1932

Abstract

Recent progress in theoretical mineral physics based on the ab initio quantum mechanical computation method has been dramatic in conjunction with the rapid advancement of computer technologies. It is now possible to predict stability, elasticity, and transport properties of complex minerals quantitatively with uncertainties that are comparable to or even smaller than those attached in experimental data. These calculations under in situ high-pressure () and high-temperature conditions are of particular interest because they allow us to construct a priori mineralogical models of the deep Earth. In this article, we briefly review recent progress in studying high- phase relations, elasticity, thermal conductivity, and rheological properties of lower mantle minerals including silicates, oxides, and some hydrous phases. Our analyses indicate that the pyrolitic composition can describe Earth's properties quite well in terms of density and P- and S-wave velocity. Computations also suggest some new hydrous compounds that could persist up to the deepest mantle and that the postperovskite phase boundary is the boundary of not only the mineralogy but also the thermal conductivity.

  • ▪   The ab initio method is a strong tool to investigate physical properties of minerals under high pressure and high temperature.
  • ▪   Calculated thermoelasticity indicates that the pyrolytic composition is representative to the chemistry of Earth's lower mantle.
  • ▪   Simulations predict new dense hydrous phases stable in the whole lower mantle pressure and temperature condition.
  • ▪   Calculated lattice thermal conductivity suggests a heat flow across the core mantle boundary no greater than 10 TW.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-055139
2020-05-30
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-055139.html?itemId=/content/journals/10.1146/annurev-earth-071719-055139&mimeType=html&fmt=ahah

Literature Cited

  1. Albarède F. 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461:1227–33
    [Google Scholar]
  2. Allègre CJ, Poirier JP, Humler E, Hofmann AW 1995. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134:515–26
    [Google Scholar]
  3. Ammann MW, Brodholt JP, Dobson DP 2009. DFT study of migration enthalpies in MgSiO3 perovskite. Phys. Chem. Miner. 36:151–58
    [Google Scholar]
  4. Ammann MW, Brodholt JP, Wookey J, Dobson DP 2010. First-principles constraints on diffusion in lower-mantle minerals and a weak D″ layer. Nature 465:462–65
    [Google Scholar]
  5. Ammann MW, Walker AM, Stackhouse S, Wookey J, Forte AM et al. 2014. Variation of thermal conductivity and heat flux at the Earth's core mantle boundary. Earth Planet. Sci. Lett. 390:175–85
    [Google Scholar]
  6. Andrault D, Munõz M, Bolfan-Casanova N, Guignot N, Perrillat J-P et al. 2010. Experimental evidence for perovskite and postperovskite coexistence throughout the whole D″ region. Earth Planet. Sci. Lett. 293:90–96
    [Google Scholar]
  7. Anisimov VI, Gunnarsson O. 1991. Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43:7570–74
    [Google Scholar]
  8. Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV et al. 2003. Iron partitioning in Earth's mantle: toward a deep lower mantle discontinuity. Science 300:789–91
    [Google Scholar]
  9. Bagno P, Jepsen O, Gunnarsson O 1989. Ground-state properties of third-row elements with nonlocal density functionals. Phys. Rev. B 40:1997–2000
    [Google Scholar]
  10. Baroni S, Giannozzi P, Testa A 1987. Green's-function approach to linear response in solids. Phys. Rev. Lett. 58:1861–64
    [Google Scholar]
  11. Bindi L, Nishi M, Tsuchiya J, Irifune T 2014. Crystal chemistry of dense hydrous magnesium silicates: the structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000°C. Am. Mineral. 99:1802–5
    [Google Scholar]
