oxygen isotopic disturbance in zircon: a case study from the low Scourie dikes, NW Scotland. Am. Mineral. 101:1952–66 [Google Scholar]
  27. Desmet B, Atitung KC, Sanchez MAA, Vantomme J, Feys D. et al. 2011. Monitoring the early-age hydration of self-compacting concrete using ultrasonic p-wave transmission and isothermal calorimetry. Mater. Struct. 44:1537–58 [Google Scholar]
  28. Donn WL, Balachandran NK. 1981. Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–41 [Google Scholar]
  29. Donnadieu F, Merle O. 2001. Geometrical constraints of the 1980 Mount St. Helens intrusion from analogue models. Geophys. Res. Lett. 28:639–42 [Google Scholar]
  30. Doronzo DM. 2013. Aeromechanic analysis of pyroclastic density currents past a building. Bull. Volcanol. 75:684 [Google Scholar]
  31. Dove MT, Winkler B, Leslie M, Harris MJ, Salje EKH. 1992. A new interatomic potential model for calcite: applications to lattice dynamics studies, phase transition, and isotope fractionation. Am. Mineral. 77:244–50 [Google Scholar]
  32. Fee D, Matoza RS, Gee KL, Neilsen TB, Ogden DE. 2013. Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea. Geophys. Res. Lett. 40:4199–203 [Google Scholar]
  33. Fink JH, Kieffer SW. 1993. Estimate of pyroclastic flow velocities resulting from explosive decompression of lava domes. Nature 263:612–15 [Google Scholar]
  34. Fisher RV. 1990. Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington. Geol. Soc. Am. Bull. 102:1038–54 [Google Scholar]
  35. Fricke AT, Sheets BA, Nittrouer CA, Allison MA, Ogston AS. 2015. An examination of Froude-supercritical flows and cyclic steps on a subaqueous lacustrine delta, Lake Chelan, Washington, USA. J. Sediment. Res. 85:754–67 [Google Scholar]
  36. Gao P, Kopparla P, Zhang X, Ingersoll AP. 2016. Aggregate particles in the plumes of Enceladus. Icarus 264:227–38 [Google Scholar]
  37. Gavrichev KS, Gurevich VM, Ryumin MA, Tyurin AV, Komissarova LN. 2015. Heat capacity and thermodynamic functions of SmPO4 at 10–1600 K. Geochem. Int. 53:607–16 [Google Scholar]
  38. Gavrikov AV, Koroteev PS, Dobrokhotova ZV, Ilyukhin AB, Efimov NN. et al. 2015. Novel heterometallic polymeric lanthanide acetylacetonates with bridging cymantrenecarboxylate groups—synthesis, magnetism and thermolysis. Polyhedron 102:48–59 [Google Scholar]
  39. Geisler PE, Goldstein DB. 2007. Plumes and their deposits. Io After Galileo, ed. RMC Lopes, JR Spencer 163–92 Berlin: Springer [Google Scholar]
  40. Giannozzi P, Baronini S, Bonini N, Calandra M, Car R. et al. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:395502–20 [Google Scholar]
  41. Gioia G, Chakraborty P, Marshak S, Kieffer SW. 2007. Unified model of tectonics and heat transport in frigid Enceladus. PNAS 104:13578–81 [Google Scholar]
  42. Gioia G, Chakraborty P, Stefan F, Zamalloa CZ, Keane RD. 2011. Residence time of buoyant objects in drowning machines. PNAS 108:6361–63 [Google Scholar]
  43. Goguen JD, Buratti BJ, Brown RH, Clark RN, Nicholson PD. et al. 2013. The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus 226:1128–37 [Google Scholar]
  44. Grant G. 1997. Critical flow constraints on flow hydraulics in mobile-bed streams: a new hypothesis. Water Resour. Res. 33:349–58 [Google Scholar]
  45. Hansen CJ, Esposito LW, Stewart AIF, Meinke B, Wallis B. et al. 2008. Water vapour jets inside the plume of gas leaving Enceladus. Nature 456:477–79 [Google Scholar]
