1932

Abstract

Iran is a remarkable geoscientific laboratory where the full range of processes that form and modify the continental crust can be studied. Iran's crustal nucleus formed as a magmatic arc above an S-dipping subduction zone on the northern margin of Gondwana 600–500 Ma. This nucleus rifted and drifted north to be accreted to SW Eurasia ∼250 Ma. A new, N-dipping subduction zone formed ∼100 Ma along ∼3,000 km of the SW Eurasian margin, including Iran's southern flank; this is when most of Iran's many ophiolites formed. Iran evolved as an extensional continental arc in Paleogene time (66–23 Ma) and began colliding with Arabia ∼25 Ma. Today, Iran is an example of a convergent plate margin in the early stages of continent-continent collision, with a waning magmatic arc behind (north of) a large and growing accretionary prism, the Zagros Fold-and-Thrust Belt. Iran's crustal evolution resulted in both significant economic resources and earthquake hazards.

  • ▪   Iran is a natural laboratory for studying how convergent plate margins form, evolve, and behave during the early stages of continental collision.
  • ▪   Iran formed in the past 600 million years, originating on the northern flank of Gondwana, rifting away, and accreting to SW Eurasia.
  • ▪   Iran is actively deforming as a result of collision with the Arabian plate, but earthquakes do not outline the position of the subducting slab.
  • ▪   The Cenozoic evolution of Iran preserves the main elements of a convergent plate margin, including foredeep (trench), accretionary prism, and magmatic arc.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071620-052109
2021-05-30
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071620-052109.html?itemId=/content/journals/10.1146/annurev-earth-071620-052109&mimeType=html&fmt=ahah

Literature Cited

  1. Abedi M, Bahroudi A. 2016. A geophysical potential field study to image the Makran subduction zone in SE Iran. Tectonophysics 688:119–34
    [Google Scholar]
  2. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B et al. 2011. Zagros orogeny: a subduction-dominated process. Geol. Mag. 148:5–6692–725
    [Google Scholar]
  3. Ali SA, Buckman S, Aswad KJ, Jones BG, Ismail SA, Nutman AP 2013. The tectonic evolution of a Neo-Tethyan (Eocene–Oligocene) island-arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Island Arc 22:104–25
    [Google Scholar]
  4. Alinaghi A, Koulakov I, Thybo H 2007. Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran. Geophys. J. Int. 169:1089–102
    [Google Scholar]
  5. Alothman AO, Fernandes RM, Bos MS, Schillak S, Elsaka B 2016. Angular veocity of Arabian plate from multi-year analysis of GNSS data. Arab. J. Geosci. 9:529
    [Google Scholar]
  6. Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X 2017. ITRF2014 plate motion model. Geophys. J. Int. 209:1906–12
    [Google Scholar]
  7. Arculus RJ, Gurnis M, Ishizuka O, Reagan MK, Pearce JA, Sutherland R 2019. How to create new subduction zones: a global perspective. Oceanography 32:160–74
    [Google Scholar]
  8. Asadi S, Moore F, Zarasvandi A 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Sci. Rev. 138:25–46
    [Google Scholar]
  9. Ashrafi N, Jahangiri A, Hasebe N, Eby GN 2018. Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic belt, NW Iran. Geochemistry 78:432–61
    [Google Scholar]
  10. Asiabanha A, Foden J. 2012. Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148:98–111
    [Google Scholar]
  11. Azizi H, Stern RJ. 2019. Jurassic igneous rocks of the central Sanadaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova 31:415–32
    [Google Scholar]
  12. Babazadeh S, Ghorbani MR, Bröcker M, D'Antonio M, Cottle J et al. 2017. Late Oligocene–Miocene mantle upwelling and interaction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh–Dokhtar arc, south Ardestan, Iran. Int. Geol. Rev. 59:1590–608
    [Google Scholar]
  13. Babazadeh SA, De Wever P 2004. Radiolarian Cretaceous age of Soulabest radiolarites in ophiolite suite of eastern Iran. Bull. Soc. Geol. Fr. 175:121–29
    [Google Scholar]
  14. Bagheri S, Stampfli GM. 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–55
    [Google Scholar]
  15. Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M et al. 2011. Arabia-Eurasia continental collision: insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geol. Soc. Am. Bull. 123:106–31
    [Google Scholar]
