1932

Abstract

The record of the continental lithosphere is patchy and incomplete; no known rock is older than 4.02 Ga, and less than 5% of the rocks preserved are older than 3 Ga. In addition, there is no recognizable mantle lithosphere from before 3 Ga. We infer that there was lithosphere before 3 Ga and that ∼3 Ga marks the stabilization of blocks of continental lithosphere that have since survived. This was linked to plate tectonics emerging as the dominant tectonic regime in response to thermal cooling, the development of a more rigid lithosphere, and the recycling of water, which may in turn have facilitated plate tectonics. A number of models, using different approaches, suggest that at 3 Ga the volume of continental crust was ∼70% of its present-day volume and that this may be a minimum value. The continental crust before 3 Ga was on average more mafic than that generated subsequently, and this pre-3 Ga mafic new crust had fractionated Lu/Hf and Sm/Nd ratios as inferred for the sources of tonalite-trondhjemite-granodiorite and later granites. The more intermediate composition of new crust generated since 3 Ga is indicated by its higher Rb/Sr ratios. This change in composition was associated with an increase in crustal thickness, which resulted in more emergent crust available for weathering and erosion. This in turn led to an increase in the Sr isotope ratios of seawater and in the drawdown of CO. Since 3 Ga, the preserved record of the continental crust is marked by global cycles of peaks and troughs of U-Pb crystallization ages, with the peaks of ages appearing to match periods of supercontinent assembly. There is increasing evidence that the peaks of ages represent enhanced preservation of magmatic rocks in periods leading up to and including continental collision in the assembly of supercontinents. These are times of increased crustal growth because more of the crust that is generated is retained within the crust. The rates of generation of continental crust and mantle lithosphere may have remained relatively constant at least since 3 Ga, yet the rates of destruction of continental crust have changed with time. Only relatively small volumes of rock are preserved from before 3 Ga, and so it remains difficult to establish which of these are representative of global processes and the extent to which the rock record before 3 Ga is distorted by particular biases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-020525
2017-08-30
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-020525.html?itemId=/content/journals/10.1146/annurev-earth-063016-020525&mimeType=html&fmt=ahah

Literature Cited

  1. Adam JM-C, Lebedev S. 2012. Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements. Geophys. J. Int. 191:1155–74 [Google Scholar]
  2. Albarède F. 1998. The growth of continental crust. Tectonophysics 296:1–21–14 [Google Scholar]
  3. Allan C. 2014. Is there a bias between landscape relief and model age? BSc Thesis (Hons), Univ St Andrews: [Google Scholar]
  4. Allègre CJ, Hart SR, Minster JF. 1983. Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, I. Theoretical methods. Earth Planet. Sci. Lett. 66:0177–90 [Google Scholar]
  5. Allègre CJ, Rousseau D. 1984. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67:119–34 [Google Scholar]
  6. Anhaeusser CR, Robb LJ. 1981. Magmatic cycles and the evolution of the Archaean granitic crust in the eastern Transvaal and Swaziland. Spec. Publ., Geol. Soc. Aust. 7:457–67 [Google Scholar]
  7. Armstrong RL. 1981. Radiogenic isotopes: the case for crustal recycling on a steady-state no-continental-growth Earth. Philos. Trans. R. Soc. Lond. Ser. A 301:443–72 [Google Scholar]
  8. Arndt N. 1999. Why was flood volcanism on submerged continental platforms so common in the Precambrian?. Precambrian Res 97:3–4155–64 [Google Scholar]
  9. Arndt N, Davaille A. 2013. Episodic Earth evolution. Tectonophysics 609:661–74 [Google Scholar]
  10. Arndt NT, Goldstein SL. 1987. Use and abuse of crust-formation ages. Geology 15:10893–95 [Google Scholar]
