1932

Abstract

Organic molecules are key components of the Earth-life system. Their stable isotope composition provides information on various problems such as past climate, energy resources, or the synthesis of prebiotically relevant molecules on Earth and elsewhere. Organic molecules are made of isotopologues, molecules differing in the number and/or position of isotope substitution. Recent years have witnessed a boom in technological development dedicated to isotopologue measurement, leading to an unprecedented degree of information regarding organic (bio)synthesis. While applications in Earth and planetary sciences has been limited so far to simple hydrocarbons, typically methane, isotopologue proxies are expected to rapidly emerge in biogeochemistry, providing new types of environmental and biological tracers. This review describes principles and measurement techniques, as well as present and potential biogeochemical applications.

  • ▪   Stable isotopes of organic molecules are widely used in biogeo-chemistry.
  • ▪   Isotope analysis at the intramolecular level is expected to provide new information on the origin of molecules.
  • ▪   Recent technological developments unlocked the potential of intramolecular isotope analysis, providing new proxies in biogeochemistry and new opportunities to clarify questions related to Earth and planetary sciences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071420-053134
2021-05-30
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071420-053134.html?itemId=/content/journals/10.1146/annurev-earth-071420-053134&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson PH, Hoering TC. 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. PNAS 47:5623–32
    [Google Scholar]
  2. Ash JL, Egger M, Treude T, Kohl I, Cragg B et al. 2019. Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 and 13CH3D in methane. Geochem. Persp. Lett 10:26–30
    [Google Scholar]
  3. Bayle K, Gilbert A, Julien M, Yamada K, Silvestre V et al. 2014. Conditions to obtain precise and true measurements of the intramolecular 13C distribution in organic molecules by isotopic 13C nuclear magnetic resonance spectrometry. Anal. Chim. Acta 846:1–7
    [Google Scholar]
  4. Bayle K, Grand M, Chaintreau A, Robins RJ, Fieber W et al. 2015. Internal referencing for 13C position-specific isotope analysis measured by NMR spectrometry. Anal. Chem. 87:157550–54
    [Google Scholar]
  5. Billault I, Guiet S, Mabon F, Robins R 2001. Natural deuterium distribution in long-chain fatty acids is nonstatistical: a site-specific study by quantitative 2H NMR spectroscopy. ChemBioChem 2:6425–31
    [Google Scholar]
  6. Bird LR, Dawson KS, Chadwick GL, Fulton JM, Orphan VJ, Freeman KH 2019. Carbon isotopic heterogeneity of coenzyme F430 and membrane lipids in methane-oxidizing archaea. Geobiology 17:6611–27
    [Google Scholar]
  7. Blair N, Leu A, Muñoz E, Olsen J, Kwong E, Des Marais D 1985. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microbiol. 50:4996–1001
    [Google Scholar]
  8. Brenna JT 2001. Natural intramolecular isotope measurements in physiology: elements of the case for an effort toward high-precision position-specific isotope analysis. Rapid Comm. Mass Spec 15:151252–62
    [Google Scholar]
  9. Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP 2012. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41:165459–72
    [Google Scholar]
  10. Cesar J, Eiler J, Dallas B, Chimiak L, Grice K 2019. Isotope heterogeneity in ethyltoluenes from Australian condensates, and their stable carbon site-specific isotope analysis. Org. Geochem. 135:32–37
    [Google Scholar]
  11. Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y 2011. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab. Eng. 13:138–48
    [Google Scholar]
  12. Chung HM, Gormly JR, Squires RM 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem. Geol. 71:197–104
