Current end-member models for the geodynamic evolution of orogenic plateaus predict () slow and steady rise during crustal shortening and ablative subduction (i.e., continuous removal) of the lower lithosphere or () rapid surface uplift following shortening, which is associated with punctuated removal of dense lower lithosphere and/or lower crustal flow. This review integrates results from recent studies of the modern lithospheric structure, geologic evolution, and surface uplift history of the Central Andean Plateau to evaluate the geodynamic processes involved in forming it. Comparison of the timing, magnitude, and distribution of shortening and surface uplift, in combination with other geologic evidence, highlights the pulsed nature of plateau growth. We discuss specific regions and time periods that show evidence for end-member geodynamic processes, including middle–late Miocene surface uplift of the southern Eastern Cordillera and Altiplano associated with shortening and ablative subduction, latest Oligocene–early Miocene and late Miocene–early Pliocene punctuated removal of dense lower lithosphere in the Eastern Cordillera and Altiplano, and late Miocene–early Pliocene crustal flow in the central and northern Altiplano.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allmendinger RW, Jordan TE, Kay SM, Isacks BL. 1997. The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 25:1139–74 [Google Scholar]
  2. Antonijevic SK, Wagner LS, Kumar A, Beck SL, Long MD. et al. 2015. The role of ridges in the formation and longevity of flat slabs. Nature 524:7564212–15 [Google Scholar]
  3. Arriagada C, Roperch P, Mpodozis C, Dupont-Nivet G, Cobold PR. et al. 2003. Paleogene clockwise tectonic rotations in the fore-arc of central Andes, Antofagasta region, northern Chile. J. Geophys. Res. 108:2032 [Google Scholar]
  4. Arriagada C, Roperch P, Mpodozis C, Fernandez R. 2006. Paleomagnetism and tectonics of the southern Atacama Desert (. 25–28 °S), northern Chile. Tectonics 25:TC4001 [Google Scholar]
  5. Baby P, Rochat P, Mascle G, Herail G. 1997. Neogene shortening contribution to crustal thickening in the back arc of the central Andes. Geology 25:883–86 [Google Scholar]
  6. Barke R, Lamb S. 2006. Late Cenozoic uplift of the Eastern Cordillera, Bolivian Andes. Earth Planet. Sci. Lett. 249:3350–67 [Google Scholar]
  7. Barnes JB, Ehlers TA, Insel N, McQuarrie N, Poulsen CJ. 2012. Linking orography, climate, and exhumation across the central Andes. Geology 40:1135–38 [Google Scholar]
  8. Barnes JB, Ehlers TA, McQuarrie N, O'Sullivan PB, Pelletier JD. 2006. Eocene to recent variations in erosion across the central Andean fold-thrust belt, northern Bolivia: implications for plateau evolution:. Earth Planet. Sci. Lett. 248:118–33 [Google Scholar]
  9. Barnes JB, Ehlers TA, McQuarrie N, O'Sullivan PB, Tawackoli PB. 2008. Thermochronometer record of central Andean Plateau growth, Bolivia (19.5°S). Tectonics 27:TC3003 [Google Scholar]
  10. Baumont D, Paul A, Zandt G, Beck SL, Pedersen B. 2002. Lithospheric structure of the central Andes based on surface wave dispersion. J. Geophys. Res. 107:2371 [Google Scholar]
  11. Beck SL, Zandt G. 2002. The nature of orogenic crust in the central Andes. J. Geophy. Res. Solid Earth 107:2230 [Google Scholar]
  12. Beck SL, Zandt G, Wagner L. 2010. Central Andean uplift and the geodynamics of the high topography. International Federation of Digital Seismography Networks Other/Seismic Network. https//doi.org/10.7914/SN/ZG_2010 [Crossref]
  13. Benjamin MT, Johnson NM, Naeser CW. 1987. Recent rapid uplift in the Bolivian Andes: evidence from fission-track dating. Geology 15:680–83 [Google Scholar]
  14. Bershaw J, Garzione CN, Higgins P, MacFadden BJ, Anaya F. et al. 2010. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet. Sci. Lett. 289:3530–38 [Google Scholar]
  15. Bird P. 1978. Finite element modeling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics 50:2307–36 [Google Scholar]