  11. Artemieva IM. 2009. The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109:1–223–46 [Google Scholar]
  12. Artemieva IM, Mooney WD. 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. 106:B816387–414 [Google Scholar]
  13. Becker H, Horan MF, Walker RJ, Gao S, Lorand JP, Rudnick RL. 2006. Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70:174528–50 [Google Scholar]
  14. Becker H, Shirey SB, Carlson RW. 2001. Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin. Earth Planet. Sci. Lett. 188:1–2107–21 [Google Scholar]
  15. Bédard JH, Harris LB, Thurston PC. 2013. The hunting of the snArc. Precambrian Res 229:20–48 [Google Scholar]
  16. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O'Reilly SY, Pearson NJ. 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:3–4457–66 [Google Scholar]
  17. Bindeman IN, Bekker A, Zakharov DO. 2016. Oxygen isotope perspective on crustal evolution on early Earth: a record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth Planet. Sci. Lett. 437:101–13 [Google Scholar]
  18. Bleeker W. 2003. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:2–499–134 [Google Scholar]
  19. Bodinier JL, Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry, Vol. 2: The Mantle and Core KK Turekian, HD Holland, pp. 1–73 New York: Elsevier [Google Scholar]
  20. Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ. 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 222:143–60 [Google Scholar]
  21. Bowring AS, Williams SI. 1999. Priscoan (4.00–4.03Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 134:13–16 [Google Scholar]
  22. Boyd FR. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96:1–215–26 [Google Scholar]
  23. Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW. 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. 128:228–46 [Google Scholar]
  24. Bradley DC. 2008. Passive margins through earth history. Earth-Sci. Rev. 91:1–41–26 [Google Scholar]
  25. Bradley DC. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Sci. Rev. 108:1–216–33 [Google Scholar]
  26. Brasier MD, Lindsay JF. 1998. A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology 26:6555–58 [Google Scholar]
  27. Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34:11961–64 [Google Scholar]
  28. Brown M. 2007. Metamorphic conditions in orogenic belts: a record of secular change. Int. Geol. Rev. 49:3193–234 [Google Scholar]
  29. Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front. 5:4553–69 [Google Scholar]
  30. Burton KW, Schiano P, Birck JL, Allègre CJ, Rehkämper M. et al. 2000. The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania. Earth Planet. Sci. Lett. 183:1–293–106 [Google Scholar]
  31. Calvert AJ. 1995. Seismic evidence for a magma chamber beneath the slow-spreading Mid-Atlantic Ridge. Nature 377:410–14 [Google Scholar]
  32. Campbell IH. 2003. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am. J. Sci. 303:4319–51 [Google Scholar]
  33. Campbell IH, Allen CM. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1:554–58 [Google Scholar]
  34. Campbell IH, Squire RJ. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: the Second Great Oxidation Event. Geochim. Cosmochim. Acta 74:154187–206 [Google Scholar]
  35. Canil D. 2004. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77:1–4375–93 [Google Scholar]
  36. Carlson RW, Irving AJ. 1994. Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet. Sci. Lett. 126:4457–72 [Google Scholar]
  37. Carlson RW, Irving AJ, Schulze DJ, Hearn BC Jr. 2004. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos 77:1–4453–72 [Google Scholar]
  38. Carlson RW, Pearson DG, James DE. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43:1RG1001 [Google Scholar]
  39. Cavosie AJ, Valley JW, Wilde SA. 2005. Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235:3–4663–81 [Google Scholar]
  40. Cawood PA, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci. Rev. 82:217–56 [Google Scholar]
  41. Cawood PA, Hawkesworth CJ. 2014. Earth's middle age. Geology 42:6503–6 [Google Scholar]
