1932

Abstract

The Cascadia subduction zone (CSZ) is an exceptional geologic environment for recording evidence of land-level changes, tsunamis, and ground motion that reveals at least 19 great megathrust earthquakes over the past 10 kyr. Such earthquakes are among the most impactful natural hazards on Earth, transcend national boundaries, and can have global impact.Reducing the societal impacts of future events in the US Pacific Northwest and coastal British Columbia, Canada, requires improved scientific understanding of megathrust earthquake rupture, recurrence, and corresponding hazards. Despite substantial knowledge gained from decades of research, large uncertainties remain about the characteristics and frequencies of past CSZ earthquakes. In this review, we summarize geological, geophysical, and instrumental evidence relevant to understanding megathrust earthquakes along the CSZ and associated uncertainties. We discuss how the evidence constrains various models of great megathrust earthquake recurrence in Cascadia and identify potential paths forward for the earthquake science community.

  • ▪   Despite outstanding geologic records of past megathrust events, large uncertainty of the magnitude and frequency of CSZ earthquakes remains.
  • ▪   This review outlines current knowledge and promising future directions to address outstanding questions on CSZ rupture characteristics and recurrence.
  • ▪   Integration of diverse data sets with attention to the geologic processes that create different records has potential to lead to major progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071620-065605
2021-05-30
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071620-065605.html?itemId=/content/journals/10.1146/annurev-earth-071620-065605&mimeType=html&fmt=ahah

Literature Cited

  1. Adams J. 1990. Paleoseismicity of the Cascadia Subduction Zone: evidence from turbidites off the Oregon-Washington margin. Tectonics 9:4569–83
    [Google Scholar]
  2. Atwater BF. 1994. Geology of Holocene liquefaction features along the lower Columbia River at Marsh, Brush, Price, Hunting, and Wallace Islands, Oregon and Washington Open File Rep 94–209 US Geol. Surv Seattle, WA:
    [Google Scholar]
  3. Atwater BF, Carson B, Griggs GB, Johnson HP, Salmi MS. 2014. Rethinking turbidite paleoseismology along the Cascadia subduction zone. Geology 42:9827–30
    [Google Scholar]
  4. Atwater BF, Griggs GB. 2012. Deep-Sea Turbidites as Guides to Holocene Earthquake History at the Cascadia Subduction Zone: Alternative Views for a Seismic-Hazard Workshop. Reston, VA: US Geol Surv .
    [Google Scholar]
  5. Atwater BF, Hemphill-Haley E. 1997. Recurrence Intervals for Great Earthquakes of the Past 3,500 Years at Northeastern Willapa Bay, Washington. Washington, DC: US Geol. Surv.
    [Google Scholar]
  6. Atwater BF, Musumi-Rokkaku S, Satake K, Tsuji Y, Ueda K, Yamaguchi DK. 2005. The Orphan Tsunami of 1700. Seattle: Univ. Washington Press
    [Google Scholar]
  7. Atwater BF, Yamaguchi DK. 1991. Sudden, probably coseismic submergence of Holocene trees and grass in coastal Washington State. Geology 19:7706–9
    [Google Scholar]
  8. Bartlow NM. 2020. A long-term view of episodic tremor and slip in Cascadia. Geophys. Res. Lett. 47:3e2019GL085303
    [Google Scholar]
  9. Bartlow NM, Miyazaki S, Bradley AM, Segall P. 2011. Space-time correlation of slip and tremor during the 2009 Cascadia slow slip event. Geophys. Res. Lett. 38:18L18309
    [Google Scholar]
  10. Bassett D, Sandwell DT, Fialko Y, Watts AB. 2016. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature 531:759292–96
    [Google Scholar]
  11. Beeler NM, Roeloffs E, McCausland W. 2014. Re-estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia. Bull. Seismol. Soc. Am. 104:1128–44
    [Google Scholar]
  12. Beeson JW, Goldfinger C, Fortin WF. 2017. Large-scale modification of submarine geomorphic features on the Cascadia accretionary wedge caused by catastrophic flooding events. Geosphere 13:51713–28
    [Google Scholar]
  13. Bilek SL, Lay T. 2018. Subduction zone megathrust earthquakes. Geosphere 14:41468–500
    [Google Scholar]
  14. Blais-Stevens A, Rogers GC, Clague JJ. 2011. A revised earthquake chronology for the last 4,000 years inferred from varve-bounded debris-flow deposits beneath an inlet near Victoria, British Columbia. Bull. Seismol. Soc. Am. 101:11–12
    [Google Scholar]
  15. Bodmer M, Toomey DR, Hooft EEE, Schmandt B. 2018. Buoyant asthenosphere beneath Cascadia influences megathrust segmentation. Geophys. Res. Lett. 45:146954–62
    [Google Scholar]
  16. Boyarko DC, Brudzinski MR, Porritt RW, Allen RM, Tréhu AM. 2015. Automated detection and location of tectonic tremor along the entire Cascadia margin from 2005 to 2011. Earth Planet. Sci. Lett. 430:160–70
    [Google Scholar]
  17. Brudzinski MR, Allen RM. 2007. Segmentation in episodic tremor and slip all along Cascadia. Geology 35:10907–10
    [Google Scholar]