  16. Carlier G, Lorand JP, Liégeois JP, Fornari M, Soler P. et al. 2005. Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano. Geology 33:601–4 [Google Scholar]
  17. Carlotto V. 2013. Paleogeographic and tectonic controls on the evolution of Cenozoic basins in the Altiplano and Western Cordillera of southern Peru. Tectonophysics 589:195–219 [Google Scholar]
  18. Chapman AD, Ducea MN, McQuarrie N, Coble M, Petrescu L. et al. 2015. Constraints on plateau architecture and assembly from deep crustal xenoliths, Northern Altiplano (SE Peru). Geol. Soc. Am. Bull. 127:11–121777–97 [Google Scholar]
  19. Chiaradia M. 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci. Rep. 5:8115 [Google Scholar]
  20. Chong G. 1977. Contributions to the knowledge of the Domeyko range in the Andes of northern Chile. Geol. Rundsch. 66:374–404 [Google Scholar]
  21. Cobbold PR, Rossello EA, Roperch P, Arriagada C, Gómez LA, Lima C. 2007. Distribution, timing, and causes of Andean deformation across South America. Geol. Soc. Lond. Spec. Publ. 272:1321–43 [Google Scholar]
  22. Coney PJ, Evenchick CA. 1994. Consolidation of the American Cordilleras. J. S. Am. Earth Sci. 7:241–62 [Google Scholar]
  23. DeCelles PG, Ducea MN, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2:251–57 [Google Scholar]
  24. DeCelles PG, Carrapa B, Horton BK, McNabb J, Gehrels GE. et al. 2015a. The Miocene Arizaro basin, central Andean hinterland: Response to partial lithosphere removal?. See DeCelles et al. 2015b 359–86
  25. DeCelles PG, Ducea MN, Carrapa B, Kapp AP. 2015b. Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile GSA Mem. 212 Boulder, CO: Geol. Soc. Am.
  26. Demouy S, Paquette J-L, de Saint Blanquat M, Benoit M, Belousova EA. et al. 2012. Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U-Pb and Hf in-situ data on plutonic rocks. Lithos 155:183–200 [Google Scholar]
  27. Ducea MN, Seclaman AC, Murray KE, Jianu D, Schoenbohm LM. 2013. Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes. Geology 41:915–18 [Google Scholar]
  28. Ducea MN, Paterson SR, DeCelles PG. 2015a. High-volume magmatic events in subduction systems. Elements 11:299–104 [Google Scholar]
  29. Ducea MN, Saleeby JB, Bergantz G. 2015b. The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43:299–331 [Google Scholar]
  30. Echavarria L, Hernández R, Allmendinger R, Reynolds J. 2003. Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bull 87:965–85 [Google Scholar]
  31. Eichelberger N, McQuarrie N, Ehlers TA, Enkelmann E, Barnes JB, Lease RO. 2013. New constraints on the chronology, magnitude, and distribution of deformation within the central Andean orocline. Tectonics 32:1432–53 [Google Scholar]
  32. Eichelberger N, McQuarrie N, Ryan J, Karimi B, Beck S, Zandt G. 2015. Evolution of crustal thickening in the central Andes, Bolivia. Earth Planet. Sci. Lett. 426:191–203 [Google Scholar]
  33. Ehlers TA. 2005. Crustal thermal processes and thermochronometer interpretation. Rev. Mineral. Geochem. 58:315–50 [Google Scholar]
  34. Ehlers TA, Poulsen CJ. 2009. Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet. Sci. Lett. 281:3238–48 [Google Scholar]
  35. Farrar E, Clark AH, Kontak DJ, Archibald DA. 1988. Zongo-San Gabon zone: Eocene foreland boundary of Central Andean orogen, northwest Bolivia and southeast Peru. Geology 16:55–58 [Google Scholar]
  36. Feng R, Poulsen CJ. 2016. Refinement of Eocene lapse rates, fossil-leaf altimetry, and North American Cordilleran surface elevation estimates. Earth Planet. Sci. Lett. 436:130–41 [Google Scholar]
  37. Feng R, Poulsen CJ, Werner M, Chamberlain CP, Mix HT. et al. 2013. Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera. Am. J. Sci. 313:7613–48 [Google Scholar]
  38. Fiorella RP, Poulsen CJ, Zolá RS, Jeffery ML, Ehlers TA. 2015. Modern and long-term evaporation of central Andes surface waters suggests paleo archives underestimate Neogene elevations. Earth Planet. Sci. Lett. 432:59–72 [Google Scholar]