  42. Cawood PA, Hawkesworth CJ, Dhuime B. 2013. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125:1–214–32 [Google Scholar]
  43. Cawood PA, Kröner A, Pisarevsky S. 2006. Precambrian plate tectonics: criteria and evidence. GSA Today 16:4–11 [Google Scholar]
  44. Cawood PA, Nemchin AA, Freeman MJ, Sircombe KN. 2003. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet. Sci. Lett. 210:259–68 [Google Scholar]
  45. Cawood PA, Strachan RA, Pisarevsky SA, Gladkochub DP, Murphy JB. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 449:118–26 [Google Scholar]
  46. Chauvel C, Garçon M, Bureau S, Besnault A, Jahn B-M, Ding Z. 2014. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth Planet. Sci. Lett. 388:48–58 [Google Scholar]
  47. Chesley JT, Rudnick RL, Lee C-T. 1999. Re-Os systematics of mantle xenoliths from the East African Rift: age, structure, and history of the Tanzanian craton. Geochim. Cosmochim. Acta 63:7–81203–17 [Google Scholar]
  48. Choi SH, Suzuki K, Mukasa SB, Lee J-I, Jung H. 2010. Lu-Hf and Re-Os systematics of peridotite xenoliths from Spitsbergen, western Svalbard: implications for mantle-crust coupling. Earth Planet. Sci. Lett. 297:1–2121–32 [Google Scholar]
  49. Clift PD, Vannucchi P, Morgan JP. 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci. Rev. 97:1–480–104 [Google Scholar]
  50. Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105:6715–37 [Google Scholar]
  51. Collerson KD, Kamber BS. 1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283:54071519–22 [Google Scholar]
  52. Condie KC. 1998. Episodic continental growth and supercontinents: a mantle avalanche connection?. Earth Planet. Sci. Lett. 163:1–497–108 [Google Scholar]
  53. Condie KC, Aster RC. 2010. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180:3–4227–36 [Google Scholar]
  54. Condie KC, Davaille A, Aster RC, Arndt N. 2015. Upstairs-downstairs: Supercontinents and large igneous provinces, are they related. ? Int. Geol. Rev. 57:11–121341–48 [Google Scholar]
  55. Dana JD. 1873. On some results of the earth's contraction from cooling, including a discussion of the origin of mountains, and the nature of the earth's interior. Am. J. Sci., Ser. 3 5:423–43 [Google Scholar]
  56. Davidson JP, Arculus RJ. 2006. The significance of Phanerozoic arc magmatism in generating continental crust. Evolution and Differentiation of the Continental Crust M Brown, T Rushmer 135–72 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  57. Delavault H, Dhuime B, Hawkesworth CJ, Cawood PA, Marschall H, Edinburgh Ion Microprobe Facility. 2016. Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology 44:10819–22 [Google Scholar]
  58. Dewey JF, Windley BF. 1981. Growth and differentiation of the continental crust. Philos. Trans. R. Soc. Lond. Ser. A 301:1461189–206 [Google Scholar]
  59. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335:60741334–36 [Google Scholar]
  60. Dhuime B, Hawkesworth CJ, Storey CD, Cawood PA. 2011. From sediments to their source rocks: Hf and Nd isotopes in recent river sediments. Geology 39:4407–10 [Google Scholar]
  61. Dhuime B, Hawkesworth CJ, Wookey J. 2016. Secular evolution of the rates of generation and destruction of the continental crust Presented at Goldschmidt Conf., June 26–July 1, Yokohama, Jpn. (Abstr. 660) [Google Scholar]
  62. Dhuime B, Wuestefeld A, Hawkesworth CJ. 2015. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8:7552–55 [Google Scholar]
  63. Elkins-Tanton LT. 2008. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271:1–4181–91 [Google Scholar]
  64. Evans DAD, Pisarevsky SA. 2008. Plate tectonics on early Earth? Weighing the paleomagnetic evidence. Geol. Soc. Am. Spec. Pap. 440:249–63 [Google Scholar]
  65. Farquhar J, Zerkle AL, Bekker A. 2013. Geologic and geochemical constraints on the earth's early atmosphere. Treatise on Geochemistry: Reference Module in Earth Systems and Environmental Sciences KK Turekian, HD Holland 91–138 New York: Elsevier, 2nd ed.. [Google Scholar]
  66. Finnerty AA, Boyd FR. 1987. Thermobarometry for garnet peridotites: basis for the determination of thermal and compositional structure of the upper mantle. Mantle Xenoliths PH Nixon 381–402 Hoboken, NJ: Wiley [Google Scholar]