  46. Hansen CJ, Shemansky DE, Esposito LW, Stewart AIF, Lewis BR. et al. 2011. The composition and structure of the Enceladus plume. Geophys. Res. Lett. 38:L11202 [Google Scholar]
  47. Holm JL, Kleppa OL, Westrum EF. 1967. Thermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070o K and pressure-temperature stability fields for coesite and stishovite. Geochim. Cosmochim. Acta 31:2289–307 [Google Scholar]
  48. Hörz F, Archer PD Jr., Niles PB, Zolensky ME, Evans M. 2015. Devolatilization or melting of carbonates at Meteor Crater, AZ?. Meteorit. Planet. Sci. 50:1050–70 [Google Scholar]
  49. Hörz F, Schaal RB. 1981. Asteroidal agglutinate formation and implications for asteroidal surfaces. Icarus 46:337–53 [Google Scholar]
  50. Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler UG. 2010. The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib. Mineral. Petrol. 159:43–59 [Google Scholar]
  51. Howard KT. 2011. Volatile enhanced dispersal of high velocity impact melts and the origin of tektites. Proc. Geol. Assoc. 122:363–82 [Google Scholar]
  52. Hutchinson RA, Westphal JA, Kieffer SW. 1997. In situ observations of Old Faithful geyser. Geology 25:875–78 [Google Scholar]
  53. Hurwitz S, Manga M. 2017. The fascinating and complex dynamics of geyser eruptions. Annu. Rev. Earth Planet. Sci. 45:31–-59 [Google Scholar]
  54. Jacobs MHG, de Jong HWS. 2003. The high-temperature and high-pressure behavior of MgO derived from lattice vibration calculations. Kieffer's model revisited. Phys. Chem. Chem. Phys. 10:2056–65 [Google Scholar]
  55. Johnson JB, Malone SD. 2007. Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption. Earth Planet. Sci. Lett. 258:16–31 [Google Scholar]
  56. Jolly S, Neuberg J, Jousset P, Sherburn S. 2012. A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand. J. Volcanol. Geotherm. Res. 215–16:26–39 [Google Scholar]
  57. Kanamori H, Given JW, Lay T. 1984. Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. J. Geophys. Res. 89:B31856–66 [Google Scholar]
  58. Karlstrom L, Dunham EM. 2016. Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma. J. Fluid Mech. 797:431–70 [Google Scholar]
  59. Karlstrom L, Hurwitz S, Sohn R, Vandemeulebrouck J, Murphy F. et al. 2013. Eruptions at Lone Star Geyser, Yellowstone National Park, USA. 1. Energetics and eruption dynamics. J. Geophys. Res. Solid Earth 118:4048–62 [Google Scholar]
  60. Kedar S, Kanamori H, Sturtevant B. 1998. Bubble collapse as the source of tremor at Old Faithful Geyser. J. Geophys. Res. 103:B1024283–99 [Google Scholar]
  61. Kedar S, Sturtevant B, Kanamori H. 1996. The origin of harmonic tremor at Old Faithful Geyser. Nature 379:708–11 [Google Scholar]
  62. Kieffer SW. 1971. Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J. Geophys. Res. 76:5449–73 [Google Scholar]
  63. Kieffer SW. 1977. Sound speed in liquid-gas mixtures: water-air and water-steam. J. Geophys. Res. 82:2895–904 [Google Scholar]
  64. Kieffer SW. 1979a. Thermodynamics and lattice vibrations of minerals. 1. Mineral heat capacities and their relationships to simple lattice vibrational models. Rev. Geophys. Space Phys. 17:1–19 [Google Scholar]
  65. Kieffer SW. 1979b. Thermodynamics and lattice vibrations of minerals. 2. Vibrational characteristics of silicates. Rev. Geophys. Space Phys. 17:20–34 [Google Scholar]