  12. Caracas R, Cohen RE. 2005. Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle. Geophys. Res. Lett. 32:L16310
    [Google Scholar]
  13. Caracas R, Wentzcovitch R, Price GD, Brodholt J 2005. CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett. 32:L06306
    [Google Scholar]
  14. Carrez P, Ferré D, Cordier P 2007. Peierls–Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos. Mag. 87:3229–47
    [Google Scholar]
  15. Carrez P, Ferré D, Cordier P 2009. Peierls–Nabarro modelling of dislocations in MgO from ambient pressure to 100 GPa. Model. Simul. Mater. Sci. Eng. 17:035010
    [Google Scholar]
  16. Catalli K, Shim SH, Prakapenka VB 2009. Thickness and Clapeyron slope of the post-perovskite boundary. Nature 462:782–85
    [Google Scholar]
  17. Ceperley DM, Alder BJ. 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45:566–69
    [Google Scholar]
  18. Cheng Y, Wang X, Zhang J, Yang K, Zhang C et al. 2018. Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional. J. Phys. Condens. Matter 30:155403
    [Google Scholar]
  19. Cococcioni M, de Gironcoli S 2005. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71:035105
    [Google Scholar]
  20. Crowhurst JC, Brown JM, Goncharov AF, Jacobsen SD 2008. Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science 319:451–53
    [Google Scholar]
  21. Dalton DA, Hsieh WP, Hohensee GT, Cahill DG, Goncharov AF 2013. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci. Rep. 3:2400
    [Google Scholar]
  22. de Koker N. 2010. Thermal conductivity of MgO periclase at high pressure: implications for the D″ region. Earth Planet. Sci. Lett. 292:392–98
    [Google Scholar]
  23. Dekura H, Tsuchiya T. 2017. Ab initio lattice thermal conductivity of MgO from a complete solution of the linearized Boltzmann transport equation. Phys. Rev. B 95:184303
    [Google Scholar]
  24. Dekura H, Tsuchiya T. 2019. Lattice thermal conductivity of MgSiO3 postperovskite under the lowermost mantle conditions from ab initio anharmonic lattice dynamics. Geophys. Res. Lett. 46:12919–26
    [Google Scholar]
  25. Dekura H, Tsuchiya T, Kuwayama Y, Tsuchiya J 2011. Theoretical and experimental evidence for a new post-cotunnite phase of titanium dioxide with significant optical absorption. Phys. Rev. Lett. 107:045701
    [Google Scholar]
  26. Dekura H, Tsuchiya T, Tsuchiya J 2013. Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth's lower mantle. Phys. Rev. Lett. 110:025904
    [Google Scholar]
  27. Demuth T, Jeanvoine Y, Hafner J, Ángyán JG 1999. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys. Condens. Matter 11:3833–74
    [Google Scholar]
  28. Deng J, Karki BB, Ghosh DB, Lee KKM 2019. First-principles study of FeO2Hx solid and melt system at high pressures: implications for ultralow-velocity zones. J. Geophys. Res. Solid Earth 124:4566–75
    [Google Scholar]
  29. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25:297–356
    [Google Scholar]
  30. Eberle MA, Grasset O, Sotin C 2002. A numerical study of the interaction between the mantle wedge, subducting slab, and overriding plate. Phys. Earth Planet. Inter. 134:191–202
    [Google Scholar]
  31. French SW, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature 525:95–99
    [Google Scholar]
  32. Garnero EJ, McNamara AK. 2008. Structure and dynamics of Earth's lower mantle. Science 320:626–28
    [Google Scholar]
  33. Gesi K, Axe JD, Shirane G, Linz A 1972. Dispersion and damping of soft zone-boundary phonons in KMnF3. Phys. Rev. B 5:1933–41
    [Google Scholar]
  34. Ghaderi N, Zhang DB, Zhang H, Xian J, Wentzcovitch RM, Sun T 2017. Lattice thermal conductivity of MgSiO3 perovskite from first principles. Sci. Rep. 7:5417
    [Google Scholar]
  35. Gleason AE, Quiroga CE, Suzuki A, Pentcheva R, Mao WL 2013. Symmetrization driven spin transition in ε-FeOOH at high pressure. Earth Planet. Sci. Lett. 379:49–55