  67. Fischer R, Gerya T. 2016. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling. Gondwana Res 37:53–70 [Google Scholar]
  68. Flament N, Coltice N, Rey PF. 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275:3–4326–36 [Google Scholar]
  69. Flament N, Coltice N, Rey PF. 2013. The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Res 229:0177–88 [Google Scholar]
  70. Friend CRL, Nutman AP. 2005. New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: steps in transforming a simple insight into a complex regional tectonothermal model. J. Geol. Soc. Lond. 162:1147–62 [Google Scholar]
  71. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu Y-S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett. 198:3–4307–22 [Google Scholar]
  72. Garrels RM, Mackenzie FT. 1971. Evolution of Sedimentary Rocks New York: Norton [Google Scholar]
  73. Gastil RG. 1960. The distribution of mineral dates in time and space. Am. J. Sci. 258:11–35 [Google Scholar]
  74. Goldfarb RJ, Groves DI, Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geol. Rev. 18:1–75 [Google Scholar]
  75. Goldstein SJ, Jacobsen SB. 1988. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87:3249–65 [Google Scholar]
  76. Gomes R, Levison HF, Tsiganis K, Morbidelli A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:7041466–69 [Google Scholar]
  77. Goodwin AM. 1996. Principles of Precambrian Geology London: Academic [Google Scholar]
  78. Gower CF, Krogh TE. 2002. A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Can. J. Earth Sci. 39:795–829 [Google Scholar]
  79. Grand SP. 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philos. Trans. R. Soc. A 360:18002475–91 [Google Scholar]
  80. Griffin WL, O'Reilly SY, Afonso JC, Begg GC. 2009. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50:71185–204 [Google Scholar]
  81. Hacker BR, Kelemen PB, Behn MD. 2015. Continental lower crust. Annu. Rev. Earth Planet. Sci. 43:167–205 [Google Scholar]
  82. Handler MR, Bennett VC, Carlson RW. 2005. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: a unique view of depleted MORB mantle?. Geochim. Cosmochim. Acta 69:245747–63 [Google Scholar]
  83. Handler MR, Bennett VC, Esat TM. 1997. The persistence of off-cratonic lithospheric mantle: Os isotopic systematics of variably metasomatised southeast Australian xenoliths. Earth Planet. Sci. Lett. 151:1–261–75 [Google Scholar]
  84. Handler MR, Wysoczanski RJ, Gamble JA. 2003. Proterozoic lithosphere in Marie Byrd Land, West Antarctica: Re-Os systematics of spinel peridotite xenoliths. Chem. Geol. 196:1–4131–45 [Google Scholar]
  85. Hansen VL. 2015. Impact origin of Archean cratons. Lithosphere 7:5563–78 [Google Scholar]
  86. Harrison TM. 2009. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37:479–505 [Google Scholar]
  87. Hawkesworth C, Cawood P, Kemp T, Storey C, Dhuime B. 2009. A matter of preservation. Science 323:49–50 [Google Scholar]
  88. Hawkesworth CJ, Cawood PA, Dhuime B. 2016. Tectonics and crustal evolution. GSA Today 26:94–11 [Google Scholar]
  89. Helmstaedt H, Schulze DJ. 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithospheric evolution. Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin and Emplacement J Ross 358–68 Sydney: Geol. Soc. Aust. [Google Scholar]
  90. Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292:1–279–88 [Google Scholar]
  91. Herzberg C, Rudnick R. 2012. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149:04–15 [Google Scholar]
  92. Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. Lond. Ser. B 361:1470903–15 [Google Scholar]
  93. Hurley PM, Hughes H, Faure G, Fairbairn HW, Pinson WH. 1962. Radiogenic strontium-87 model of continent formation. J. Geophys. Res. 67:135315–34 [Google Scholar]
  94. Hutton J. 1785. Abstract of a dissertation read in the Royal Society of Edinburgh, upon the seventh of March, and fourth of April, MDCCLXXXV, concerning the System of the Earth, its duration, and stability. R. Soc. Edinb.