  18. Bruhat L, Segall P. 2016. Coupling on the northern Cascadia subduction zone from geodetic measurements and physics-based models. J. Geophys. Res. Solid Earth 121:118297–314
    [Google Scholar]
  19. Bürgmann R, Chadwell D. 2014. Seafloor geodesy. Annu. Rev. Earth Planet. Sci. 42:509–34
    [Google Scholar]
  20. Chadwell CD, Schmidt DA, Webb SC, Nooner SL, Ericksen TL et al. 2018. Expansion of GPS-acoustic arrays offshore the Cascadia and Alaska subduction zones. Presented at AGU Fall Meet., Dec10–14 Washington, DC: Abstr. T44C-02
    [Google Scholar]
  21. Clague JJ, Bobrowsky PT, Hutchinson I. 2000. A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard.. Quat. Sci. Rev. . 19:9849–63
    [Google Scholar]
  22. Clark K, Howarth J, Litchfield N, Cochran U, Turnbull J et al. 2019. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Mar. Geol. 412:139–72
    [Google Scholar]
  23. Cornell CA. 1968. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58:51583–606
    [Google Scholar]
  24. Cornell CA, Winterstein SR. 1988. Temporal and magnitude dependence in earthquake recurrence models. Bull. Seismol. Soc. Am. 78:41522–37
    [Google Scholar]
  25. Cramer CH, Petersen MD, Cao T, Toppozada TR, Reichle M. 2000. A time-dependent probabilistic seismic-hazard model for California. Bull. Seismol. Soc. Am. 90:11–21
    [Google Scholar]
  26. Cubas N, Avouac JP, Souloumiac P, Leroy Y. 2013. Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area. Earth Planet. Sci. Lett. 381:92–103
    [Google Scholar]
  27. Darienzo ME, Peterson CD, Clough C. 1994. Stratigraphic evidence for great subduction-zone earthquakes at four estuaries in northern Oregon, USA. J. Coast. Res. 10:4850–76
    [Google Scholar]
  28. Davis D, Dahlen FA, Suppe J. 1983. Mechanics of fold-and-thrust belts and accretionary wedges cohesive Coulomb theory. J. Geophys. Res. 88:B21153–72
    [Google Scholar]
  29. Dragert H, Wang K, James TS 2001. A silent slip event on the deeper Cascadia subduction interface. Science 292:55211525–28
    [Google Scholar]
  30. Dura T, Engelhart SE, Vacchi M, Horton BP, Kopp RE et al. 2016a. The role of Holocene relative sea-level change in preserving records of subduction zone earthquakes. Curr. Clim. Change Rep 2:386–100
    [Google Scholar]
  31. Dura T, Hemphill-Haley E, Sawai Y, Horton BP. 2016b. The application of diatoms to reconstruct the history of subduction zone earthquakes and tsunamis. Earth-Sci. Rev. 152:181–97
    [Google Scholar]
  32. Engelhart SE, Vacchi M, Horton BP, Nelson AR, Kopp RE. 2015. A sea-level database for the Pacific coast of central North America. Quat. Sci. Rev. 113:78–92
    [Google Scholar]
  33. Enkin RJ, Dallimore A, Baker J, Southon JR, Ivanochko T. 2013. A new high-resolution radiocarbon Bayesian age model of the Holocene and Late Pleistocene from core MD02–2494 and others, Effingham Inlet, British Columbia, Canada; with an application to the paleoseismic event chronology of the Cascadia Subduction Zone. Can. J. Earth Sci. 50:7746–60
    [Google Scholar]
  34. Espinosa AF. 1976. The Guatemalan earthquake of February 4, 1976. Prof. Pap. 1002., US Geol. Surv Washington, DC:
    [Google Scholar]
  35. Field EH. 2015. Computing elastic-rebound-motivated earthquake probabilities in unsegmented fault models: a new methodology supported by physics-based simulators. Bull. Seismol. Soc. Am. 105:2544–59
    [Google Scholar]
  36. Frankel A. 2013. Rupture history of the 2011 M 9 Tohoku Japan earthquake determined from strong-motion and high-rate GPS recordings: subevents radiating energy in different frequency bands. Bull. Seismol. Soc. Am. 103:2B1290–306
    [Google Scholar]
  37. Frankel A, Chen R, Petersen M, Moschetti M, Sherrod B. 2015. 2014. Update of the Pacific Northwest portion of the U.S. National Seismic Hazard Maps. Earthq. Spectra 31:S1S131–48
    [Google Scholar]
  38. Frankel A, Wirth E, Marafi N, Vidale J, Stephenson W. 2018. Broadband synthetic seismograms for magnitude 9 earthquakes on the Cascadia megathrust based on 3D simulations and stochastic synthetics, part 1: methodology and overall results. Bull. Seismol. Soc. Am. 108:5A2347–69
    [Google Scholar]
  39. Fujie G, Kodaira S, Yamashita M, Sato T, Takahashi T, Takahashi N. 2013. Systematic changes in the incoming plate structure at the Kuril trench. Geophys. Res. Lett. 40:188–93
    [Google Scholar]
  40. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y. 2011. The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science 334:60601240
    [Google Scholar]
  41. Gao X, Wang K. 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature 543:7645416–19
    [Google Scholar]
  42. Garrett E, Fujiwara O, Garrett P, Heyvaert VMA, Shishikura M et al. 2016. A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan. Earth-Sci. Rev. 159:337–57
    [Google Scholar]
  43. Garrison-Laney C, Miller I. 2017. Tsunamis in the Salish Sea: recurrence, sources, hazards. GSA Field Guide 4967–78
    [Google Scholar]
  44. Gavey R, Carter L, Liu JT, Talling PJ, Hsu R et al. 2017. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan. Mar. Geol. 384:147–58