  39. Fox M, Bodin T, Shuster DL. 2015. Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of river profiles. Geomorphology 238:1–14 [Google Scholar]
  40. Garzione CN, Auerbach D, Smith JJ, Rosario J, Passey BH. et al. 2014. Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes. Earth Planet. Sci. Lett. 393:173–81 [Google Scholar]
  41. Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden BJ. et al. 2008. Rise of the Andes. Science 320:1304–7 [Google Scholar]
  42. Garzione CN, Molnar P, Libarkin JC, MacFadden BJ. 2006. Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett. 241:543–56 [Google Scholar]
  43. Ghosh P, Garzione CN, Eiler JM. 2006. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311:5760511–15 [Google Scholar]
  44. Gillis RJ, Horton BK, Grove M. 2006. Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: implications for Cenozoic exhumation of the central Andean plateau. Tectonics 25:TC6007 [Google Scholar]
  45. Gotberg N, McQuarrie N, Caillaux VC. 2010. Comparison of crustal thickening budget and shortening estimates in southern Peru (12–14°S): implications for mass balance and rotations in the “Bolivian orocline.”. Geol. Soc. Am. Bull. 122:727–42 [Google Scholar]
  46. Graham A, Gregory-Wodzicki KM, Wright KL. 2001. Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: implications for the uplift history of the Central Andes. Am. J. Bot. 88:91545–57 [Google Scholar]
  47. Gregory-Wodzicki KM. 2000. Uplift history of the Central and Northern Andes: a review. Geol. Soc. Am. Bull. 112:71091–105 [Google Scholar]
  48. Gregory-Wodzicki KM. 2002. A late Miocene subtropical-dry flora from the northern Altiplano, Bolivia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 180:4331–48 [Google Scholar]
  49. Gregory-Wodzicki KM, McIntosh WC, Velasquez K. 1998. Climatic and tectonic implications of the late Miocene Jakokkota flora, Bolivian Altiplano. J. S. Am. Earth Sci. 11:6533–60 [Google Scholar]
  50. Gubbels TL, Isacks BL, Farrar E. 1993. High-level surfaces, plateau uplift, and foreland development, Bolivian central Andes. Geology 21:695–98 [Google Scholar]
  51. Haschke M, Guenther A. 2003. Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 31:933–36 [Google Scholar]
  52. Hayes GP, Wald DJ, Johnson RL. 2012. Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res. 117:B01302 [Google Scholar]
  53. Heit B, Sodoudi F, Yuan X, Bianchi M, Kind R. 2007. An S receiver function analysis of the lithospheric structure in South America. Geophy. Res. Lett. 34:L14307 [Google Scholar]
  54. Hoke GD, Garzione CN. 2008. Paleosurfaces, paleoelevation, and the mechanisms for the late Miocene topographic development of the Altiplano plateau. Earth Planet. Sci. Lett. 271:1192–201 [Google Scholar]
  55. Hoke GD, Isacks BL, Jordan TE, Blanco N, Tomlinson AJ. et al. 2007. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18º30′–22ºS. Tectonics 26:5TC5021 [Google Scholar]
  56. Horton BK. 1999. Erosional control on the geometry and kinematics of thrust belt development in the central Andes. Tectonics 18:1292–304 [Google Scholar]
  57. Horton BK. 2012. Cenozoic evolution of hinterland basins in the Andes and Tibet. Tectonics of Sedimentary Basins: Recent Advances C Busby, A Azor 427–44 Oxford, UK: Wiley-Blackwell [Google Scholar]
  58. Horton BK, Hampton BA, LaReau BN, Baldellón E. 2002. Tertiary provenance history of the northern and central Altiplano (central Andes, Bolivia): a detrital record of plateau-margin tectonics. J. Sediment. Res. 72:711–26 [Google Scholar]
  59. Horton BK, Hampton BA, Waanders GL. 2001. Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes. Geol. Soc. Am. Bull. 113:1387–400 [Google Scholar]
  60. Horton BK, Perez ND, Fitch JD, Saylor JE. 2015. Punctuated shortening and subsidence in the Altiplano Plateau of southern Peru: implications for early Andean mountain building. Lithosphere 7:2117–37 [Google Scholar]