  66. Kieffer SW. 1979c. Thermodynamics and lattice vibrations of minerals. 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev. Geophys. Space Phys. 17:35–59 [Google Scholar]
  67. Kieffer SW. 1980. Thermodynamics and lattice vibrations of minerals. 4. Application to chain and sheet silicates and orthosilicates. Rev. Geophys. Space Phys. 18:862–86 [Google Scholar]
  68. Kieffer SW. 1981a. Blast dynamics at Mount St. Helens on 18 May 1980. Nature 291:568–70 [Google Scholar]
  69. Kieffer SW. 1981b. Fluid dynamics of the May 18 blast at Mount St. Helens. The 1980 Eruptions of Mount St. Helens, Washington PW Lipman, DR Mullineaux 379–400 US Geol. Surv. Prof. Pap. 1250 Washington, DC: Gov. Print. Off. [Google Scholar]
  70. Kieffer SW. 1982a. Dynamics and thermodynamics of volcanic eruptions: implications for the plumes on Io. The Satellites of Jupiter D Morrison 647–723 Tucson: Univ. Ariz. Press [Google Scholar]
  71. Kieffer SW. 1982b. Thermodynamics and lattice vibrations of minerals. 5. Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Rev. Geophys. Space Phys. 20:827–49 [Google Scholar]
  72. Kieffer SW. 1984a. Factors governing the structure of volcanic jets. Explosive Volcanism: Inception, Evolution, and Hazards Geophys. Study Comm. 143–57 Washington, DC: Natl. Acad. Press [Google Scholar]
  73. Kieffer SW. 1984b. Seismicity at Old Faithful geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity. J. Volcanol. Geotherm. Res. 22:59–95 [Google Scholar]
  74. Kieffer SW. 1985. The 1983 hydraulic jump in Crystal Rapid: implications for river-running and geomorphic evolution in the Grand Canyon. J. Geol. 93:385–406 [Google Scholar]
  75. Kieffer SW. 1988. Hydraulic maps of major rapids of the Colorado River, Grand Canyon, Arizona Misc. Investig. Ser. Maps I-1897A–J, US Geol. Surv., Reston, VA [Google Scholar]
  76. Kieffer SW. 1989. Geological nozzles. Rev. Geophys. 27:3–38 [Google Scholar]
  77. Kieffer SW. 1995. Numerical models of caldera-scale volcanic eruptions on Earth, Venus, and Mars. Science 269:1385–91 [Google Scholar]
  78. Kieffer SW, Barton P, Chesworth W, Palmer AR, Reitan P, Zen E. 2009a. Megascale processes: natural disasters and human behavior. Geol. Soc. Am. Spec. Pap. 453:77–86 [Google Scholar]
  79. Kieffer SW, Delany JM. 1979. Isentropic decompression of fluids from crustal and mantle pressures. J. Geophys. Res. 84:1611–20 [Google Scholar]
  80. Kieffer SW, Haas N, Woods C. 1999. “Scientist Sue”: changing the way adolescents view science Presented at Am. Educ. Res. Assoc. Conf., Apr. 19–23, Montreal [Google Scholar]
  81. Kieffer SW, Lopes-Gautier RL, McEwen A, Smythe W, Keszthelyi L, Carlson R. 2000. Prometheus: Io's wandering plume. Science 288:1204–7 [Google Scholar]
  82. Kieffer SW, Lu X, Bethke CM, Spencer JR, Marshak S, Navrotsky A. 2006. A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764–66 [Google Scholar]
  83. Kieffer SW, Lu X, McFarquhar G, Wohletz KH. 2009b. A redetermination of the ice/vapor ratio of Enceladus’ plumes: implications for sublimation and the lack of a liquid water reservoir. Icarus 203:238–41 [Google Scholar]
  84. Kieffer SW, Phakey PP, Christie JM. 1976a. Shock processes in porous quartzite: transmission electron microscope observations and theory. Contrib. Mineral. Petrol. 59:41–93 [Google Scholar]