    [Google Scholar]
  45. Geist EL. 2002. Complex earthquake rupture and local tsunamis. J. Geophys. Res. 107:B5ESE 2–12-15
    [Google Scholar]
  46. Geist EL. 2005. Rapid tsunami models and earthquake source parameters: far-field and local applications. ISET J. Earthq. Technol. 42:4127–36
    [Google Scholar]
  47. Goff J, Bobrowsky P, Huntley D, Sawai Y, Tanagawa K. 2020. Palaeotsunamis along Canada's Pacific coast. Quat. Sci. Rev. 237:106309
    [Google Scholar]
  48. Goldfinger C. 2014. Integrating onshore and offshore paleoseismic data: a Bayesian model. Geol. Soc. Am. Abstr. Programs 46: https://doi.org/10.13140/2.1.3738.4967
    [Crossref] [Google Scholar]
  49. Goldfinger C, Galer S, Beeson J, Hamilton T, Black B et al. 2017. The importance of site selection, sediment supply, and hydrodynamics: a case study of submarine paleoseismology on the northern Cascadia margin, Washington USA. Mar. Geol. 384:4–46
    [Google Scholar]
  50. Goldfinger C, Gutierrez J. 2019. Possible stratigraphic evidence of stress triggering of the Northern San Andreas Fault following Southern Cascadia earthquakes. Presented at AGU Fall Meet., Dec. 9–13, San Francisco, Abstr. OS54A-03
    [Google Scholar]
  51. Goldfinger C, Ikeda Y, Yeats RS, Ren J. 2013a. Superquakes and supercycles. Seismol. Res. Lett. 84:124–32
    [Google Scholar]
  52. Goldfinger C, Kulm LD, McNeill LC, Watts P. 2000. Super-scale failure of the southern Oregon Cascadia margin. Pure Appl. Geophys. 157:6–81189–226
    [Google Scholar]
  53. Goldfinger C, Morey AE, Black B, Beeson J, Nelson CH et al. 2013b. Spatially limited mud turbidites on the Cascadia margin: segmented earthquake ruptures. ? Nat. Hazard Earth Syst. Sci. 13:82109–46
    [Google Scholar]
  54. Goldfinger C, Nelson CH, Morey AE, Johnson JE, Patton JR et al. 2012. Turbidite event history—methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. Prof. Pap. 1661-F, US Geol. Surv. Washington, DC:
    [Google Scholar]
  55. Goldfinger C, Wong I, Kulkarni R, Beeson JW. 2016. Reply to “Comment on ‘Statistical analyses of great earthquake recurrence along the Cascadia subduction zone. .’” Bull. Seismol. Soc. Am. 106:62935–44
    [Google Scholar]
  56. Gomberg J. 2010. Slow-slip phenomena in Cascadia from 2007 and beyond: a review. GSA Bull. 122:7–8963–78
    [Google Scholar]
  57. Gomberg J, Hautala S, Johnson P, Chiswell S 2019. Separating sea and slow slip signals on the seafloor. J. Geophys. Res. Solid Earth 124:1213486–503
    [Google Scholar]
  58. Gomberg J, Ludwig KA, Bekins B, Brocher TM, Brock JC et al. 2017. Reducing Risk Where Tectonic Plates Collide—U.S. Geological Survey Subduction Zone Science Plan. Reston, VA: US Geol. Surv.
    [Google Scholar]
  59. Hamilton TS, Enkin RJ, Riedel M, Rogers GC, Pohlman JW et al. 2015. Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications. Can. J. Earth Sci. 52:6405–30
    [Google Scholar]
  60. Hansen WR. 1965. Effects of the Earthquake of March 27, 1964, at Anchorage, Alaska Washington, DC: US GPO
    [Google Scholar]
  61. Hawkes AD, Horton BP, Nelson AR, Vane CH, Sawai Y. 2011. Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700. Quat. Sci. Rev. 30:3–4364–76
    [Google Scholar]
  62. Heesemann M, Wang K, Davis E, Chadwell CD, Nissen E et al. 2017. Plans for a northern Cascadia subduction zone observatory. Presented at AGU Fall Meet., Dec. 11–15, New Orleans, Abstr. T51E-1287
    [Google Scholar]
  63. Hemphill-Haley E 1995. Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington. GSA Bull. 107:3367–78
    [Google Scholar]
  64. Henstock TJ, McNeill LC, Bull JM, Cook BJ, Gulick SPS et al. 2016. Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake. Geology 44:171–74
    [Google Scholar]
  65. Herrendörfer R, Van Dinther Y, Gerya T, Dalguer LA. 2015. Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nat. Geosci. 8:6471–74
    [Google Scholar]
  66. Hill EM, Borrero JC, Huang Z, Qiu Q, Banerjee P et al. 2012. The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J. Geophys. Res. 117:B6B06402
    [Google Scholar]
  67. Hill JC, Watt JT, Brothers DS, Kluesner JW. 2020. Submarine canyons, slope failures and mass transport processes in southern Cascadia. Geol. Soc. Lond. Spec. Publ. 500:453–475
    [Google Scholar]
  68. Horton BP, Milker Y, Dura T, Wang K, Bridgeland WT et al. 2017. Microfossil measures of rapid sea-level rise: timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia. Geology 45:6535–38
    [Google Scholar]
  69. Howarth J, Orpin AR, Nodder S, McCleery D, Strachan LJ et al. 2018. Calibrating the turbidite paleoseismometer on the Hikurangi margin, New Zealand, using the 2016 Mw7. 8 Kaikoura earthquake Presented at AGU Fall Meet., Dec 10–14 Washington, DC: Abstr. T53C-01
    [Google Scholar]
  70. Hutchinson I. 1992. Holocene Sea Level Change in the Pacific Northwest: A Catalogue of Radiocarbon Dates and an Atlas of Regional Sea-Level Curves Burnaby, Can: Inst. Quat. Res.