    [Google Scholar]
  13. Clog M, Lawson M, Peterson B, Ferreira AA, Santos Neto EV, Eiler JM 2018. A reconnaissance study of 13C–13C clumping in ethane from natural gas. Geochim. Cosmochim. Acta 223:229–44
    [Google Scholar]
  14. Corso TN, Brenna JT. 1997. High-precision position-specific isotope analysis. PNAS 94:41049–53
    [Google Scholar]
  15. DeNiro MJ, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:4300261–63
    [Google Scholar]
  16. Dias RF, Freeman KH, Franks SG 2002. Gas chromatography–pyrolysis–isotope ratio mass spectrometry: a new method for investigating intramolecular isotopic variation in low molecular weight organic acids. Org. Geochem. 33:2161–68
    [Google Scholar]
  17. Diomande DG, Martineau E, Gilbert A, Nun P, Murata A et al. 2015. Position-specific isotope analysis of xanthines: a 13C nuclear magnetic resonance method to determine the 13C intramolecular composition at natural abundance. Anal. Chem. 87:136600–6
    [Google Scholar]
  18. Douglas PMJ, Stolper DA, Eiler JM, Sessions AL, Lawson M et al. 2017. Methane clumped isotopes: progress and potential for a new isotopic tracer. Org. Geochem. 113:262–82
    [Google Scholar]
  19. Ehlers I, Augusti A, Betson TR, Nilsson MB, Marshall JD, Schleucher J 2015. Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. PNAS 112:5115585–90
    [Google Scholar]
  20. Eiler JM. 2013. The isotopic anatomies of molecules and minerals. Annu. Rev. Earth Planet. Sci. 41:411–41
    [Google Scholar]
  21. Eiler JM, Cesar J, Chimiak L, Dallas B, Grice K et al. 2017. Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. Int. J. Mass Spec. 422:126–42
    [Google Scholar]
  22. Eiler JM, Clog M, Lawson M, Lloyd M, Piasecki A et al. 2018. The isotopic structures of geological organic compounds. Geol. Soc. Lond. Spec. Publ. 468:153–81
    [Google Scholar]
  23. Eiler JM, Clog M, Magyar P, Piasecki A, Sessions A et al. 2013. A high-resolution gas-source isotope ratio mass spectrometer. Int. J. Mass Spec 335:45–56
    [Google Scholar]
  24. Etiope G, Sherwood Lollar B 2013. Abiotic methane on Earth. Rev. Geophys. 51:2276–99
    [Google Scholar]
  25. Freeman KH, Hayes JM. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6:2185–98
    [Google Scholar]
  26. Freeman KH, Hayes JM, Trendel J-M, Albrecht P 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:6255254–56
    [Google Scholar]
  27. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA et al. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:195915–20
    [Google Scholar]
  28. Fry B, Carter JF. 2019. Stable carbon isotope diagnostics of mammalian metabolism, a high-resolution isotomics approach using amino acid carboxyl groups. PLOS ONE 14:10e0224297
    [Google Scholar]
  29. Fry B, Carter JF, Yamada K, Yoshida N, Juchelka D 2018. Position-specific 13C/12C analysis of amino acid carboxyl groups—automated flow-injection analysis based on reaction with ninhydrin. Rapid Comm. Mass Spec. 32:12992–1000
    [Google Scholar]
  30. Galimov EM. 2006. Isotope organic geochemistry. Org. Geochem. 37:101200–62
    [Google Scholar]
  31. Gauchotte-Lindsay C, Turnbull SM. 2016. On-line high-precision carbon position-specific stable isotope analysis: a review. Trends Anal. Chem. 76:115–25
    [Google Scholar]
  32. Gelwicks JT, Hayes JM. 1990. Carbon-isotopic analysis of dissolved acetate. Anal. Chem. 62:535–39
    [Google Scholar]
  33. Gilbert A, Lollar BS, Musat F, Giunta T, Chen S et al. 2019. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs. PNAS 116:146653–58
    [Google Scholar]
  34. Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB 2012a. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. PNAS 109:4418204–9
    [Google Scholar]
  35. Gilbert A, Silvestre V, Robins RJ, Remaud GS 2009. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal. Chem. 81:218978–85
    [Google Scholar]