  85. Kieffer SW, Schaal RB, Gibbons R, Hörz F, Milton DJ, Dube A. 1976b. Shocked basalt from Lonar Impact Crater, India, and experimental analogues. Proc. Lunar Sci. Conf. 7:1391–412 [Google Scholar]
  86. Kieffer SW, Simonds CH. 1980. The role of volatiles and lithology in the impact cratering process. Rev. Geophys. Space Phys. 18:143–81 [Google Scholar]
  87. Kieffer SW, Sturtevant B. 1984. Laboratory studies of volcanic jets. J. Geophys. Res. 89:B108253–68 [Google Scholar]
  88. Kieffer SW, Sturtevant B. 1988. Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980. J. Geophys. Res. 93:B1214793–816 [Google Scholar]
  89. Kojitani H, Inoue T, Akaogi M. 2015. Precise measurements of enthalpy of postspinel transition in Mg2SiO4 and application to the phase boundary calculation. J. Geophys. Res. Solid Earth 121:729–42 [Google Scholar]
  90. Kostic S, Sequeiros O, Spinewine B, Parker G. 2010. Cyclic steps: a phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean. J. Hydro-Environ. Res. 3:167–72 [Google Scholar]
  91. Kraus RG, Stewart ST, Swift DC, Bolme CA, Smith RF. et al. 2012. Shock vaporization of silica and the thermodynamics of planetary impact events. J. Geophys. Res. 117:E09009 [Google Scholar]
  92. Lagmay MA, Pyle DM, Dade B, Oppenheimer C. 1999. Control of crater morphology on flow path direction of Soufriere-type pyroclastic flows. J. Geophys. Res. 104:B47169–81 [Google Scholar]
  93. Levine AH, Kieffer SW. 1991. Hydraulics of the August 7, 1980 pyroclastic flow at Mount St. Helens, Washington. Geology 19:1121–24 [Google Scholar]
  94. Liu R, Hasan AR, Mannan MS. 2015. Flow rate and total discharge estimations in gas-well blowouts. J. Nat. Gas Sci. Eng. 26:438–45 [Google Scholar]
  95. Lopes RMC, Kamp LQ, Doute S, Smythe WD, Carlson RW. et al. 2001. Io in the near infrared: near-infrared mapping spectrometer (NIMS) results from the Galileo flybys in 1999 and 2000. J. Geophys. Res. 106:E1233053–78 [Google Scholar]
  96. Lopes-Gautier R, Doute S, Smythe WD, Kamp LQ, Carlson RW. et al. 2000. A close-up look at Io from Galileo's near-infrared mapping spectrometer. Science 288:1201–4 [Google Scholar]
  97. Lu X, Kieffer SW. 2009. Thermodynamics and mass transport in multicomponent, multiphase H2O systems of planetary interest. Annu. Rev. Earth Planet. Sci. 37:449–77 [Google Scholar]
  98. Lu X, Watson A, Gorin AV, Deans J. 2006. Experimental investigation and numerical modeling of transient two-phase flow in a geysering geothermal well. Geothermics 35:409–27 [Google Scholar]
  99. Magirl CS, Gartner JW, Smart GM, Webb RH. 2009. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah. Water Resour. Res. 45:W05427 [Google Scholar]
  100. Mastin LG, Ghiorso MS. 2001. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption. Contrib. Mineral. Petrol. 141:307–21 [Google Scholar]
  101. McDoniel WJ, Goldstein DB, Varghese PL, Trafton LM. 2015. Three-dimensional simulation of gas and dust in Io's Pele plume. Icarus 257:251–74 [Google Scholar]
  102. Mitchell KL. 2005. Coupled conduit flow and shape in explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 143:187–203 [Google Scholar]
  103. Mouginis-Mark PJ. 2014. Cratering on Mars with almost no atmosphere or volatiles: Pangboche crater. Meteorit. Planet. Sci. 50:51–62 [Google Scholar]