    [Google Scholar]
  71. Hutchinson I, Clague J. 2017. Were they all giants? Perspectives on late Holocene plate-boundary earthquakes at the northern end of the Cascadia subduction zone. Quat. Sci. Rev. 169:29–49
    [Google Scholar]
  72. Hyndman RD, McCrory PA, Wech A, Kao H, Ague J. 2015. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition. J. Geophys. Res. Solid Earth 120:64344–58
    [Google Scholar]
  73. Jacoby G, Bunker DE, Benson BE 1997. Tree-ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon. Geology 25:11999–1002
    [Google Scholar]
  74. Jacoby G, Carver G, Wagner W. 1995. Trees and herbs killed by an earthquake ∼300 yr ago at Humboldt Bay, California. Geology 23:177–80
    [Google Scholar]
  75. Jibson RW, Harp EL, Schulz W, Keefer DK. 2004. Landslides triggered by the 2002 Denali Fault, Alaska, earthquake and the inferred nature of the strong shaking. Earthq. Spectra 20:3669–91
    [Google Scholar]
  76. Jones ES, Mirus BB, Schmitt RG, Baum RL, Burns WJ et al. 2019. Landslide inventories across the United States U.S. Geological Survey Data Release, US Geol. Surv. Washington, DC: updated March 9. https://doi.org/10.5066/P9E2A37P
    [Crossref] [Google Scholar]
  77. Kano M, Kato A. 2020. Detailed spatial slip distribution for short-term slow slip events along the Nankai subduction zone, southwest Japan. J. Geophys. Res. Solid Earth 125:e2020JB019613
    [Google Scholar]
  78. Karlin RE, Holmes M, Abella SEB, Sylwester R. 2004. Holocene landslides and a 3500-year record of Pacific Northwest earthquakes from sediments in Lake Washington.. GSA Bull. 116:1–294–108
    [Google Scholar]
  79. Kelsey HM, Nelson AR, Hemphill-Haley E, Witter RC. 2005. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. GSA Bull. 117:7–81009–32
    [Google Scholar]
  80. Kelsey HM, Witter RC, Hemphill-Haley E. 2002. Plate-boundary earthquakes and tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon. GSA Bull. 114:3298–314
    [Google Scholar]
  81. Kemp AC, Cahill N, Engelhart SE, Hawkes AD, Wang K. 2018. Revising estimates of spatially variable subsidence during the A.D. 1700 Cascadia earthquake using a Bayesian foraminiferal transfer function. Bull. Seismol. Soc. Am. 108:2654–73
    [Google Scholar]
  82. Kirk R. 2015. Ozette: Excavating a Makah Whaling Village. Seattle: Univ. Washington Press
    [Google Scholar]
  83. Kulkarni R, Wong I, Zachariasen J, Goldfinger C, Lawrence M. 2013. Statistical analyses of great earthquake recurrence along the Cascadia subduction zone. Bull. Seismol. Soc. Am. 103:63205–21
    [Google Scholar]
  84. LaHusen SR, Duvall AR, Booth AM, Grant A, Mishkin BA et al. 2020. Rainfall triggers more deep-seated landslides than Cascadia earthquakes in the Oregon Coast Range, USA.. Sci. Adv. . 6:38eaba6790
    [Google Scholar]
  85. Lamb S. 2006. Shear stresses on megathrusts: implications for mountain building behind subduction zones. J. Geophys. Res. 111:B7B07401
    [Google Scholar]
  86. Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR et al. 2012. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117:4B04311
    [Google Scholar]
  87. Leithold EL, Wegmann KW, Bohnenstiehl DR, Joyner CN, Pollen AF. 2019. Repeated megaturbidite deposition in Lake Crescent, Washington, USA, triggered by Holocene ruptures of the Lake Creek-Boundary Creek fault system. GSA Bull. 131:11–122039–55
    [Google Scholar]
  88. Leithold EL, Wegmann KW, Bohnenstiehl DR, Smith SG, Noren A, O'Grady R 2018. Slope failures within and upstream of Lake Quinault, Washington, as uneven responses to Holocene earthquakes along the Cascadia subduction zone. Quat. Res. 89:1178–200
    [Google Scholar]
  89. Leonard LJ, Currie CA, Mazzotti S, Hyndman RD. 2010. Rupture area and displacement of past Cascadia great earthquakes from coastal coseismic subsidence.. GSA Bull. 122:11–122079–96
    [Google Scholar]
  90. Leonard LJ, Hyndman RD, Mazzotti S. 2004. Coseismic subsidence in the 1700 great Cascadia earthquake: coastal estimates versus elastic dislocation models. GSA Bull. 116:5–6655–70
    [Google Scholar]
  91. Li D, Liu Y. 2016. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies. J. Geophys. Res. Solid Earth 122:43138–57
    [Google Scholar]
  92. Li S, Wang K, Wang Y, Jiang Y, Dosso SE. 2018. Geodetically inferred locking state of the Cascadia mega-thrust based on a viscoelastic Earth model. J. Geophys. Res. Solid Earth 123:8056–72
    [Google Scholar]
  93. Long AJ, Shennan I. 1998. Models of rapid relative sea-level change in Washington and Oregon, USA.. Holocene 8:2129–42
    [Google Scholar]