    [Google Scholar]
  36. Goncharov AF, Beck P, Struzhkin VV, Haugen BD, Jacobsen SD 2009. Thermal conductivity of lower-mantle minerals. Phys. Earth Planet. Int. 174:24–32
    [Google Scholar]
  37. Goncharov AF, Lobanov SS, Tan X, Hohensee GT, Cahill DG et al. 2014. Experimental study of thermal conductivity at high pressures: implications for the deep Earth interior. Phys. Earth Planet. Int. 247:11–16
    [Google Scholar]
  38. Gréaux S, Irifune T, Higo Y, Tange Y, Arimoto T et al. 2019. Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth's lower mantle. Nature 565:218–21
    [Google Scholar]
  39. Grocholski B, Catalli K, Shim S, Prakapenka V 2012. Mineralogical effects on the detectability of the postperovskite boundary. PNAS 109:2275–79
    [Google Scholar]
  40. Gubbins D. 2007. Geomagnetic constraints on stratification at the top of Earth's core. Earth Planets Space 59:661–64
    [Google Scholar]
  41. Haigis V, Salanne M, Jahn S 2012. Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle. Earth Planet. Sci. Lett. 355–356:102–8
    [Google Scholar]
  42. Hamann DR. 1996. Generalized gradient theory for silica phase transition. Phys. Rev. Lett. 76:660–63
    [Google Scholar]
  43. Hamann DR. 1997. H2O hydrogen bonding in density-functional theory. Phys. Rev. B 55:R10157–60
    [Google Scholar]
  44. Hashin Z, Shtrikman S. 1962. A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10:343–52
    [Google Scholar]
  45. Helffrich G, Kaneshima S. 2010. Outer-core compositional stratification from observed core wave speed profiles. Nature 468:807–10
    [Google Scholar]
  46. Hill R. 1952. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65:349
    [Google Scholar]
  47. Hirose K. 2006. Postperovskite phase transition and its geophysical implications. Rev. Geophys. 44:RG3001
    [Google Scholar]
  48. Hofmeister AM. 1999. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283:1699–706
    [Google Scholar]
  49. Hohenberg P, Kohn W. 1964. Inhomogeneous electron gas. Phys. Rev. B 136:864–71
    [Google Scholar]
  50. Hsieh WP, Deschamps F, Okuchi T, Lin JF 2017. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle. J. Geophys. Res. Solid Earth 122:4900–17
    [Google Scholar]
  51. Hsieh WP, Deschamps F, Okuchi T, Lin JF 2018. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics. PNAS 115:4099–104
    [Google Scholar]
  52. Imada S, Ohta K, Yagi T, Hirose K, Yoshida H, Nagahara H 2014. Measurements of lattice thermal conductivity of MgO to core-mantle boundary pressures. Geophys. Res. Lett. 41:4542–47
    [Google Scholar]
  53. Irifune T. 1994. Absence of an aluminous phase in the upper part of the Earth's lower mantle. Nature 370:131–33
    [Google Scholar]
  54. Irifune T, Ringwood AE. 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett. 117:101–10
    [Google Scholar]
  55. Jiang J, Zhang F. 2019. Theoretical studies on the hydrous lower mantle and D″ layer minerals. Earth Planet. Sci. Lett. 525:115753
    [Google Scholar]
  56. Karato S. 2003. The Dynamic Structure of the Deep Earth: An Interdisciplinary Approach Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  57. Karki BB, Crain J. 1998. First-principles determination of elastic properties of CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett. 25:2741–44
    [Google Scholar]
  58. Karki BB, Khanduja G. 2006. Vacancy defects in MgO at high pressure. Am. Mineral. 91:511–16
    [Google Scholar]
  59. Karki BB, Khanduja G. 2007. A computational study of ionic vacancies and diffusion in MgSiO3 perovskite and post-perovskite. Earth Planet. Sci. Lett. 260:201–11
    [Google Scholar]
  60. Karki BB, Stixrude L, Clark SJ, Warren MC, Ackland GJ, Crain J 1997a. Structure and elasticity of MgO at high pressure. Am. Mineral. 82:51–60