  104. Nannan NR, Guardone A, Colonna P. 2013. On the fundamental derivative of gas dynamics in the vapor-liquid region of single-component typical fluids. Fluid Phase Equilib 337:259–73 [Google Scholar]
  105. Nichita DV, Khalid P, Broseta D. 2010. Calculation of isentropic compressibility and sound velocity in two-phase fluids. Fluid Phase Equilib 291:95–102 [Google Scholar]
  106. Ogden D. 2011. Fluid dynamics in explosive volcanic vents and craters. Earth Planet. Sci. Lett. 312:401–10 [Google Scholar]
  107. Ogden DE, Wohletz KH, Glatzmaier GA, Brodsky EE. 2008. Numerical simulations of volcanic jets: importance of vent overpressure. J. Geophys. Res. 113:B02204 [Google Scholar]
  108. Öhman T, Preeden U. 2013. Shock metamorphic features in quartz grains from the Saarijärvi and Soderfjärden impact structures, Finland. Meteorit. Planet. Sci. 48:955–75 [Google Scholar]
  109. O'Hara KD, Esawi EK. 2013. Model for the eruption of the Old Faithful geyser, Yellowstone National Park. GSA Today 23:4–9 [Google Scholar]
  110. Ongaro TE, Clarke AB, Voight B, Neri A, Widiwijayanti. 2012. Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens. J. Geophys. Res. 117:B06208 [Google Scholar]
  111. Ongaro TE, Widiwijayanti C, Clarke AB, Voight B, Neri A. 2011. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA. Geology 39:535–38 [Google Scholar]
  112. Orescanin MM, Austin JM. 2010. Exhaust of underexpanded jets from finite reservoirs. J. Propuls. Power 26:744–53 [Google Scholar]
  113. Orescanin MM, Austin JM, Kieffer SW. 2010. Unsteady high-pressure flow experiments with applications to explosive volcanic eruptions. J. Geophys. Res. 115:B06206 [Google Scholar]
  114. Orescanin MM, Prisco D, Austin JM, Kieffer SW. 2014. Flow of supersonic jets across flat plates: implications for ground-level flow from volcanic blasts. J. Geophys. Res. Solid Earth 119:2976–87 [Google Scholar]
  115. Orlin WJ, Lindner NJ, Bitterly JG. 1947. Application of the analogy between water flow with a free surface and two-dimensional compressible gas flow Natl. Advis. Comm. Aeronaut. Tech. Note 1185, Langley Mem. Aeronaut. Lab., Langley Field, VA [Google Scholar]
  116. Osinski GR, Bunch TE, Flemming RL, Buitenhuis E, Wittke JH. 2015. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona. Earth Planet. Sci. Lett. 432:283–92 [Google Scholar]
  117. Osinski GR, Grieve RAF, Spray JG. 2008. Impact melting in sedimentary target rocks: an assessment. Geol. Soc. Am. Spec. Pap. 437:1–17 [Google Scholar]
  118. Patel A, Price GD, Mendelssohn MJ. 1991. A computer simulation approach to modeling the structure, thermodynamics and oxygen isotope equilibria of silicates. Phys. Chem. Minerals 17:690–99 [Google Scholar]
  119. Peters A, Sagar H, Lantermann U, el Moctar O. 2015. Numerical modelling and prediction of cavitation erosion. Wear 338–39:189–201 [Google Scholar]
  120. Pontbriand CW, Sohn RA. 2014. Microearthquake evidence for reaction-driven cracking within the Trans-Atlantic Geotraverse active hydrothermal deposit. J. Geophys. Res. Solid Earth 119:822–39 [Google Scholar]
  121. Pope KO, Kieffer SW, Ames DE. 2004. Empirical and theoretical comparisons of the Chicxulub and Sudbury impact structures. Meteorit. Planet. Sci. 39:97–116 [Google Scholar]
  122. Pope KO, Kieffer SW, Ames DE. 2006. Impact melt sheet formation on Mars and its implication for hydrothermal systems and exobiology. Icarus 183:1–9 [Google Scholar]