  36. Gilbert A, Silvestre V, Robins RJ, Remaud GS, Tcherkez G 2012b. Biochemical and physiological determinants of intramolecular isotope patterns in sucrose from C3, C4 and CAM plants accessed by isotopic 13C NMR spectrometry: a viewpoint. . A Nat. Prod. Rep 29:4476–86
    [Google Scholar]
  37. Gilbert A, Silvestre V, Robins RJ, Tcherkez G, Remaud GS 2011a. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples. New Phytol. 191:2579–88
    [Google Scholar]
  38. Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C et al. 2011b. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ. 34:71104–12
    [Google Scholar]
  39. Gilbert A, Yamada K, Suda K, Ueno Y, Yoshida N 2016. Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim. Cosmochim. Acta 177:205–16
    [Google Scholar]
  40. Gilbert A, Yamada K, Yoshida N 2013a. Accurate method for the determination of intramolecular 13C isotope composition of ethanol from aqueous solutions. Anal. Chem. 85:146566–70
    [Google Scholar]
  41. Gilbert A, Yamada K, Yoshida N 2013b. Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11–C31) using isotopic 13C NMR. Org. Geochem. 62:56–61
    [Google Scholar]
  42. Giunta T, Young ED, Warr O, Kohl I, Ash JL et al. 2019. Methane sources and sinks in continental sedimentary systems: new insights from paired clumped isotopologues 13CH3D and 12CH2D2. Geochim. Cosmochim. Acta 245:327–51
    [Google Scholar]
  43. Gleixner G, Schmidt HL. 1997. Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates. J. Biol. Chem. 272:95382–87
    [Google Scholar]
  44. Gonzalez Y, Nelson DD, Shorter JH, McManus JB, Dyroff C et al. 2019. Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 91:2314967–74
    [Google Scholar]
  45. Götze JP, Saalfrank P. 2012. Quantum chemical modeling of the kinetic isotope effect of the carboxylation step in RuBisCO. J. Mol. Model. 18:51877–83
    [Google Scholar]
  46. Hayes JM. 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev. Mineral. Geochem. 43:1225–77
    [Google Scholar]
  47. He Y, Bao H, Liu Y 2020. Predicting equilibrium intramolecular isotope distribution within a large organic molecule by the cutoff calculation. Geochim. Cosmochim. Acta 269:292–302
    [Google Scholar]
  48. Hobbie EA, Werner RA. 2004. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 161:2371–85
    [Google Scholar]
  49. Hoefs J. 2018. Stable Isotope Geochemistry Cham, Switz: Springer. , 8th ed..
  50. Huang Y, Alexandre MR, Wang Y 2007. Structure and isotopic ratios of aliphatic side chains in the insoluble organic matter of the Murchison carbonaceous chondrite. Earth Planet. Sci. Lett. 259:3517–25
    [Google Scholar]
  51. Iñiguez C, Capó‐Bauçà S, Niinemets Ü, Stoll H, Aguiló‐Nicolau P, Galmés J 2020. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO2 concentrating mechanisms. Plant J. 101:4897–918
    [Google Scholar]
  52. IUPAC (Intl. Union Pure Appl. Chem.) 1997. Compendium of Chemical Terminology Research Triangle Park, NC: Intl. Union Pure Appl. Chem.
  53. Jaekel U, Vogt C, Fischer A, Richnow H-H, Musat F 2014. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ. Microbiol. 16:1130–40
    [Google Scholar]
  54. Jézéquel T, Joubert V, Giraudeau P, Remaud GS, Akoka S 2017. The new face of isotopic NMR at natural abundance. Magn. Reson. Chem. 55:277–90
    [Google Scholar]
  55. Jiang T, Moriwaki K, Kobayashi O, Ishimura K, Danielache SO, Nanbu S 2020. Theoretical analysis of the kinetic isotope effect on carboxylation in RubisCO. J. Comput. Chem. 41:111116–23
    [Google Scholar]
  56. Joubert V, Silvestre V, Lelièvre M, Ladroue V, Besacier F et al. 2019. Position-specific 15N isotope analysis in organic molecules: a high-precision 15N NMR method to determine the intramolecular 15N isotope composition and fractionation at natural abundance. Magn. Reson. Chem. 57:121136–42
    [Google Scholar]