  95. Hutton J. 1788. Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Trans. R. Soc. Edinb. 1:209–304 [Google Scholar]
  96. Jacobsen SB. 1988. Isotopic constraints on crustal growth and recycling Earth Planet. . Sci. Lett. 90:3315–29 [Google Scholar]
  97. Jacobsen SB, Wasserburg GJ. 1979. Nd and Sr isotopic study of the Bay of Islands ophiolite complex and the evolution of the source of midocean ridge basalts. J. Geophys. Res. 84:B137429–45 [Google Scholar]
  98. Jacobson SA, Morbidelli A, Raymond SN, O'Brien DP, Walsh KJ, Rubie DC. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature 508:749484–87 [Google Scholar]
  99. James DE, Fouch MJ, VanDecar JC, Lee SVD. 2001. Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28:132485–88 [Google Scholar]
  100. Janney PE, Shirey SB, Carlson RW, Pearson DG, Bell DR. et al. 2010. Age, composition and thermal characteristics of South African off-craton mantle lithosphere: evidence for a multi-stage history. J. Petrol. 51:91849–90 [Google Scholar]
  101. Jaupart C, Mareschal JC. 2003. Constraints on crustal heat production from heat flow data. Treatise on Geochemistry, Vol. 3: The Crust KK Turekian, HD Holland 65–84 New York: Elsevier [Google Scholar]
  102. Jaupart C, Mareschal JC, Guillou-Frottier L, Davaille A. 1998. Heat flow and thickness of the lithosphere in the Canadian Shield. J. Geophys. Res. 103:B715269–86 [Google Scholar]
  103. Jenner FE, Bennett VC, Nutman AP, Friend CRL, Norman MD, Yaxley G. 2009. Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the southern edge of the Isua supracrustal belt. Chem. Geol. 261:1–282–97 [Google Scholar]
  104. Jenner FE, Bennett VC, Yaxley G, Friend CRL, Nebel O. 2013. Eoarchean within-plate basalts from southwest Greenland. Geology 41:3327–30 [Google Scholar]
  105. Johnson TE, Brown M, Kaus BJP, VanTongeren JA. 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7:147–52 [Google Scholar]
  106. Jordan TH. 1978. Composition and development of the continental tectosphere. Nature 274:5671544–48 [Google Scholar]
  107. Jordan TH. 1988. Structure and formation of the continental tectosphere. J. Petrol. Spec 1:11–37 [Google Scholar]
  108. Kaczmarek M-A, Reddy SM, Nutman AP, Friend CRL, Bennett VC. 2016. Earth's oldest mantle fabrics indicate Eoarchaean subduction. Nat. Commun. 7:10665 [Google Scholar]
  109. Kamber BS. 2015. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res 258:048–82 [Google Scholar]
  110. Kearey P, Klepeis KA, Vine FJ. 2009. Global Tectonics Oxford, UK: Wiley [Google Scholar]
  111. Kelemen PB, Hart SR, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164:1–2387–406 [Google Scholar]
  112. Keller CB, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485:7399490–93 [Google Scholar]
  113. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A. et al. 2010. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296:1–245–563 [Google Scholar]
  114. Kober L. 1921. Der Bau der Erde. Berlin: Gebrüder Borntraeger
  115. Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41:1117–51 [Google Scholar]
  116. Kramers JD. 2002. Global modelling of continent formation and destruction through geological time and implications for CO2 drawdown in the Archaean Eon. Geol. Soc. Lond. Spec. Publ. 199:259–74 [Google Scholar]
  117. Kramers JD, Tolstikhin IN. 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem. Geol. 139:1–475–110 [Google Scholar]
  118. Kump LR. 2008. The rise of atmospheric oxygen. Nature 451:7176277–78 [Google Scholar]
  119. Kump LR, Barley ME. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:71571033–36 [Google Scholar]
  120. Larsen IJ, Montgomery DR, Greenberg HM. 2014. The contribution of mountains to global denudation. Geology 42:6527–30 [Google Scholar]
  121. Lee C-T, Yin Q, Rudnick RL, Chesley JT, Jacobsen SB. 2000. Osmium isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science 289:54861912–16 [Google Scholar]
  122. Lee C-TA, Luffi P, Chin EJ. 2011. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39:159–90 [Google Scholar]
  123. Lee C-TA, Yeung LY, McKenzie NR, Yokoyama Y, Ozaki K, Lenardic A. 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9:6417–24 [Google Scholar]