  94. Mazzotti S, Adams J 2004. Variability of near-term probability for the next great earthquake on the Cascadia subduction zone. Bull. Seismol. Soc. Am. 94:51954–59
    [Google Scholar]
  95. McCaffrey R, King RW, Payne SJ, Lancaster M. 2013. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. J. Geophys. Res. Solid Earth 118:2709–23
    [Google Scholar]
  96. McCrory PA, Blair JL, Waldhauser F, Oppenheimer DH. 2012. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity. J. Geophys. Res. Solid Earth 117:B9B09306
    [Google Scholar]
  97. McGuire JJ, Plank T, Barrientos S, Becker T, Brodsky E, Cottrell E. 2017. The SZ4D Initiative: Understanding the Processes That Underlie Subduction Zone Hazards in 4D. Washington, DC: IRIS Consort.
    [Google Scholar]
  98. McNeill LC, Henstock TJ. 2014. Forearc structure and morphology along the Sumatra-Andaman subduction zone. Tectonics 33:2112–34
    [Google Scholar]
  99. Melgar D, Leveque RJ, Dreger DS, Allen RM. 2016. Kinematic rupture scenarios and synthetic displacement data: an example application to the Cascadia subduction zone. J. Geophys. Res. Solid Earth 121:6658–74
    [Google Scholar]
  100. Meltzner AJ, Sieh K, Chiang H-W, Shen C-C, Suwargadi BW et al. 2012. Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust. J. Geophys. Res. 117:B4B04405
    [Google Scholar]
  101. Meunier P, Hovius N, Haines AJ. 2007. Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys. Res. Lett. 34:20L20408
    [Google Scholar]
  102. Meunier P, Uchida T, Hovius N. 2013. Landslide patterns reveal the sources of large earthquakes. Earth Planet. Sci. Lett. 363:27–33
    [Google Scholar]
  103. Michel S, Gualandi A, Avouac JP. 2018. Interseismic coupling and slow slip events on the Cascadia megathrust. Pure Appl. Geophys. 176:3867–91
    [Google Scholar]
  104. Milker Y, Nelson AR, Horton BP, Engelhart SE, Bradley LA et al. 2016. Differences in coastal subsidence in southern Oregon (USA) during at least six prehistoric megathrust earthquakes. Quat. Sci. Rev. 142:143–63
    [Google Scholar]
  105. Moernaut J, van Daele M, Fontijn K, Heirman K, Kempf P et al. 2018. Larger earthquakes recur more periodically: new insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile. Earth Planet. Sci. Lett. 481:9–19
    [Google Scholar]
  106. Morey AE, Goldfinger C, Briles CE, Gavin DG, Colombaroli D, Kusler JE. 2013. Are great Cascadia earthquakes recorded in the sedimentary records from small forearc lakes?. Nat. Hazards Earth Syst. Sci. 13:102441–63
    [Google Scholar]
  107. Morton EA, Bilek SL, Rowe CA. 2018. Newly detected earthquakes in the Cascadia subduction zone linked to seamount subduction and deformed upper plate. Geology 46:11943–46
    [Google Scholar]
  108. Mountjoy JJ, Howarth JD, Orpin AR, Barnes PM, Bowden DA et al. 2018. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins. Sci. Adv. 4:3eaar3748
    [Google Scholar]
  109. Nelson AR, Atwater BF, Bobrowsky PT, Bradley L-A, Clague JJ et al. 1995. Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadia subduction zone. Nature 378:6555371–74
    [Google Scholar]
  110. Nelson AR, Hawkes AD, Sawai Y, Engelhart SE, Witter R et al. 2020. Identifying the greatest earthquakes of the past 2000 years at the Nehalem river Estuary, northern Oregon coast, USA. Open Quat. 6:21–30
    [Google Scholar]
  111. Nelson AR, Hawkes AD, Sawai Y, Horton BP, Witter RC et al. 2021. Minimal stratigraphic evidence for coseismic coastal subsidence during 2000 yr of megathrust earthquakes at the central Cascadia subduction zone. Geosphere 17:171200
    [Google Scholar]
  112. Nelson AR, Kelsey HM, Witter RC. 2006. Great earthquakes of variable magnitude at the Cascadia subduction zone. Quat. Res. 65:3354–65
    [Google Scholar]
  113. Nelson AR, Sawai Y, Jennings AE, Bradley LA, Gerson L et al. 2008. Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast, USA. Quat. Sci. Rev. 27:7–8747–68
    [Google Scholar]
  114. Nelson AR, Shennan I, Long AJ. 1996. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America. J. Geophys. Res. 101:B36115–35
    [Google Scholar]
  115. Newman AV, Okal EA. 1998. Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes. J. Geophys. Res. 103:B1126885–98
    [Google Scholar]
  116. Nocquet JM, Jarrin P, Vallée M, Mothes PA, Grandin R et al. 2017. Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nat. Geosci. 10:2145–49
    [Google Scholar]
  117. Obara K, Kato A. 2016. Connecting slow earthquakes to huge earthquakes. Science 353:6296253–57
    [Google Scholar]