  61. Houseman GA, McKenzie D, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 86:B76115–32 [Google Scholar]
  62. Husson L, Sempere T. 2003. Thickening the Altiplano crust by gravity-driven crustal channel flow. Geophys. Res. Lett. 30:51243 [Google Scholar]
  63. Insel N, Poulsen CJ, Ehlers TA. 2010. Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Climate Dyn 35:7–81477–92 [Google Scholar]
  64. Insel N, Poulsen CJ, Ehlers TA, Sturm C. 2012. Response of meteoric δ18O to surface uplift—implications for Cenozoic Andean Plateau growth. Earth Planet. Sci. Lett. 317:262–72 [Google Scholar]
  65. Isacks BL. 1988. Uplift of the Central Andean Plateau and bending of the Bolivian orocline. J. Geophys. Res. 93:3211–31 [Google Scholar]
  66. James DE, Sacks S. 1999. Cenozoic formation of the central Andes: a geophysical perspective. Geology and Ore Deposits of the Central Andes 7 BJ Skinner 1–25 Littleton, CO: Soc. Econ. Geol. [Google Scholar]
  67. Jeffery ML, Poulsen CJ, Ehlers TA. 2012. Impacts of Cenozoic global cooling, surface uplift, and an inland seaway on South American paleoclimate and precipitation δ18O. Geol. Soc. Am. Bull. 124:3–4335–51 [Google Scholar]
  68. Jeffery ML, Ehlers TA, Yanites BJ, Poulsen CJ. 2013. Quantifying the role of paleoclimate and Andean Plateau uplift on river incision. J. Geophys. Res. Earth Surf. 118:2852–71 [Google Scholar]
  69. Jordan T, Nester P, Blanco N, Hoke G, Davila F, Tomlinson A. 2010. Uplift of the Altiplano-Puna plateau: a view from the west. Tectonics 29:TC5007 [Google Scholar]
  70. Kar N, Garzione CN, Jaramillo C, Shanahan T, Carlotto V. et al. 2016. Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth Planet. Sci. Lett. 447:33–47 [Google Scholar]
  71. Kay RF, MacFadden BJ, Madden RH, Sandeman H, Anaya F. 1998. Revised age of the Salla beds, Bolivia, and its bearing on the age of the Deseadan South American Land Mammal “Age.”. J. Vertebr. Paleontol. 18:189–99 [Google Scholar]
  72. Kay SM, Coira BL. 2009. Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision SM Kay, VA Ramos, WR Dickinson 229–59 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  73. Kennan L, Lamb SH, Hoke L. 1997. High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift. Geol. Soc. Lond. Spec. Publ. 120:1307–23 [Google Scholar]
  74. Kley J. 1996. Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics 15:763–75 [Google Scholar]
  75. Kontak DJ, Farrar E, Clark A, Archibald DA. 1990. Eocene tectono-thermal rejuvenation of an Upper Paleozoic-Lower Mesozoic terrane in the Cordillera de Carabaya, Puno, southeastern Peru, revealed by K–Ar and 40Ar/39Ar dating. J. S. Am. Earth Sci. 3:231–46 [Google Scholar]
  76. Kumar A, Wagner LS, Beck SL, Long MD, Zandt G. et al. 2016. Seismicity and state of stress in the central and southern Peruvian flat slab. Earth Planet. Sci. Lett. 441:71–80 [Google Scholar]
  77. Krystopowicz NJ, Currie CA. 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet. Sci. Lett. 361:195–207 [Google Scholar]
  78. Lamb S. 2011. Did shortening in thick crust cause rapid late Cenozoic uplift in the northern Bolivian Andes?. J. Geol. Soc. 168:1079–92 [Google Scholar]
  79. Lamb S, Hoke L. 1997. Origin of the high plateau in the Central Andes, Bolivia, South America.. Tectonics 16:623–49 [Google Scholar]
  80. Lease RO, Ehlers TA. 2013. Incision into the eastern Andean plateau during Pliocene cooling. Science 341:6147774–76 [Google Scholar]
  81. Lease RO, Ehlers TA, Enkelmann E. 2016. Large along-strike variations in the onset of Subandean exhumation: implications for Central Andean orogenic growth. Earth Planet. Sci. Lett. 451:62–76 [Google Scholar]
  82. Leier AL, McQuarrie N, Horton BK, Gehrels GE. 2010. Upper Oligocene conglomerates of the Altiplano, Central Andes: the record of deposition and deformation along the margin of a hinterland basin. J. Sediment. Res 80750–62 [Google Scholar]