  123. Porca P, Lema M, Rambaud P. 2014. Experimental and numerical multiphase-front fluid hammer. J. Propuls. Power 30:368–76 [Google Scholar]
  124. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J. et al. 2006. Cassini observes the active south pole of Enceladus. Science 311:1393–401 [Google Scholar]
  125. Reed J. 1987. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res. 92:D1011979–92 [Google Scholar]
  126. Rudolph ML, Karlstrom L, Manga M. 2011. A prediction of the longevity of the Lusi mud eruption, Indonesia. Earth Planet. Sci. Lett. 308:124–30 [Google Scholar]
  127. Saffaraval F, Solovitz SA, Ogden DE, Mastin LG. 2012. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development. J. Geophys. Res. 117:B05209 [Google Scholar]
  128. Scarpati C, Perrotta A. 2012. Erosional characteristics and behavior of large pyroclastic density currents. Geology 40:1035–38 [Google Scholar]
  129. Schaal RB, Hörz F. 1977. Shock metamorphism of lunar and terrestrial basalts. Proc. Lunar Sci. Conf. 8:1697–729 [Google Scholar]
  130. Schmidt JC. 1990. Recirculating flow and sedimentation in the Colorado River in Grand Canyon, Arizona. J. Geol. 98:709–24 [Google Scholar]
  131. Shim SH, LaBounty D, Duffy TS. 2011. Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Phys. Chem. Minerals 38:685–91 [Google Scholar]
  132. Simonds CH, Kieffer SW. 1993. Impact and volcanism: a momentum scaling law for erosion. J. Geophys. Res. 98:B814321–37 [Google Scholar]
  133. Smith BA, Shoemaker EM, Kieffer SW, Cook AF II. 1979. The role of SO2 in volcanism on Io. Nature 280:738–43 [Google Scholar]
  134. Soderblom LA, Becker TL, Brown RH, Cook AF II, Hansen CJ. et al. 1990. Triton's geyser-like plumes: discovery and basic characterization. Science 250:410–15 [Google Scholar]
  135. Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ. 1997. Erosion by pyroclastic flows on Lascar Volcano, Chile. Bull. Volcanol. 58:557–65 [Google Scholar]
  136. Spencer JR, Nimmo F. 2013. Enceladus: an active ice world in the Saturn system. Annu. Rev. Earth Planet. Sci. 41:693–717 [Google Scholar]
  137. Stixrude L, Lithgow-Bertelloni C. 2011. Thermodynamics of mantle minerals: II. Phase equilibria. Geophys. J. Int. 184:1180–213 [Google Scholar]
  138. Stöffler D, Artemieva NA, Wünnemann K, Reimold WU, Jacob J. et al. 2013. Ries crater and suevite revisited—observations and modeling. Part I. Observations. Meteorit. Planet. Sci. 48:515–89 [Google Scholar]
  139. Stolper E, Asimow P. 2007. Insights into mantle melting from graphical analysis of one-component systems. Am. J. Sci. 307:1051–139 [Google Scholar]
  140. Sukhodolov AN. 2015. Field-based research in fluvial hydraulics: potential, paradigms and challenges. J. Hydraul. Res. 53:1–19 [Google Scholar]
  141. Taddeucci J, Alatorre-Ibarguengoitia MA, Palladino DM, Scarlato P, Camaldo C. 2015. High-speed imaging of Strombolian eruptions: gas-pyroclast dynamics in initial volcanic jets. Geophys. Res. Lett. 52:6253–60 [Google Scholar]
  142. Thompson C, Stevenson DJ. 1988. Gravitational instability in a two-phase disk and the origin of the Moon. Astrophys. J. 333:452–81 [Google Scholar]
  143. Thompson DM, McCarrick CR. 2010. A flume experiment on the effect of constriction shape on the formation of forced pools. Hydrol. Earth Syst. Sci. 14:1321–30 [Google Scholar]