  118. Obermeier SF. 1995. Preliminary estimates of the strength of prehistoric shaking in the Columbia River Valley and the southern half of coastal Washington, with emphasis for a Cascadia subduction zone earthquake about 300 years ago Open File Rep 94–589 US Geol. Surv. Seattle, WA:
    [Google Scholar]
  119. Obermeier SF, Atwater BF, Benson BE, Peterson CD, Moses LJ et al. 1993. Liquefaction about 300 years ago along tidal marshes of the Columbia River, Oregon and Washington. Eos Trans. AGU 74:198
    [Google Scholar]
  120. Obermeier SF, Dickenson SE. 2000. Liquefaction evidence for the strength of ground motions resulting from late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D. Bull. Seismol. Soc. Am. 90:4876–96
    [Google Scholar]
  121. Olsen KM, Bangs NL, Tréhu AM, Han S, Arnulf A, Contreras-Reyes E. 2020. Thick, strong sediment subduction along south-central Chile and its role in great earthquakes. Earth Planet. Sci. Lett. 538:116195
    [Google Scholar]
  122. Padgett JS, Engelhart SE, Kelsey HM, Witter RC, Cahill N, Hemphill-Haley E 2021. Timing and amount of southern Cascadia earthquake subsidence over the past 1700 years at northern Humboldt Bay, California, USA. GSA Bull https://doi.org/10.1130/B35701.1
    [Crossref] [Google Scholar]
  123. Pearl JK, Anchukaitis KJ, Donnelly JP, Pearson C, Pederson N et al. 2020a. A late Holocene subfossil Atlantic white cedar tree-ring chronology from the northeastern United States. Quat. Sci. Rev. 228:106104
    [Google Scholar]
  124. Pearl JK, Keck JR, Tintor W, Siekacz L, Herrick HM et al. 2020b. New frontiers in tree-ring research. Holocene 30:6923–41
    [Google Scholar]
  125. Pearson C, Salzer M, Wacker L, Brewer P, Sookdeo A, Kuniholm P. 2020. Securing timelines in the ancient Mediterranean using multiproxy annual tree-ring data. PNAS 117:158410–15
    [Google Scholar]
  126. Perkins JP, Roering JJ, Burns WJ, Strubel W, Black BA et al. 2018. Hunting for landslides from Cascadia's great earthquakes. Eos Trans. AGU 99:2018EO103689
    [Google Scholar]
  127. Peters R, Jaffe B, Gelfenbaum G. 2007. Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America. Sediment.Geol. 200:372–86
    [Google Scholar]
  128. Petersen MD, Cramer CH, Frankel AD. 2002. Simulations of seismic hazard for the Pacific Northwest of the United States from earthquakes associated with the Cascadia subduction zone. Pure Appl. Geophys. 159:92147–68
    [Google Scholar]
  129. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM et al. 2014. Documentation for the 2014 update of the United States National Seismic Hazard Maps Open File Rep 2014–1091 US Geol. Surv. Seattle, WA:
    [Google Scholar]
  130. Petersen MD, Shumway AM, Powers PM, Mueller CS, Moschetti MP et al. 2019. The 2018 update of the US National Seismic Hazard Model: overview of model and implications.. Earthq. Spectra 36:15–41
    [Google Scholar]
  131. Peterson CD, Carver GA, Cruikshank KM, Abramson HF, Garrison-Laney CE et al. 2011. Evaluation of the use of paleotsunami deposits to reconstruct inundation distance and runup heights associated with prehistoric inundation events, Crescent City, southern Cascadia margin. Earth Surf. Proc. Landf. 36:7967–80
    [Google Scholar]
  132. Philibosian B, Meltzner AJ. 2020. Segmentation and supercycles: a catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quat. Sci. Rev. 241:106390
    [Google Scholar]
  133. Pollitz FF, Evans EL. 2017. Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust. Geophys. J. Int. 209:1167–85
    [Google Scholar]
  134. Porritt RW, Allen RM, Boyarko DC, Brudzinski MR. 2011. Investigation of Cascadia segmentation with ambient noise tomography. Earth Planet. Sci. Lett. 309:167–76
    [Google Scholar]
  135. Praet N, Moernaut J, van Daele M, Boes E, Haeussler PJ et al. 2017. Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska). Mar. Geol. 384:103–19
    [Google Scholar]
  136. Priest GR, Zhang Y, Witter RC, Wang K, Goldfinger C, Stimely L. 2014. Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone. Nat. Hazards 72:2849–70
    [Google Scholar]
  137. Reid HF. 1910. The mechanics of the earthquake, in the California earthquake of 18 April 1906. Rep. State Earthq. Investig Comm., Carnegie Inst. Washington, DC:
    [Google Scholar]
  138. Rogers G, Dragert H. 2003. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:56271942–43
    [Google Scholar]
  139. Rong Y, Jackson DD, Magistrale H, Goldfinger C. 2014. Magnitude limits of subduction zone earthquakes. Bull. Seismol. Soc. Am. 104:52359–77
    [Google Scholar]
  140. Roten D, Olsen KB, Takedatsu R. 2019. Numerical simulation of M9 megathrust earthquakes in the Cascadia subduction zone. Pure Appl. Geophys. 177:20202125–41
    [Google Scholar]