  16. Berberian M. 2014. Earthquakes and Coseismic Surface Faulting on the Iranian Plateau Boston, MA: Elsevier
    [Google Scholar]
  17. Berberian M, King GCP. 1981. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18:210–65
    [Google Scholar]
  18. Bird P. 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4:31027
    [Google Scholar]
  19. Blewitt G, Hammond WC, Kreemer C 2018. Harnessing the GPS data explosion for interdisciplinary science. Eos 99:1–2
    [Google Scholar]
  20. Bowring SA, Grotzinger JP, Condon DJ, Ramezani J, Newall MJ, Allen PA 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307:1097–145
    [Google Scholar]
  21. Bröcker M, Fotoohi Rad G, Burgess R, Theunissen S, Paderin I et al. 2013. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran. Lithos170–17117–34
    [Google Scholar]
  22. Burg JP. 2018. Geology of the onshore Makran accretionary wedge: synthesis and tectonic interpretation. Earth-Sci. Rev. 185:1210–31
    [Google Scholar]
  23. Camp VE, Griffis RJ. 1982. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos 15:221–39
    [Google Scholar]
  24. Castro A, Aghazadeh M, Badrzadeh Z, Chichorro M 2013. Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos 180:109–27
    [Google Scholar]
  25. Christensen N, Mooney WD. 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100:B79761–88
    [Google Scholar]
  26. Deevsalar R, Shinjo R, Ghaderi M, Murata M, Hoskin PWO et al. 2017. Mesozoic–Cenozoic mafic magmatism in Sanandaj–Sirjan Zone, Zagros Orogen (Western Iran): geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros. Lithos 284:588–607
    [Google Scholar]
  27. Derakhshi M, Ghasemi H, Miao LC 2017. Geochemistry and petrogenesis of Soltan Maidan basalts (E Alborz, Iran): implications for asthenosphere-lithosphere interaction and rifting along the N margin of Gondwana. Geochemistry 77:131–45
    [Google Scholar]
  28. Dercourt J, Zonenshain L, Ricou L-E, Kazmin V, Le Pichon X et al. 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315
    [Google Scholar]
  29. Ding L, Spicer RA, Yang J, Xu Q, Cai F et al. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45:215–18
    [Google Scholar]
  30. Ducea MN, Barton MD. 2007. Igniting flare-up events in Cordilleran arcs. Geology 35:1047–50
    [Google Scholar]
  31. Etemad-Saeed N, Hosseini-Barzi M, Adabi MH, Miller NR, Sadeghi A et al. 2015. Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar Formation, central Alborz Mountains, northern Iran. Gondwana Res 31:164–83
    [Google Scholar]
  32. Fakhari MD, Axen GJ, Horton BK, Hassanzadeh J, Amini A 2008. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451:170–85
    [Google Scholar]
  33. Farhoudi G, Karig DE. 1977. Iran and Pakistan as an active arc system. Geology 5:664–68
    [Google Scholar]
  34. Garfunkel Z. 2015. The relations between Gondwana and the adjacent peripheral Cadomian domain—constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Res 28:1257–81
    [Google Scholar]
  35. Garzanti E, Radeff G, Malusa MG 2018. Slab breakoff: a critical appraisal of a geological theory as applied in space and time. Earth-Sci. Rev. 177:303–19
    [Google Scholar]
  36. Ghorbani MR, Graham IT, Ghaderi M 2014. Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. Int. Geol. Rev. 56:1039–50
    [Google Scholar]
  37. Gordon RG. 1998. The plate tectonic approximation: plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annu. Rev. Earth Planet. Sci. 26:615–42
    [Google Scholar]
  38. Guilmette C, Smit M, van Hinsbergen DJJ, Gürer D, Corfu F et al. 2018. Forced subdution initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci. 11:688–95
    [Google Scholar]
  39. Hassanzadeh J, Wernicke BP. 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35:586–621
    [Google Scholar]
  40. Hatzfeld D, Tatar M, Priestley K, Ghafory-Ashtiany M 2003. Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophys. J. Int. 155:403–10
    [Google Scholar]
  41. Hayes GP, Moore GL, Portner DE, Hearne M, Flamme H et al. 2018. Slab2, a comprehensive subduction zone geometry model. Science 262:58–61
    [Google Scholar]
  42. Hessami K, Jamali F, Tabassi H 2003. Major active faults of Iran. IIEES, Tehran International Institute of Earthquake Engineering and Seismology online database, Tehran, Iran. http://www.iiees.ac.ir/en/
  43. Huber H. 1976. Geological cross sections south-west Iran and northern Persian Gulf 1:500 000 National Iranian Oil Co .