  144. Thompson DM, Wohl EE. 2009. The linkage between velocity patterns and sediment entrainment in a forced-pool and riffle unit. Earth Surf. Process. Landforms 34:177–92 [Google Scholar]
  145. Thompson PA. 1972. Analogs in compressible flow. Compressible Fluid-Dynamics517–33 New York: McGraw-Hill [Google Scholar]
  146. Valentine GA, Wohletz KH, Kieffer SW. 1991. Sources of unsteady column dynamics in pyroclastic flow eruptions. J. Geophys. Res. 96:B1321887–92 [Google Scholar]
  147. Valentine GA, Wohletz KH, Kieffer SW. 1992. Effects of topography on facies and compositional zonation in caldera-related ignimbrites. Geol. Soc. Am. Bull. 104:154–65 [Google Scholar]
  148. Valle BL, Pasternack GB. 2006. Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel. Geomorphology 81:146–59 [Google Scholar]
  149. Vandemeulebrouck J, Roux P, Cros E. 2013. The plumbing of Old Faithful Geyser revealed by hydrothermal tremor. Geophys. Res. Lett. 40:1989–93 [Google Scholar]
  150. Waite JH Jr., Combi MR, Ip WH, Cravens TE, McNutt RL Jr.. et al. 2006. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311:1419–22 [Google Scholar]
  151. Warren JL, Kieffer S. 2010. Risk management and the wisdom of Aldo Leopold. Risk Anal 30:165–74 [Google Scholar]
  152. Wilson L, Hawke BR, Giguere TA, Petrycki ER. 2011. An igneous origin for Rima Hyginus and Hyginus crater on the Moon. Icarus 215:584–95 [Google Scholar]
  153. Wilson L, Sparks RSJ, Walker GPL. 1980. Explosive volcanic eruptions. IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys. J. R. Astron. Soc. 63:117–48 [Google Scholar]
  154. Wittmann A, Goderis S, Claeys P, Vanhaecke F, Deutsch A, Adolph L. 2013. Petrology of impactites from El'gygytgyn crater: breccias in ICDP-drill core 1C, glassy impact melt rocks and spherules. Meteorit. Planet. Sci. 48:1199–235 [Google Scholar]
  155. Woodcock DC, Lane SJ, Gilbert JS. 2014. Ice-melt rates in liquid-filled cavities during explosive subglacial eruptions. J. Geophys. Res. Solid Earth 119:1803–17 [Google Scholar]
  156. Woods AW, Bower SM. 1995. The decompression of volcanic jets in a crater during explosive volcanic eruptions. Earth Planet. Sci. Lett. 131:189–205 [Google Scholar]
  157. Xu J, Huang E, Lin J, Xu LY. 1995. Raman study at high pressure and the thermodynamic properties of corundum: application of Kieffer's model. Am. Mineral. 80:1157–65 [Google Scholar]
  158. Yarushina VM, Bercovici D, Michaut C. 2015. Two-phase dynamics of volcanic eruptions: particle size distribution and the conditions for choking. J. Geophys. Res. Solid Earth 120:1503–22 [Google Scholar]
  159. Yeoh SK, Chapman TA, Goldstein DB, Varghese PL, Trafton LM. 2015. On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus 253:205–22 [Google Scholar]
  160. Young ED, Manning CE, Schauble EA, Shahar A, Macris CA. et al. 2015. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem. Geol. 395:176–95 [Google Scholar]
  161. Zen E. 1992. The citizen-geologist: GSA presidential address, 1992. GSA Today 3:2–3 [Google Scholar]
  162. Zheng YF. 2011. On the theoretical calculations of oxygen isotope fractionation factors for carbonate-water systems. Geochem. J. 45:341–54 [Google Scholar]
  163. Zirin H, Werner [Kieffer] S. 1967. Detailed analysis of flares, magnetic fields and activity in the sunspot group of September 13–26, 1963. Solar Phys 1:66–100 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error