  141. Saffer DM, Bekins BA. 2002. Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology 30:3271–74
    [Google Scholar]
  142. Sahakian VJ, Melgar D, Muzli M. 2019. Weak near-field behavior of a tsunami earthquake: toward real-time identification for local warning. Geophys. Res. Lett. 46:169519–28
    [Google Scholar]
  143. Saillard M, Audin L, Rousset B, Avouac JP, Chlieh M et al. 2017. From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust. Tectonics 36:2241–56
    [Google Scholar]
  144. Satake K, Wang K, Atwater BF. 2003. Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J. Geophys. Res. 108:B112535
    [Google Scholar]
  145. Schmalzle GM, McCaffrey R, Creager KC. 2014. Central Cascadia subduction zone creep. Geochem. Geophys. Geosyst. 15:41515–32
    [Google Scholar]
  146. Scholz CH. 2014. Holocene earthquake history of Cascadia: a quantitative test. Bull. Seismol. Soc. Am. 104:42120–24
    [Google Scholar]
  147. Schulz WH, Galloway SL, Higgins JD. 2012. Evidence for earthquake triggering of large landslides in coastal Oregon, USA. Geomorphology 141:88–98
    [Google Scholar]
  148. Schwartz DP, Coppersmith KJ. 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas Fault Zones. J. Geophys. Res. 89:B75681–98
    [Google Scholar]
  149. Shennan I, Garrett E, Barlow N 2016. Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes. Quat. Sci. Rev. 150:1–30
    [Google Scholar]
  150. Shennan I, Long AJ, Rutherford MM, Green FM, Innes JB et al. 1996. Tidal marsh stratigraphy, sea-level change and large earthquakes, I: a 5000 year record in Washington, U.S.A. Quat. Sci. Rev. 15:101023–59
    [Google Scholar]
  151. Shennan I, Scott DB, Rutherford M, Zong Y 1999. Microfossil analysis of sediments representing the 1964 earthquake, exposed at Girdwood Flats, Alaska, USA. Quat. Int. 60:155–73
    [Google Scholar]
  152. Shimazaki K, Nakata T. 1980. Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett. 7:4279–82
    [Google Scholar]
  153. Sieh K, Natawidjaja DH, Meltzner AJ, Shen CC, Cheng H et al. 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322:59081674–78
    [Google Scholar]
  154. Stone I, Vidale JE, Han S, Roland E 2018. Catalog of offshore seismicity in Cascadia: insights into the regional distribution of microseismicity and its relation to subduction processes. J. Geophys. Res. Solid Earth 123:1641–52
    [Google Scholar]
  155. Struble WT, Roering JJ, Black BA, Burns WJ, Calhoun N, Wetherell L 2020. Dendrochronological dating of landslides in western Oregon: searching for signals of the Cascadia AD 1700 earthquake. GSA Bull. 132:7–81775–91
    [Google Scholar]
  156. Sykes LR, Menke W. 2006. Repeat times of large earthquakes: implications for earthquake mechanics and long-term prediction. Bull. Seismol. Soc. Am. 96:51569–96
    [Google Scholar]
  157. Takada K, Atwater BF. 2004. Evidence for liquefaction identified in peeled slices of Holocene deposits along the Lower Columbia River, Washington. Bull. Seismol. Soc. Am. 94:2550–75
    [Google Scholar]
  158. Tréhu AM. 2016. Source parameter scaling and the Cascadia paleoseismic record. Bull. Seismol. Soc. Am. 106:3904–11
    [Google Scholar]
  159. Tréhu AM, Asudeh I, Brocher TM, Luetgert JH, Mooney WD et al. 1994. Crustal architecture of the Cascadia forearc. Science 266:5183237–43
    [Google Scholar]
  160. Tréhu AM, Blakely RJ, Williams MC. 2012. Subducted seamounts and recent earthquakes beneath the central Cascadia forearc. Geology 40:2103–6
    [Google Scholar]
  161. Tréhu AM, Braunmiller J, Davis E 2015. Seismicity of the central Cascadia continental margin near 44.5° N: a decadal view. Seismol. Res. Lett. 86:3819–29
    [Google Scholar]
  162. Tréhu AM, Hass B, de Moor A, Maksymowicz A, Contreras-Reyes E et al. 2019. Geologic controls on up-dip and along-strike propagation of slip during subduction zone earthquakes from a high-resolution seismic reflection survey across the northern limit of slip during the 2010 Mw 8.8 Maule earthquake, offshore Chile. Geosphere 15:61751–73
    [Google Scholar]
  163. van Daele M, Araya-Cornejo C, Pille T, Vanneste K, Moernaut J et al. 2019. Distinguishing intraplate from megathrust earthquakes using lacustrine turbidites. Geology 47:2127–30
    [Google Scholar]
  164. Vandekerkhove E, van Daele M, Praet N, Cnudde V, Haeussler PJ et al. 2020. Flood-triggered versus earthquake-triggered turbidites: a sedimentological study in clastic lake sediments (Eklutna Lake, Alaska). Sedimentology 67:1364–89
    [Google Scholar]
  165. Veblen TT, Ashton DH. 1978. Catastrophic influences on the vegetation of the Valdivian Andes, Chile.. Vegetation 36:3149–67