  57. Julien M, Goldman MJ, Liu C, Horita J, Boreham CJ et al. 2020. Intramolecular 13C isotope distributions of butane from natural gases. Chem. Geol. 541:119571
    [Google Scholar]
  58. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H et al. 2007. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:7164898–901
    [Google Scholar]
  59. Lesot P, Lafon O, Berdagué P 2014. Correlation 2D-NMR experiments involving both 13C and 2H isotopes in oriented media: methodological developments and analytical applications. Magn. Reson. Chem. 52:10595–613
    [Google Scholar]
  60. Li Y, Zhang L, Xiong Y, Gao S, Yu Z, Peng P 2018. Determination of position-specific carbon isotope ratios of propane from natural gas. Org. Geochem. 119:11–21
    [Google Scholar]
  61. Liu C, Liu P, McGovern GP, Horita J 2019a. Molecular and intramolecular isotope geochemistry of natural gases from the Woodford Shale, Arkoma Basin, Oklahoma. Geochim. Cosmochim. Acta 255:188–204
    [Google Scholar]
  62. Liu C, McGovern GP, Liu P, Zhao H, Horita J 2018. Position-specific carbon and hydrogen isotopic compositions of propane from natural gases with quantitative NMR. Chem. Geol. 491:14–26
    [Google Scholar]
  63. Liu Q, Liu Y. 2016. Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2. Geochim. Cosmochim. Acta 175:252–70
    [Google Scholar]
  64. Liu Q, Wu X, Wang X, Jin Z, Zhu D et al. 2019b. Carbon and hydrogen isotopes of methane, ethane, and propane: a review of genetic identification of natural gas. Earth-Sci. Rev. 190:247–72
    [Google Scholar]
  65. Loh A, Wolff M. 2017. Absorption cross sections of 13C ethane and propane isotopologues in the 3 μm region. J. Quant. Spectrosc. Radiat. Transf. 203:517–21
    [Google Scholar]
  66. Ma R, Zhao Y, Liu L, Zhu Z, Wang B et al. 2020. Novel position-specific 18O/16O measurement of carbohydrates. II. The complete intramolecular 18O/16O profile of the glucose unit in a starch of C4 origin. Anal. Chem. 92:117462–70
    [Google Scholar]
  67. Magyar PM, Orphan VJ, Eiler JM 2016. Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry. Rapid Comm. Mass Spec. 30:171923–40
    [Google Scholar]
  68. Makarewicz CA, Sealy J. 2015. Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. J. Archaeol. Sci. 56:146–58
    [Google Scholar]
  69. Martin GJ, Guillou C, Martin ML, Cabanis MT, Tep Y, Aerny J 1988. Natural factors of isotope fractionation and the characterization of wines. J. Agric. Food Chem. 36:2316–22
    [Google Scholar]
  70. McCollom TM, Seewald JS. 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243:174–84
    [Google Scholar]
  71. McNeill AS, Dallas BH, Eiler JM, Bylaska EJ, Dixon DA 2020. Reaction energetics and 13C fractionation of alanine transamination in the aqueous and gas phases. J. Phys. Chem. A 124:102077–89
    [Google Scholar]
  72. Melzer E, O'Leary MH. 1991. Aspartic-acid synthesis in C3 plants. Planta 185:3368–71
    [Google Scholar]
  73. Melzer E, Schmidt HL. 1987. Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. J. Biol. Chem. 262:178159–64
    [Google Scholar]
  74. Monson KD, Hayes JM. 1980. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis. J. Biol. Chem. 255:2311435–41
    [Google Scholar]
  75. Monson KD, Hayes JM 1982a. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionation in lipid synthesis as evidence for peroxisomal regulation. J. Biol. Chem. 257:105568–75
    [Google Scholar]
  76. Monson KD, Hayes JM. 1982b. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim. Cosmochim. Acta 46:2139–49
    [Google Scholar]
  77. Neubauer C, Sweredoski MJ, Moradian A, Newman DK, Robins RJ, Eiler JM 2018. Scanning the isotopic structure of molecules by tandem mass spectrometry. Int. J. Mass Spec. 434:276–86
    [Google Scholar]
  78. Nier AO. 1947. A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum. 18:6398–411
    [Google Scholar]