  83. Leier A, McQuarrie N, Garzione CN, Eiler JM. 2013. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth Planet. Sci. Lett. 371:49–58 [Google Scholar]
  84. Long MD, Biryol CB, Eakin CM, Beck SL, Wagner LS. et al. 2016. Overriding plate, mantle wedge, slab, and subslab contributions to seismic anisotropy beneath the northern Central Andean Plateau. Geochem. Geophys. Geosyst. 17:2556–75 [Google Scholar]
  85. Ma Y, Clayton RW. 2014. The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis. Earth Planet. Sci. Lett. 395:61–70 [Google Scholar]
  86. Maksaev Y, Boric R, Zentilli M, Reynolds PH. 1988. Metallogenetic implications of K–Ar, 40Ar–39Ar, and fission track dates of mineralized areas in the Andes of northern Chile. V. Congr. Geol. J. Chil. Aetas 1:B65–86 [Google Scholar]
  87. Mamani M, Worner G, Sempere T. 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time. Geol. Soc. Am. Bull. 122:162–82 [Google Scholar]
  88. McLeod CL, Davidson JP, Nowell GM, de Silva SL, Schmitt AK. 2013. Characterizing the continental basement of the Central Andes: constraints from Bolivian crustal xenoliths. Geol. Soc. Am. Bull. 125:985–97 [Google Scholar]
  89. McBride SL, Clark AH, Farrar E, Archibald DA. 1987. Delimitation of a cryptic Eocene tectono-thermal domain in the Eastern Cordillera of the Bolivian Andes through K–Ar dating and 40Ar–39Ar step-heating. J. Geol. Soc. 144:243–55 [Google Scholar]
  90. McQuarrie N. 2002. The kinematic history of the central Andean fold-thrust belt, Bolivia: implications for building a high plateau:. Geol. Soc. Am. Bull. 114:950–63 [Google Scholar]
  91. McQuarrie N, DeCelles P. 2001. Geometry and structural evolution of the central Andean backthrust belt, Bolivia. Tectonics 20:5669–92 [Google Scholar]
  92. McQuarrie N, Horton BK, Zandt G, Beck S, DeCelles PG. 2005. Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the central Andean plateau.. Tectonophysics 399:15–37 [Google Scholar]
  93. McQuarrie N, Barnes JB, Ehlers TA. 2008. Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17°S). Tectonics 27:TC3007 [Google Scholar]
  94. McQuarrie N, Ehlers TA. 2015. Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: insights from the Bhutan Himalaya. Tectonics 34:1055–79 [Google Scholar]
  95. McQuarrie N, Ehlers TA. 2017. Techniques for understanding fold-thrust belt kinematics and thermal evolution. Linkages and Feedbacks in Orogenic Processes GSA Mem. 213, ed. RD Law, JR Thigpen, AJ Merschat, HH Stowell 1–30 Boulder, CO: Geol. Soc. Am. In press [Google Scholar]
  96. McQuarrie N, Rak AJ, Ehlers T. 2015. Constraining age and rate of deformation in the northern Bolivian Andes from cross sections, cooling ages, and thermokinematic modeling Presented at Fall Meet., AGU, San Francisco (Abstr. T34A-03)
  97. Mégard F. 1978. Étude géologique des Andes du Pérou central. Mem. 86. Paris: ORSTOM
  98. Mégard F. 1984. The Andean orogenic period and its major structures in central and northern Peru. J. Geol. Soc. Lond. 141:893–900 [Google Scholar]
  99. Mégard F. 1987. Cordilleran Andes and marginal Andes: a review of Andean geology north of the Arica elbow (18°S). Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin JWH Monger, J Francheteau Geodyn. Monogr 1871–95 Washington, DC: AGU [Google Scholar]
  100. Mosolf JG, Horton BK, Heizler MT, Matos R. 2011. Unroofing the core of the central Andean fold-thrust belt during focused late Miocene exhumation: evidence from the Tipuani-Mapiri wedge-top basin, Bolivia. Basin Res 23:3346–60 [Google Scholar]
  101. Mpodozis C, Arriagada C, Basso M, Roperch P, Cobbold P. et al. 2005. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama basin, Antofagasta, Northern Chile: implications for the tectonic evolution of the central Andes. Tectonophysics 399:125–54 [Google Scholar]
  102. Mulch A, Uba CE, Strecker MR, Schoenberg R, Chamberlain CP. 2010. Late Miocene climate variability and surface elevation in the central Andes. Earth Planet. Sci. Lett. 290:1173–82 [Google Scholar]