    [Google Scholar]
  166. Victor P, Sobiesiak M, Glodny J, Nielsen SN, Oncken O. 2011. Long-term persistence of subduction earthquake segment boundaries: evidence from Mejillones Peninsula, northern Chile. J. Geophys. Res. 116:B2B0240
    [Google Scholar]
  167. von Huene R, Scholl DW. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29:3279–316
    [Google Scholar]
  168. Wang D, Mori J. 2011. Frequency-dependent energy radiation and fault coupling for the 2010 Mw8.8 Maule, Chile, and 2011 Mw9.0 Tohoku, Japan, earthquakes. Geophys. Res. Lett. 38:22L22308
    [Google Scholar]
  169. Wang K, Tréhu AM. 2016. Invited review paper: some outstanding issues in the study of great megathrust earthquakes—the Cascadia example. J. Geodyn. 98:1–18
    [Google Scholar]
  170. Wang K, Wells R, Mazzotti S, Hyndman RD, Sagiya T. 2003. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J. Geophys. Res. 108:B12026
    [Google Scholar]
  171. Wang PL, Engelhart SE, Wang K, Hawkes AD, Horton BP et al. 2013. Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. J. Geophys. Res. Solid Earth 118:52460–73
    [Google Scholar]
  172. Wartman J, Dunham L, Tiwari B, Pradel D. 2013. Landslides in eastern Honshu induced by the 2011 Tohoku earthquake. Bull. Seismol. Soc. Am. 103:2B1503–21
    [Google Scholar]
  173. Watt JT, Brothers DS. 2021. Systematic characterization of morpho-tectonic variability along the Cascadia convergent margin: implications for shallow megathrust behavior and hazards. Geosphere 17:95117
    [Google Scholar]
  174. Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA. 2003. Basin-centered asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion?. J. Geophys. Res. 108:B102507
    [Google Scholar]
  175. Wells RE, Blakely RJ, Wech AG, McCrory PA, Michael A. 2017. Cascadia subduction tremor muted by crustal faults. Geology 45:6515–18
    [Google Scholar]
  176. Wells RE, Weaver CS, Blakely RJ. 1998. Fore-arc migration in Cascadia and its neotectonic significance.. Geology 26:8759–62
    [Google Scholar]
  177. Williams HF, Hutchinson I, Nelson AR 2005. Multiple sources for late-Holocene tsunamis at Discovery Bay, Washington State, USA. Holocene 15:160–73
    [Google Scholar]
  178. Wirth EA, Frankel AD. 2019. Impact of down-dip rupture limit and high-stress drop subevents on coseismic land-level change during Cascadia Megathrust earthquakes. Bull. Seismol. Soc. Am. 109:62187–97
    [Google Scholar]
  179. Wirth EA, Frankel AD, Marafi N, Vidale JE, Stephenson WJ. 2018. Broadband synthetic seismograms for magnitude 9 earthquakes on the Cascadia megathrust based on 3D simulations and stochastic synthetics, part 2: rupture parameters and variability. Bull. Seismol. Soc. Am. 108:5A2370–88
    [Google Scholar]
  180. Witter RC, Jaffe B, Zhang Y, Priest G. 2012a. Reconstructing hydrodynamic flow parameters of the 1700 tsunami at Cannon Beach, Oregon, USA. Nat. Hazards 63:1223–40
    [Google Scholar]
  181. Witter RC, Kelsey HM, Hemphill-Haley E. 2003. Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. GSA Bull. 115:101289–306
    [Google Scholar]
  182. Witter RC, Zhang Y, Wang K, Goldfinger C, Priest GR, Allan JC. 2012b. Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites. J. Geophys. Res. 117:B10B10303
    [Google Scholar]
  183. Witter RC, Zhang YJ, Wang K, Priest GR, Goldfinger C et al. 2013. Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere 9:61783–803
    [Google Scholar]
  184. Wong FL, Grim MS. 2015. Depth-to-basement, sediment-thickness, and bathymetry data for the deep-sea basins offshore of Washington, Oregon, and California Open File Rep 2015–1118 US Geol. Surv. Seattle, WA:
    [Google Scholar]
  185. Yamaguchi DK, Atwater BF, Bunker DE, Benson BE, Reid MS. 1997. Tree-ring dating the 1700 Cascadia earthquake. Nature 389:6654922–23
    [Google Scholar]
  186. Ye L, Lay T, Kanamori H, Rivera L. 2016. Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence. J. Geophys. Res. Solid Earth 121:2845–63
    [Google Scholar]
  187. Yousefi M, Milne G, Li S, Wang K, Bartholet A 2020. Constraining interseismic deformation of the Cascadia subduction zone: new insights from estimates of vertical land motion over different timescales. J. Geophys. Res. Solid Earth 125:3e2019JB018248
    [Google Scholar]
  188. Zielke O. 2018. Earthquake recurrence and the resolution potential of tectono-geomorphic records. Bull. Seismol. Soc. Am. 108:3A1399–413
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071620-065605
Loading
/content/journals/10.1146/annurev-earth-071620-065605
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error