  79. Nitzsche P, Dinc C, Schmitt K, Wöllenstein J 2019. Quantum cascade laser-based tunable laser absorption spectroscopy for the detection of stable isotopes of CO2. Tagungsband 2019.130–35
    [Google Scholar]
  80. O'Leary MH, Rife JE, Slater JD 1981. Kinetic and isotope effect studies of maize phosphoenolpyruvate carboxylase. Biochemistry 20:257308–14
    [Google Scholar]
  81. Ono S, Wang DT, Gruen DS, Sherwood Lollar B, Zahniser MS et al. 2014. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 86:136487–94
    [Google Scholar]
  82. Peterson BK, Formolo MJ, Lawson M 2018. Molecular and detailed isotopic structures of petroleum: kinetic Monte Carlo analysis of alkane cracking. Geochim. Cosmochim. Acta 243:169–85
    [Google Scholar]
  83. Piasecki A, Sessions A, Lawson M, Ferreira AA, Santos Neto EV, Eiler JM 2016a. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer. Geochim. Cosmochim. Acta 188:58–72
    [Google Scholar]
  84. Piasecki A, Sessions A, Lawson M, Ferreira AA, Santos Neto EV et al. 2018. Position-specific 13C distributions within propane from experiments and natural gas samples. Geochim. Cosmochim. Acta 220:110–24
    [Google Scholar]
  85. Piasecki A, Sessions A, Peterson B, Eiler J 2016b. Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory. Geochim. Cosmochim. Acta 190:1–12
    [Google Scholar]
  86. Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ et al. 2008. Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science 319:5863604–7
    [Google Scholar]
  87. Rasmussen C, Hoffman DW. 2020. Intramolecular distribution of 13C/12C isotopes in amino acids of diverse origins. Amino Acids. 52:955–64
    [Google Scholar]
  88. Remusat L, Derenne S, Robert F 2005. New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation. Geochim. Cosmochim. Acta 69:174377–86
    [Google Scholar]
  89. Rinaldi G, Meinschein WG, Hayes JM 1974. Intramolecular carbon isotopic distribution in biologically produced acetoin. Biomed. Mass Spectrom. 1:6415–17
    [Google Scholar]
  90. Rishavy MA, Cleland WW. 1999. 13C, 15N, and 18O equilibrium isotope effects and fractionation factors. Can. J. Chem. 77:5/6967–77
    [Google Scholar]
  91. Röckmann T, Popa ME, Krol MC, Hofmann MEG 2016. Statistical clumped isotope signatures. Sci. Rep. 6:131947
    [Google Scholar]
  92. Rojo F. 2009. Degradation of alkanes by bacteria. Environ. Microbiol. 11:102477–90
    [Google Scholar]
  93. Romek KM, Krzemińska A, Remaud GS, Julien M, Paneth P, Robins RJ 2017. Insights into the role of methionine synthase in the universal 13C depletion in O- and N-methyl groups of natural products. Arch. Biochem. Biophys. 635:60–65
    [Google Scholar]
  94. Rooney MA, Claypool GE, Chung HM 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol. 126:3219–32
    [Google Scholar]
  95. Rossmann A, Butzenlechner M, Schmidt H-L 1991. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 96:2609–14
    [Google Scholar]
  96. Rustad JR. 2009. Ab initio calculation of the carbon isotope signatures of amino acids. Org. Geochem. 40:6720–23
    [Google Scholar]
  97. Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE et al. 2012. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40:221–49
    [Google Scholar]
  98. Sacks GL, Brenna JT. 2005. 15N/14N position-specific isotopic analyses of polynitrogenous amino acids. Anal. Chem. 77:41013–19
    [Google Scholar]
  99. Savidge WB, Blair NE. 2004. Patterns of intramolecular carbon isotopic heterogeneity within amino acids of autotrophs and heterotrophs. Oecologia 139:2178–89
    [Google Scholar]
  100. Schleucher J, Vanderveer P, Markley JL, Sharkey TD 1999. Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant Cell Environ. 22:5525–33
    [Google Scholar]
  101. Schmidt H-L. 2003. Fundamentals and systematics of the non-statistical distributions of isotopes in natural compounds. Naturwissenschaften 90:12537–52
    [Google Scholar]