    [Google Scholar]
  61. Karki BB, Stixrude L, Clark SJ, Warren MC, Ackland GJ, Crain J 1997b. Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures. Am. Mineral. 82:635–38
    [Google Scholar]
  62. Karki BB, Stixrude L, Crain J 1997c. Ab initio elasticity of three high-pressure polymorphs of silica. Geophys. Res. Lett. 24:3269–72
    [Google Scholar]
  63. Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S 1999. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 286:1705–7
    [Google Scholar]
  64. Katsura T. 1997. Thermal diffusivity of periclase at high temperatures and high pressures. Phys. Earth Planet. Int. 101:73–77
    [Google Scholar]
  65. Kawai K, Tsuchiya T. 2015. Small shear modulus of cubic CaSiO3 perovskite. Geophys. Res. Lett. 42:2718–26
    [Google Scholar]
  66. Kohn W, Sham LJ. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140:1133–38
    [Google Scholar]
  67. Kuwayama Y, Hirose K, Sata N, Ohishi Y 2005. The pyrite-type high-pressure form of silica. Science 309:923–25
    [Google Scholar]
  68. Lay T, Heinz D, Ishii M, Shim S-H, Tsuchiya J et al. 2005. Multidisciplinary impact of the deep mantle phase transition in perovskite structure. Eos Trans. AGU 86:1–5
    [Google Scholar]
  69. Lay T, Hernlund J, Buffett BA 2008. Core–mantle boundary heat flow. Nat. Geosci. 1:25–32
    [Google Scholar]
  70. Li L, Weidner DJ, Brodholt J, Alfè D, Price GD et al. 2006. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys. Earth Planet. Inter. 155:249–59
    [Google Scholar]
  71. Lin J-F, Struzhkin VV, Jacobsen SD, Hu MY, Chow P et al. 2005. Spin transition of iron in magnesiowüstite in the Earth's lower mantle. Nature 436:377–80
    [Google Scholar]
  72. Magyari-Köpe B, Vitos L, Grimvall G, Johansson B, Kollár J 2002. Low-temperature crystal structure of CaSiO3 perovskite: an ab initio total energy study. Phys. Rev. B 65:193107–11
    [Google Scholar]
  73. Manthilake GM, de Koker N, Frost DJ, McCammon CA 2011. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core. PNAS 108:17901–4
    [Google Scholar]
  74. Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR 2009a. Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth Planet. Sci. Lett. 287:345–52
    [Google Scholar]
  75. Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR, Garnero EJ 2009b. Elastic shear anisotropy of ferropericlase in Earth's lower mantle. Science 324:224–26
    [Google Scholar]
  76. Metsue A, Tsuchiya T. 2011. Lattice dynamics and thermodynamic properties of (Mg,Fe2+)SiO3 postperovskite. J. Geophys. Res. 116:B8B08207
    [Google Scholar]
  77. Metsue A, Tsuchiya T. 2012. Thermodynamic properties of (Mg,Fe2+)SiO3 perovskite at the lower mantle pressures and temperatures: an internally consistent LSDA+U study. Geophys. J. Int. 190:310–22
    [Google Scholar]
  78. Metsue A, Tsuchiya T. 2013. Shear response of Fe-bearing MgSiO3 post-perovskite at lower mantle pressures. Proc. Jpn. Acad. B 89:51–58
    [Google Scholar]
  79. Muir JMR, Brodholt JP. 2018. Water distribution in the lower mantle: implications for hydrolytic weakening. Earth Planet. Sci. Lett. 484:363–69
    [Google Scholar]
  80. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y 2004. Post-perovskite phase transition in MgSiO3. Science 304:855–58
    [Google Scholar]
  81. Nabarro FRN. 1967. Steady-state diffusional creep. Philos. Mag. A 16:231–37
    [Google Scholar]
  82. Nakagawa T, Iwamori H, Yanagi R, Nakao A 2018. On the evolution of the water ocean in the plate-mantle system. Prog. Earth Planet. Sci. 5:51
    [Google Scholar]
  83. Nakagawa T, Tackley PJ. 2011. Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell. Geophys. Res. Lett. 38:L04309
    [Google Scholar]
  84. Nastar M, Willaime F. 1995. Tight-binding calculation of the elastic constants of fcc and hcp transition metals. Phys. Rev. B 51:6896–907