  103. Müller JP, Kley J, Jacobshagen V. 2002. Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21°S). Tectonics 21:1037 [Google Scholar]
  104. Murray BP, Horton BK, Matos R, Heizler MT. 2010. Oligocene–Miocene basin evolution in the northern Altiplano, Bolivia: implications for evolution of the central Andean backthrust belt and high plateau. Geol. Soc. Am. Bull. 122:1443–62 [Google Scholar]
  105. Myers S, Beck S, Zandt G, Wallace T. 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. J. Geophys. Res. 103:21233–52 [Google Scholar]
  106. Oncken O, Hindle D, Kley J, Elger K, Victor P. et al. 2006. Deformation of the central Andean upper plate system—facts, fiction, and constraints for plateau models. The Andes: Active Subduction Orogeny—Frontiers in Earth Sciences O Oncken, G Chong, G Franz, P Giese, H-J Götze et al.3–27 New York/Berlin: Springer-Verlag [Google Scholar]
  107. Perkins JP, Finnegan NJ, Henderson ST, Rittenour TM. 2016. Topographic constraints on magma accumulation below the actively uplifting Uturuncu and Lazufre volcanic centers in the Central Andes. Geosphere 12:41078–96 [Google Scholar]
  108. Perez ND, Horton BK. 2014. Oligocene-Miocene deformational and depositional history of the Andean hinterland basin in the northern Altiplano plateau southern Peru. Tectonics 33:1819–47 [Google Scholar]
  109. Perez ND, Horton BK, Carlotto V. 2016a. Structural inheritance and selective reactivation in the central Andes: Cenozoic deformation guided by pre-Andean structures in southern Peru.. Tectonophysics 671:264–80 [Google Scholar]
  110. Perez ND, Horton BK, McQuarrie N, Stubner K, Ehlers TA. 2016b. Andean shortening, inversion and exhumation associated with thin- and thick-skinned deformation in southern Peru. Geol. Mag. 153:1013–41 [Google Scholar]
  111. Phillips K, Clayton R, Davis P, Tavera H, Guy R. et al. 2012. Structure of the subduction system in southern Peru from seismic array data. J. Geophy. Res. 117:B11306 [Google Scholar]
  112. Picard D, Sempere T, Plantard O. 2008. Direction and timing of uplift propagation in the Peruvian Andes deduced from the molecular phylogeny of highland biotaxa. Earth Planet. Sci. Lett. 271:326–36 [Google Scholar]
  113. Pope DC, Willett SD. 1998. Thermal-mechanical model for crustal thickening in the central Andes driven by ablative subduction. Geology 26:6511–14 [Google Scholar]
  114. Poulsen CJ, Ehlers TA, Insel N. 2010. Onset of convective rainfall during gradual late Miocene rise of the central Andes. Science 328:5977490–93 [Google Scholar]
  115. Poulsen CJ, Jeffery ML. 2011. Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens. Geology 39:6595–98 [Google Scholar]
  116. Profeta L, Ducea MN, Chapman JB, Paterson SR, Henriquez Gonzales SM. et al. 2015. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5:17786 [Google Scholar]
  117. Rak AJ. 2015. Geometry, kinematics, exhumation and sedimentation of the northern Bolivian fold-thrust-belt foreland basin system MS thesis, Univ. Pittsburgh 121
  118. Ryan J, Beck S, Zandt G, Wagner L, Minaya E, Taverna H. 2016. Central Andean crustal structure from receiver function analysis. Tectonophysics 682:120–33 [Google Scholar]
  119. Rech JA, Currie BS, Michalski G, Cowan AM. 2006. Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:9761–64 [Google Scholar]
  120. Roperch P, Sempere T, Macedo O, Arriagada C, Fornari M. et al. 2006. Counterclockwise rotation of late Eocene–Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the central Andes. Tectonics 25:TC3010 [Google Scholar]
  121. Safran EB, Blythe AE, Dunne T. 2006. Spatially variable exhumation rates in orogenic belts: an Andean example. J. Geol. 114:665–81 [Google Scholar]
  122. Sandeman HA, Clark AH, Farrar E. 1995. An integrated tectono-magmatic model for the evolution of the southern Peruvian Andes (13–20°S) since 55 Ma. Int. Geol. Rev. 37:1039–73 [Google Scholar]