    [Google Scholar]
  44. Hunziker D, Burg J-P, Bouilhol P, von Quadt A 2015. Jurassic rifting at the Eurasian Tethys margin: geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 34:571–93
    [Google Scholar]
  45. Jackson J, Priestly K, Allen M, Berberian M 2002. Active tectonics of the south Caspian basin. Geophys. J. Int. 148:214–45
    [Google Scholar]
  46. Jarvis A, Reuter HI, Nelson A, Guevara E 2008. Hole-filled SRTM for the globe Version 4 CGIAR-CSI SRTM 90m Database, updated Nov. 2018. http://srtm.csi.cgiar.org
    [Google Scholar]
  47. Jiménez-Munt I, Fernandez M, Saura E, Verges J, Garcia-Castellanos D 2012. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasian collision (Iran). Geophys. J. Int. 190:1311–24
    [Google Scholar]
  48. Kaban MK, El Khrepy S, Al-Arifi N, Tesauro M, Stolk W 2016. Three-dimensional density model of the upper mantle in the Middle East: interaction of diverse tectonic processes. J. Geophys. Res. Solid Earth 121:5349–64
    [Google Scholar]
  49. Khalatbari-Jafari M, Juteau T, Cotten J 2006. Petrological and geochemical study of the Late Cretaceous ophiolite of Khoy (NW Iran), and related geological formations. J. Asian Earth Sci. 27:465–502
    [Google Scholar]
  50. Kheirkhah M, Neill I, Allen MB 2015. Petrogenesis of OIB-like basaltic volcanic rocks in a continental collision zone: Late Cenozoic magmatism of Eastern Iran. J. Asian Earth Sci. 106:19–33
    [Google Scholar]
  51. Khorrami F, Vernant P, Masson F, Nilfouroushan F, Mousavi Z et al. 2019. An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophys. J. Int. 21:832–43
    [Google Scholar]
  52. Koshnaw RI, Stockli DF, Schlunegger F 2018. Timing of the Arabia-Eurasia continental collision—evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology 47:47–50
    [Google Scholar]
  53. Mahmoodabadi M, Yaminifard F, Tatar M, Kaviani A, Motaghi K 2019. Upper-mantle velocity structure beneath the Zagros collision zone, central Iran and Alborz from nonlinear teleseismic tomography. Geophys. J. Int. 218:414–28
    [Google Scholar]
  54. Malekpour-Alamdari A, Axen G, Heizler M, Hassanzadeh J 2017. Large-magnitude continental extension in the northeastern Iranian Plateau: insight from K-feldspar 40Ar/39Ar thermochronology from the Shotor Kuh–Biarjmand metamorphic core complex. Geosphere 13:1207–33
    [Google Scholar]
  55. Martinez F, Goodliffe AM, Taylor B 2001. Metamorphic core complex formation by density inversion and lower-crust extrusion. Nature 411:930–34
    [Google Scholar]
  56. McCall GJH. 1985. Explanatory text of the Minab Quadrangle, Map 1:250,000, No. J13. Geological Survey of Iran Tehran:.
    [Google Scholar]
  57. McCall GJH. 2002. A summary of the geology of the Iranian Makran. Geol. Soc. Lond. Spec. Publ 195:147–204
    [Google Scholar]
  58. McQuarrie N, Stock JM, Verdel C, Wernicke BP 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30:2036
    [Google Scholar]
  59. Mirnejad H, Lalonde AE, Obeid M, Hassanzadeh J 2013. Geochemistry and petrogenesis of Mashhad granitoids: an insight into the geodynamic history of the Paleo-Tethys in northeast of Iran. Lithos 170:105–16
    [Google Scholar]
  60. Mirnejad H, Raeisi D, McFarlane C, Sheibi M 2018. Tafresh intrusive rocks within the Urumieh‐Dokhtar Magmatic Arc: appraisal of Neo‐Tethys subduction. Geol. J. 54:1745–55
    [Google Scholar]
  61. Monsef I, Monsef R, Mata J, Zhang Z, Pirouz M et al. 2018. Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Res 62:287–305
    [Google Scholar]
  62. Mooney WD. 2015. Crust and lithospheric structure—global crustal structure. . Treatise on Geophysics, Vol. 1: Seismology and Structure of the Earth B Romanowicz, A Dziewonski 339–90 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  63. Moritz R, Ghazban F, Singer BS 2006. Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen. Econ. Geol. 101:1497–524
    [Google Scholar]
  64. Mouthereau F, Lacombe O, Verges J 2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532:27–60
    [Google Scholar]
  65. Neill I, Meliksetian K, Allen MB, Navasardyan G, Kuiper K 2015. Petrogenesis of mafic collision zone magmatism: the Armenian sector of the Turkish-Iranian Plateau. Chem. Geol. 403:24–41
    [Google Scholar]
  66. Nemati M. 2019. Seismotectonic and seismicity of Makran, a bimodal subduction zone, SE Iran. J. Asian Earth Sci. 169:139–61
    [Google Scholar]