  102. Schmidt H-L, Robins RJ, Werner RA 2015. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. Isot. Environ. Health Stud. 51:1155–99
    [Google Scholar]
  103. Schoell M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 44:5649–61
    [Google Scholar]
  104. Schouten S, Özdirekcan S, van der Meer MTJ, Blokker P, Baas M et al. 2008. Evidence for substantial intramolecular heterogeneity in the stable carbon isotopic composition of phytol in photoautotrophic organisms. Org. Geochem. 39:1135–46
    [Google Scholar]
  105. Sephton MA. 2002. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19:3292–311
    [Google Scholar]
  106. Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature 416:6880522–24
    [Google Scholar]
  107. Shi Q, Wang J, Zhou X, Xu C, Zhao S, Chung KH 2016. Ruthenium ion-catalyzed oxidation for petroleum molecule structural features: a review. Structure and Modeling of Complex Petroleum Mixtures C Xu, Q Shi 71–91 Cham, Switz. Springer
    [Google Scholar]
  108. Stolper DA, Lawson M, Davis CL, Ferreira AA, Santos Neto EV et al. 2014a. Formation temperatures of thermogenic and biogenic methane. Science 344:61911500–3
    [Google Scholar]
  109. Stolper DA, Sessions AL, Ferreira AA, Santos Neto EV, Schimmelmann A et al. 2014b. Combined 13C–D and D–D clumping in methane: methods and preliminary results. Geochim. Cosmochim. Acta 126:169–91
    [Google Scholar]
  110. Suda K, Gilbert A, Yamada K, Yoshida N, Ueno Y 2017. Compound- and position-specific carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba Happo hot spring in Japan. Geochim. Cosmochim. Acta 206:201–15
    [Google Scholar]
  111. Taenzer L, Labidi J, Masterson AL, Feng X, Rumble D III et al. 2020. Low Δ12CH2D2 values in microbialgenic methane result from combinatorial isotope effects. Geochim. Cosmochim. Acta 285:225–36
    [Google Scholar]
  112. Taguchi K, Yamamoto T, Nakagawa M, Gilbert A, Ueno Y 2020. A fluorination method for measuring the 13C-13C isotopologue of C2 molecules. Rapid Comm. Mass Spec. 34:11e8761
    [Google Scholar]
  113. Tang Y, Perry JK, Jenden PD, Schoell M 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta 64:152673–87
    [Google Scholar]
  114. Tcherkez G. 2006. How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase?. Funct. Plant Biol. 33:10911–20
    [Google Scholar]
  115. Tcherkez G, Farquhar GD. 2005. Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct. Plant Biol. 32:4277–91
    [Google Scholar]
  116. Tcherkez G, Farquhar GD, Andrews TJ 2006. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. PNAS 103:197246–51
    [Google Scholar]
  117. Tcherkez G, Farquhar GD, Badeck F, Ghashghaie J 2004. Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct. Plant Biol. 31:9857–77
    [Google Scholar]
  118. Tcherkez G, Mahé A, Hodges M 2011. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 16:9499–506
    [Google Scholar]
  119. Tenailleau EJ, Lancelin P, Robins RJ, Akoka S 2004. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. J. Agric. Food Chem. 52:267782–87
    [Google Scholar]
  120. Thiagarajan N, Kitchen N, Xie H, Ponton C, Lawson M et al. 2020. Identifying thermogenic and microbial methane in deep water Gulf of Mexico reservoirs. Geochim. Cosmochim. Acta 275:188–208
    [Google Scholar]
  121. Thomas B, Freeman KH, Arthur MA 2009. Intramolecular carbon isotopic analysis of acetic acid by direct injection of aqueous solution. Org. Geochem. 40:2195–200
    [Google Scholar]
  122. Thomas F, Randet C, Gilbert A, Silvestre V, Jamin E et al. 2010. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol. J. Agric. Food Chem. 58:2211580–85
    [Google Scholar]
  123. Tissot B, Welte D. 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration Berlin: Springer-Verlag
  124. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:7083516–19
    [Google Scholar]
  125. Urey HC. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. (Resumed) 1947:56281