  124. Lee S, Nolet G. 1997. Upper mantle S velocity structure of North America. J. Geophys. Res. 102:B1022815–38 [Google Scholar]
  125. Liu J, Riches AJV, Pearson DG, Luo Y, Kienlen B. et al. 2016. Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambrian Res 272:168–84 [Google Scholar]
  126. Liu J, Rudnick RL, Walker RJ, Gao S, Wu F-Y. et al. 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochim. Cosmochim. Acta 75:133881–902 [Google Scholar]
  127. Liu J, Scott JM, Martin CE, Pearson DG. 2015. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation. Earth Planet. Sci. Lett. 424:109–18 [Google Scholar]
  128. Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova GP. et al. 2009. An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112:Suppl. 21096–108 [Google Scholar]
  129. Malitch KN, Merkle RKW. 2004. Ru-Os-Ir-Pt and Pt-Fe alloys from the Evander goldfield, Witwatersrand Basin, South Africa: detrital origin inferred from compositional and osmium isotope data. Can. Mineral. 42:2631–50 [Google Scholar]
  130. Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K. et al. 2014. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511:7511578–82 [Google Scholar]
  131. Matsukage KN, Kawasaki T. 2014. Hydrous origin of the continental cratonic mantle. Earth, Planets Space 66:29 [Google Scholar]
  132. McCulloch MT, Wasserburg GJ. 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200:1003–11 [Google Scholar]
  133. McKenzie D, Daly MC, Priestley K. 2015. The lithospheric structure of Pangea. Geology 43:9783–86 [Google Scholar]
  134. McKenzie D, Priestley K. 2008. The influence of lithospheric thickness variations on continental evolution. Lithos 102:1–21–11 [Google Scholar]
  135. McLennan SM, Taylor SR, Hemming SR. 2005. Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. Evolution and Differentiation of the Continental Crust M Brown, T Rushwer 93–135 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  136. Meisel T, Walker RJ, Irving AJ, Lorand J-P. 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta 65:81311–23 [Google Scholar]
  137. Mooney WD, Laske G, Masters TG. 1998. CRUST 5.1: A global crustal model at 5° × 5°. J. Geophys. Res. 103:B1727–47 [Google Scholar]
  138. Moorbath S. 1977. Ages, isotopes and evolution of Precambrian continental crust. Chem. Geol. 20:151–87 [Google Scholar]
  139. Moores EM, Twiss RJ. 1995. Tectonics New York: Freeman [Google Scholar]
  140. Mosier DL, Berger VI, Singer DA. 2009. Volcanogenic massive sulfide deposits of the world—database and grade and tonnage models US Geol. Surv. Open-File Rep. 2009-1034. https://pubs.usgs.gov/of/2009/1034/ [Google Scholar]
  141. Næraa T, Scherstén A, Rosing MT, Kemp AIS, Hoffmann JE. et al. 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485:7400627–30 [Google Scholar]
  142. Nance RD, Murphy JB, Santosh M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Res 25:14–29 [Google Scholar]
  143. Nyblade AA. 1999. Heat flow and the structure of Precambrian lithosphere. Lithos 48:1–481–91 [Google Scholar]
  144. O'Neil J, Francis D, Carlson RW. 2011. Implications of the Nuvvuagittuq greenstone belt for the formation of Earth's early crust. J. Petrol. 52:5985–1009 [Google Scholar]
  145. O'Nions RK, Evensen NM, Hamilton PJ. 1979. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. 84:B116091–101 [Google Scholar]
  146. O'Nions RK, Hamilton PJ, Hooker PJ. 1983. A Nd isotope investigation of sediments related to crustal development in the British Isles. Earth Planet. Sci. Lett. 63:2229–40 [Google Scholar]
  147. Parman SW. 2015. Time-lapse zirconography: imaging punctuated continental evolution. Geochem. Perspect. Lett. 1:43–52 [Google Scholar]
  148. Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH. 1995. Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett. 134:3–4341–57 [Google Scholar]
  149. Pearson DG, Wittig N. 2013. The formation and evolution of cratonic mantle lithosphere—evidence from mantle xenoliths. Treatise on Geochemistry KK Turekian, HD Holland 255–92 New York: Elsevier, 2nd ed.. [Google Scholar]