  67. Neuendorf KKE, Mehl JP, Jackson JA 2011. Glossary of Geology457 London: Springer. , 5th ed..
    [Google Scholar]
  68. Pang KN, Chung SL, Zarrinkoub MH, Chiu HY, Li XH 2014. On the magmatic record of the Makran arc, southeastern Iran: insights from zircon U-Pb geochronology and bulk-rock geochemistry. Geochem. Geophys. Geosyst. 15:2151–69
    [Google Scholar]
  69. Pang KN, Chung SL, Zarrinkoub MH, Khatib MM, Mohammadi SS et al. 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos 180:234–51
    [Google Scholar]
  70. Pang KN, Chung SL, Zarrinkoub MH, Li XH, Lee HY et al. 2016. New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia Eurasia collision zone. Lithos 264:348–59
    [Google Scholar]
  71. Pang KN, Chung SL, Zarrinkoub MH, Mohammadi SS, Yang HM et al. 2012. Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut-Sistan region, eastern Iran. Chem. Geol. 306:40–53
    [Google Scholar]
  72. Pang KN, Chung SL, Zarrinkoub MH, Wang F, Kamenetsky VS, Lee HY 2015. Quaternary high-Mg ultrapotassic rocks from the Qal'eh Hasan Ali maars, southeastern Iran: petrogenesis and geodynamic implications. Contrib. Mineral. Petrol. 170:27
    [Google Scholar]
  73. Pirouz M, Avouac J-P, Hassanzadeh J, Kirschvink JL, Bahroudi A 2017. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth Planet. Sci. Lett. 477:168–82
    [Google Scholar]
  74. Pirouz M, Simpson G, Bahroudi A, Azhdari A 2011. Neogene sediments and modern depositional environments of the Zagros foreland basin system. Geol. Mag. 148:838–53
    [Google Scholar]
  75. Prodehl C, Mooney WD. 2012. Exploring the Earth's Crust: History and Results of Controlled-Source Seismology Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  76. Ramezani J, Tucker RD. 2003. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am. J. Sci. 303:622–65
    [Google Scholar]
  77. Reilinger R, McClusky S. 2011. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys. J. Int. 186:971–79
    [Google Scholar]
  78. Reymer A, Schubert G. 1984. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77
    [Google Scholar]
  79. Saura E, Garcia-Castellanos D, Casciello E, Parravano V, Urruela A, Verges J 2015. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran–Iraq). Tectonics 34:377–95
    [Google Scholar]
  80. Sepidbar F, Lucci F, Biabangard H, Khhedr MZ, Jiantang P 2020. Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiioliite (Inner Makran, SE Iran). Int. Geol. Rev. 62:2077104
    [Google Scholar]
  81. Sepidbar F, Mirnejad H, Ma C, Shafaii Moghadam H 2018. Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: timing and sources. Gondwana Res 57:141–56
    [Google Scholar]
  82. Seyed-Emami K. 2003. Triassic in Iran. Facies 48:91–106
    [Google Scholar]
  83. Shafaii Moghadam H, Corfu F, Chiaradia M, Stern RJ, Ghorbani G, Rossetti F 2014. Sabzevar Ophiolite, NE Iran: progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos210–211:224–41
    [Google Scholar]
  84. Shafaii Moghadam H, Griffin WL, Kirchenbaur M, Garbe-Schnoberg D, Khedr MZ et al. 2018. Roll-back, extension and mantle upwelling triggered Eocene potassic magmatism in NW Iran. J. Petrol. 59:1417–65
    [Google Scholar]
  85. Shafaii Moghadam H, Griffin WL, Li X-H, Stern RJ, Karsli O et al. 2017. Crustal evolution of NW Iran: Cadomian arcs, Archean fragments and the Cenozoic magmatic flare-up. J. Petrol. 58:2143–90
    [Google Scholar]
  86. Shafaii Moghadam H, Li QL, Griffin WL, Stern RJ, Ishizuka O et al. 2020a. Repeated magmatic buildup and deep “hot zones” in continental evolution: the Cadomian crust of Iran. Earth Planet. Sci. Lett. 531:115989