    [Google Scholar]
  126. van der Meer MTJ, Schouten S, Sinninghe Damsté JS 1998. The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org. Geochem. 28:9527–33
    [Google Scholar]
  127. Vogler EA, Hayes JM. 1979. Carbon isotopic fractionation in the Schmidt decarboxylation: evidence for two pathways to products. J. Org. Chem. 44:213682–86
    [Google Scholar]
  128. Wang DT, Gruen DS, Lollar BS, Hinrichs K-U, Stewart LC et al. 2015. Nonequilibrium clumped isotope signals in microbial methane. Science 348:6233428–31
    [Google Scholar]
  129. Webb MA, Miller TF. 2014. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane. J. Phys. Chem. A 118:2467–74
    [Google Scholar]
  130. Weilacher T, Gleixner G, Schmidt H-L 1996. Carbon isotope pattern in purine alkaloids a key to isotope discriminations in C1 compounds. Phytochemistry 41:41073–77
    [Google Scholar]
  131. Whitehill AR, Joelsson LMT, Schmidt JA, Wang DT, Johnson MS, Ono S 2017. Clumped isotope effects during OH and Cl oxidation of methane. Geochim. Cosmochim. Acta 196:307–25
    [Google Scholar]
  132. Wieloch T, Ehlers I, Yu J, Frank D, Grabner M et al. 2018. Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades. Sci. Rep. 8:15048
    [Google Scholar]
  133. Wolyniak CJ, Sacks GL, Metzger SK, Brenna JT 2006. Determination of intramolecular δ13C from incomplete pyrolysis fragments. Evaluation of pyrolysis-induced isotopic fractionation in fragments from the lactic acid analogue propylene glycol. Anal. Chem 78:82752–57
    [Google Scholar]
  134. Wolyniak CJ, Sacks GL, Pan BS, Brenna JT 2005. Carbon position-specific isotope analysis of alanine and phenylalanine analogues exhibiting nonideal pyrolytic fragmentation. Anal. Chem. 77:61746–52
    [Google Scholar]
  135. Xie H, Ponton C, Formolo MJ, Lawson M, Peterson BK et al. 2018. Position-specific hydrogen isotope equilibrium in propane. Geochim. Cosmochim. Acta 238:193–207
    [Google Scholar]
  136. Yamada K, Tanaka M, Nakagawa F, Yoshida N 2002. On-line measurement of intramolecular carbon isotope distribution of acetic acid by continuous-flow isotope ratio mass spectrometry. Rapid Comm. Mass Spec. 16:111059–64
    [Google Scholar]
  137. Yeung LY. 2016. Combinatorial effects on clumped isotopes and their significance in biogeochemistry. Geochim. Cosmochim. Acta 172:22–38
    [Google Scholar]
  138. Yeung LY, Li S, Kohl IE, Haslun JA, Ostrom NE et al. 2017. Extreme enrichment in atmospheric 15N15N. Sci. Adv. 3:11eaao6741
    [Google Scholar]
  139. Young ED. 2019. A two-dimensional perspective on CH4 isotope clumping: distinguishing process from source. Deep Carbon: Past to Present, BN Orcutt, I Daniel, R Dasgupta 388–414 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  140. Young ED, Kohl IE, Lollar BS, Etiope G, Rumble D et al. 2017. The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta 203:235–64
    [Google Scholar]
  141. Young ED, Rumble D, Freedman P, Mills M 2016. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int. J. Mass Spec. 401:1–10
    [Google Scholar]
  142. Zhang B-L, Billault I, Li X, Mabon F, Remaud G, Martin ML 2002. Hydrogen isotopic profile in the characterization of sugars. Influence of the metabolic pathway. J. Agric. Food Chem. 50:61574–80
    [Google Scholar]
  143. Zhang X, Gillespie AL, Sessions AL 2009. Large D/H variations in bacterial lipids reflect central metabolic pathways. PNAS 106:3112580–86
    [Google Scholar]
  144. Zhou Y, Zhang B, Stuart-Williams H, Grice K, Hocart CH et al. 2018. On the contributions of photorespiration and compartmentation to the contrasting intramolecular 2H profiles of C3 and C4 plant sugars. Phytochemistry 145:197–206
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071420-053134
Loading
/content/journals/10.1146/annurev-earth-071420-053134
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error