  150. Peslier AH, Reisberg L, Ludden J, Francis D. 2000a. Os isotopic systematics in mantle xenoliths; age constraints on the Canadian Cordillera lithosphere. Chem. Geol. 166:1–285–101 [Google Scholar]
  151. Peslier AH, Reisberg L, Ludden J, Francis D. 2000b. Re-Os constraints on harzburgite and lherzolite formation in the lithospheric mantle: a study of northern Canadian Cordillera xenoliths. Geochim. Cosmochim. Acta 64:173061–71 [Google Scholar]
  152. Pollack HN. 1986. Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80:1–2175–82 [Google Scholar]
  153. Pollack HN, Hurter SJ, Johnson JR. 1993. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31:3267–80 [Google Scholar]
  154. Pons ML, Fujii T, Rosing M, Quitté G, Télouk P, Albarède F. 2013. A Zn isotope perspective on the rise of continents. Geobiology 11:3201–14 [Google Scholar]
  155. Pujol M, Marty B, Burgess R, Turner G, Philippot P. 2013. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature 498:87–90 [Google Scholar]
  156. Reimink JR, Chacko T, Stern RA, Heaman LM. 2014. Earth's earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7:7529–33 [Google Scholar]
  157. Reimink JR, Davies JHFL, Chacko T, Stern RA, Heaman LM. et al. 2016. No evidence for Hadean continental crust within Earth's oldest evolved rock unit. Nat. Geosci. 9:10777–80 [Google Scholar]
  158. Rey PF, Coltice N. 2008. Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36:8635–38 [Google Scholar]
  159. Rino S, Komiya T, Windley BF, Katayama I, Motoki A, Hirata T. 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys. Earth Planet. Inter. 146:369–94 [Google Scholar]
  160. Roberts NMW, Spencer CJ. 2014. The zircon archive of continent formation through time. Geol. Soc. Lond. Spec. Publ 389197–225 [Google Scholar]
  161. Rudnick RL. 1995. Making continental crust. Nature 378:6557571–78 [Google Scholar]
  162. Rudnick RL, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, Vol. 3: The Crust RL Rudnick 1–64 Amsterdam: Elsevier [Google Scholar]
  163. Sandiford M, Kranendonk MJV, Bodorkos S. 2004. Conductive incubation and the origin of dome‐and‐keel structure in Archean granite‐greenstone terrains: a model based on the eastern Pilbara Craton, Western Australia. Tectonics 23:1TC1009 [Google Scholar]
  164. Schoene B, Dudas FOL, Bowring SA, de Wit M. 2009. Sm-Nd isotopic mapping of lithospheric growth and stabilization in the eastern Kaapvaal craton. Terra Nova 21:3219–28 [Google Scholar]
  165. Scholl DW, von Huene R. 2007. Exploring the implications for continental basement tectonics if estimated rates of crustal removal (recycling) at Cenozoic subduction zones are applied to Phanerozoic and Precambrian convergent ocean margins. 4-D Framework of Continental Crust: Memoir 200 RD Hatcher Jr., MP Carlson, JH McBride, JRM Catalán 9–32 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  166. Scholl DW, von Huene R. 2009. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. Geol. Soc. Lond. Spec. Publ. 318:105–25 [Google Scholar]
  167. Shapiro NM, Ritzwoller MH. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151:188–105 [Google Scholar]
  168. Shields GA. 2007. A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth 2:35–42 [Google Scholar]
  169. Shirey SB, Richardson SH. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:6041434–36 [Google Scholar]
  170. Simon NSC, Carlson RW, Pearson DG, Davies GR. 2007. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48:3589–625 [Google Scholar]
  171. Sizova E, Gerya T, Brown M. 2014. Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res 25:2522–45 [Google Scholar]
  172. Sizova E, Gerya T, Brown M, Perchuk LL. 2010. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116:3–4209–29 [Google Scholar]
  173. Sizova E, Gerya T, Stüwe K, Brown M. 2015. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res 271:198–224 [Google Scholar]
  174. Smithies RH, Van Kranendonk MJ, Champion DC. 2007. The Mesoarchean emergence of modern-style subduction. Gondwana Res 11:1–250–68 [Google Scholar]