  123. Saylor JE, Horton BK. 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387:120–31 [Google Scholar]
  124. Schildgen TF, Hodges KV, Whipple KX, Reiners PW, Pringle MS. 2007. Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru. Geology 35:523–26 [Google Scholar]
  125. Schildgen TF, Hodges KV, Whipple KX, Pringle MS, van Soest M. et al. 2009a. Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru. Tectonics 28:4TC4007 [Google Scholar]
  126. Schildgen TF, Ehlers TA, Whipp DM Jr., van Soest MC, Whipple KXl. 2009b. Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: a thermochronometer and numerical modeling approach. J. Geophy. Res. 114:F4F04014 [Google Scholar]
  127. Scheuber E, Reutter KJ. 1992. Magmatic arc tectonics in the Central Andes between 21º and 25ºS. Tectonophysics 205:127–40 [Google Scholar]
  128. Scheuber E, Mertmann D, Ege H, Silva-Gonzalez P, Heubeck C. et al. 2006. Exhumation and basin development related to formation of the Central Andean Plateau, 21°S. The Andes: Active Subduction Orogeny—Frontiers in Earth Sciences O Oncken, G Chong, G Franz, P Giese, H-J Götze, et al 285–301 New York/Berlin: Springer-Verlag [Google Scholar]
  129. Sempere T, Hérail G, Oller J, Bonhomme MG. 1990. Late Oligocene–Early Miocene major tectonic crisis and related basins in Bolivia. Geology 18:10946–49 [Google Scholar]
  130. Sobolev SV, Babeyko AY. 2005. What drives orogeny in the Andes. ? Geology 33:8617–20 [Google Scholar]
  131. Swenson J, Beck S, Zandt G. 1999. Regional distance shear-coupled PL propagation within the northern Altiplano, central Andes. Geophys. J. Int. 139:743–53 [Google Scholar]
  132. Tassara A, Echaurren A. 2012. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophy. J. Int. 189:1161–68 [Google Scholar]
  133. Thouret JC, Worner G, Gunnell Y, Singer B, Zhang X. et al. 2007. Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru. Earth Planet. Sci. Lett. 263:151–66 [Google Scholar]
  134. Tao WC, O'Connell RJ. 1992. Ablative subduction: a two-sided alternative to the conventional subduction model. J. Geophy. Res. 97:B68877–904 [Google Scholar]
  135. Turner SJ, Langmuir CH. 2015. The global chemical systematics of arc front stratovolcanoes: evaluating the role of crustal processes. Earth Planet. Sci. Lett. 422:182–93 [Google Scholar]
  136. Uba CE, Kley J, Strecker MR, Schmitt A. 2009. Unsteady evolution of the Bolivian Subandean thrust belt: the role of enhanced erosion and clastic wedge progradation. Earth Planet. Sci. Lett. 281:134–46 [Google Scholar]
  137. Wagner L, Beck S, Long M. 2010. PerU Lithosphere and Slab Experiment. International Federation of Digital Seismography Networks Other/Seismic Network. http://www.fdsn.org/networks/detail/ZD_2010
  138. Wagner LS, Beck S, Zandt G. 2005. Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. 110:B1B01308 [Google Scholar]
  139. Wagner LS, Beck S, Zandt G, Ducea MN. 2006. Depleted lithosphere, cold, trapped asthenosphere, and frozen melt puddles above the flat slab in central Chile and Argentina. Earth Planet. Sci. Lett. 245:289–301 [Google Scholar]
  140. Wang H, Currie CA, DeCelles PG. 2015. Hinterland basin formation and gravitational instabilities in the central Andes: constraints from gravity data and geodynamic models. See DeCelles et al. 2015b 387–406
  141. Ward KM, Porter RC, Zandt G, Beck SL, Wagner LS. et al. 2013. Ambient noise tomography across the Central Andes. Geophy. J. Int. 194:1559–73 [Google Scholar]
  142. Ward KM, Zandt G, Beck SL, Wagner LS, Taverna H. 2016. Lithospheric structure beneath the northern Central Andean Plateau from the joint inversion of ambient noise and earthquake-generated surface waves. J. Geophy. Res. 121:8217–38 [Google Scholar]
  143. Whipple KX, Gasparini NM. 2014. Tectonic control of topography, rainfall patterns, and erosion during rapid post–12 Ma uplift of the Bolivian Andes. Lithosphere 6:4251–68 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error