    [Google Scholar]
  87. Shafaii Moghadam H, Li QL, Stern RJ, Chiaradia M, Karsli O, Rahimzadeh B 2020b. The Paleogene ophiolite conundrum of the Iran–Iraq border. J. Geol. Soc. Lond. 177:95564
    [Google Scholar]
  88. Shafaii Moghadam H, Li X-H, Ling X-X, Santos JF, Stern RJ et al. 2015a. Eocene Kashmar granitoids (NE Iran): petrogenetic constraints from U-Pb zircon geochronology and isotope geochemistry. Lithos 216–217:118–35
    [Google Scholar]
  89. Shafaii Moghadam H, Li X-H, Ling X-X, Stern RJ, Santos JF et al. 2015b. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: geochronological and geochemical constraints. Lithos212–215:266–79
    [Google Scholar]
  90. Shafaii Moghadam H, Stern RJ 2011. Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geol. Mag. 148:762–801
    [Google Scholar]
  91. Shafaii Moghadam H, Stern RJ 2014. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (I) Paleozoic ophiolites. J. Asian Earth Sci. 91:19–38
    [Google Scholar]
  92. Shafaii Moghadam H, Stern RJ 2015. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. J. Asian Earth Sci. 100:31–59
    [Google Scholar]
  93. Smith AG. 2012. A review of Ediacaran to Early Cambrian (‘Infra-Cambrian’) evaporites and associated sediments of the Middle East. J. Geol. Soc. Lond. 366:229–50
    [Google Scholar]
  94. Stampfli GM. 2000. Tethyan oceans. Geol. Soc. Lond. Spec. Publ. 173:1–23
    [Google Scholar]
  95. Stampfli GM, Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196:17–33
    [Google Scholar]
  96. Stampfli G, Borel GD, Cavazza W, Mosar J, Ziegler P 2001. Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369). Episodes 24:222–28
    [Google Scholar]
  97. Stern RJ. 2002. Subduction zones. Rev. Geophys. 40:1012
    [Google Scholar]
  98. Stern RJ, Gerya T. 2018. Subduction initiation in nature and models: a review. Tectonophysics 746:173–98
    [Google Scholar]
  99. Stern RJ, Johnson P. 2010. Continental lithosphere of the Arabian plate: a geologic, petrologic, and geophysical synthesis. Earth–Sci. Rev. 101:29–67
    [Google Scholar]
  100. Stern RJ, Johnson PR. 2019. Constraining the opening of the Red Sea: evidence from the Neoproterozoic margins and Cenozoic magmatism for a volcanic rifted margin. Geological Setting of the Red Sea NMA Rasul, ICF Stewart 53–80 Cham, Switz: Springer
    [Google Scholar]
  101. Stocklin J. 1968. Structural history and tectonics of Iran: a review. AAPG Bull 52:1229–58
    [Google Scholar]
  102. Tirrul R, Bell IR, Griffis RJ, Camp VE 1983. The Sistan suture zone of eastern Iran. Geol. Soc. Am. Bull. 94:134–50
    [Google Scholar]
  103. van Hinsbergen DJ, Steinberger B, Doubrovine PV, Gassmöller R 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. 116:B6B06101
    [Google Scholar]
  104. Verdel C, Wernicke BP, Hassanzadeh J, Guest B 2011. A Paleogene extensional arc flare‐up in Iran. Tectonics 30:TC3008
    [Google Scholar]
  105. Verdel C, Wernicke BP, Ramezani J, Hassanzadeh J, Renne PR, Spell TL 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geol. Soc. Am. Bull. 119:961–77
    [Google Scholar]
  106. Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB et al. 2014. Recent developments of the Middle East catalog. J. Seismol. 18:749–72
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071620-052109
Loading
/content/journals/10.1146/annurev-earth-071620-052109
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error