  175. Spencer CJ, Cawood PA, Hawkesworth CJ, Raub TD, Prave AR, Roberts NMW. 2014. Proterozoic onset of crustal reworking and collisional tectonics: reappraisal of the zircon oxygen isotope record. Geology 42:5451–54 [Google Scholar]
  176. Stern CR. 2011. Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20:2–3284–308 [Google Scholar]
  177. Stockwell CW. 1961. Structural provinces, orogenies and time classification of rocks of the Canadian Precambrian Shield Geol. Surv. Can. Pap 61–17:108–18 Ottawa, Can.: [Google Scholar]
  178. Tang M, Chen K, Rudnick RL. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351:372–75 [Google Scholar]
  179. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A. 2011. Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:121103–6 [Google Scholar]
  180. Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks Oxford, UK: Blackwell Sci. [Google Scholar]
  181. Taylor SR, McLennan SM. 1995. The geochemical evolution of the continental crust. Rev. Geophys. 33:2241–65 [Google Scholar]
  182. Turner S, Rushmer T, Reagan M, Moyen J-F. 2014. Heading down early on? Start of subduction on Earth. Geology 42:2139–42 [Google Scholar]
  183. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ. et al. 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150:6561–80 [Google Scholar]
  184. Valley JW, Peck WH, King EM, Wilde SA. 2002. A cool early Earth. Geology 30:4351–54 [Google Scholar]
  185. van Hunen J, van den Berg AP. 2008. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:1–2217–35 [Google Scholar]
  186. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F. 2008. Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:1–293–124 [Google Scholar]
  187. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC. 2007. Secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:11–38 [Google Scholar]
  188. Vervoort JD, Kemp AIS. 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem. Geol. 425:65–75 [Google Scholar]
  189. Voice PJ, Kowalewski M, Eriksson KA. 2011. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119:2109–26 [Google Scholar]
  190. Walker RJ, Carlson RW, Shirey SB, Boyd FR. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53:71583–95 [Google Scholar]
  191. Walter MJ. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39:129–60 [Google Scholar]
  192. Watts AB, Zhong SJ, Hunter J. 2013. The behavior of the lithosphere on seismic to geologic timescales. Annu. Rev. Earth Planet. Sci. 41:1443–68 [Google Scholar]
  193. Wilde SA, Valley JW, Peck WH, Graham CM. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Lett. Nature 409:6817175–78 [Google Scholar]
  194. Willbold M, Hegner E, Stracke A, Rocholl A. 2009. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet. Sci. Lett. 279:1–244–52 [Google Scholar]
  195. Worsley TR, Nance RD, Moody JB. 1986. Tectonic cycles and the history of the Earth's biogeochemical and paleoceanographic record. Paleoceanography 1:3233–63 [Google Scholar]
  196. Wu F-Y, Walker RJ, Ren X-W, Sun D-Y, Zhou X-H. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem. Geol. 196:1–4107–29 [Google Scholar]
  197. Wu F-Y, Walker RJ, Yang Y-H, Yuan H-L, Yang J-H. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim. Cosmochim. Acta 70:195013–34 [Google Scholar]
  198. Xu Y-G, Blusztajn J, Ma J-L, Suzuki K, Liu JF, Hart SR. 2008. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos 102:1–225–42 [Google Scholar]
  199. Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A. 2016. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351:6272493–96 [Google Scholar]
  200. Zhang H-F, Goldstein SL, Zhou X-H, Sun M, Cai Y. 2009. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os-Sr-Nd isotopic constraints. J. Geol. Soc. Lond. 166:2249–59 [Google Scholar]
  201. Zhang Y-L, Liu C-Z, Ge W-C, Wu F-Y, Chu Z-Y. 2011. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian orogenic belt (CAOB): implications for crust-mantle decoupling. Lithos 126:3–4233–47 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-020525
Loading
/content/journals/10.1146/annurev-earth-063016-020525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error