    [Google Scholar]
  85. Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y et al. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat. Geosci. 7:224–27
    [Google Scholar]
  86. Nishi M, Kuwayama Y, Tsuchiya J, Tsuchiya T 2017. The pyrite-type high-pressure form of FeOOH. Nature 547:205–8
    [Google Scholar]
  87. Oganov AR, Ono S. 2004. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature 430:445–48
    [Google Scholar]
  88. Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N et al. 2014. Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism of water transport into the base of lower mantle. Earth Planet. Sci. Lett. 401:12–17
    [Google Scholar]
  89. Ohta K, Yagi T, Hirose K, Ohishi Y 2017. Thermal conductivity of ferropericlase in the Earth's lower mantle. Earth Planet. Sci. Lett. 465:29–37
    [Google Scholar]
  90. Ohta K, Yagi T, Taketoshi N, Hirose K, Komabayashi T et al. 2012. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary. Earth Planet. Sci. Lett. 349–350:109–15
    [Google Scholar]
  91. Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N 2014. Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys. Res. Lett. 41:8283–87
    [Google Scholar]
  92. Okuda Y, Ohta K, Yagi T, Sinmyo R, Wakamatsu T et al. 2017. The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle. Earth Planet. Sci. Lett. 474:25–31
    [Google Scholar]
  93. Omini M, Sparavigna A. 1996. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 53:9064–73
    [Google Scholar]
  94. Ono S, Tsuchiya T, Hirose K, Ohishi Y 2003. High-pressure form of pyrite-type germanium dioxide. Phys. Rev. B 68:014103
    [Google Scholar]
  95. Osako M, Ito E. 1991. Thermal diffusivity of MgSiO3 perovskite. Geophys. Res. Lett. 18:239–42
    [Google Scholar]
  96. Palot M, Jacobsen SD, Townsend JP, Nestola F, Marquardt K et al. 2016. Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265:237–43
    [Google Scholar]
  97. Pamato MG, Myhill R, Boffa-Ballaran T, Frost DJ, Heidelbach F, Miyajima N 2015. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nat. Geosci. 8:75–79
    [Google Scholar]
  98. Perdew JP, Burke K, Ernzerhof M 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  99. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR et al. 1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–87
    [Google Scholar]
  100. Perdew JP, Zunger A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:5048–79
    [Google Scholar]
  101. Poirier J-P. 2000. Introduction to the Physics of the Earth's Interior Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  102. Pozzo M, Davies C, Gubbins D, Alfè D 2012. Thermal and electrical conductivity of iron at Earth's core conditions. Nature 485:355–58
    [Google Scholar]
  103. Ringwood AE. 1962. A model for the upper mantle. J. Geophys. Res. 67:857–67
    [Google Scholar]
  104. Ritterbex S, Harada T, Tsuchiya T 2018. Vacancies in MgO at ultrahigh pressure: about mantle rheology of super-Earths. Icarus 305:350–57
    [Google Scholar]
  105. Sano A, Ohtani E, Kondo T, Hirao N, Sakai T et al. 2008a. Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core–mantle boundary. Geophys. Res. Lett. 35:L03303
    [Google Scholar]
  106. Sano A, Yagi T, Okada T, Gotou H, Ohtani E et al. 2008b. X-ray diffraction study of high pressure transition in InOOH. J. Mineral. Petrol. Sci. 103:152–55
    [Google Scholar]
  107. Sherman DM. 1993. Equation of state, elastic properties, and stability of CaSiO3 perovskite: first principles (periodic Hartree-Fock) results. J. Geophys. Res. 98:B1119795–805
    [Google Scholar]
  108. Shieh SR, Mao H-K, Hemley RJ, Ming LC 2000. In situ X-ray diffraction studies of dense hydrous magnesium silicates at mantle conditions. Earth Planet. Sci. Lett. 177:69–80
    [Google Scholar]
  109. Shim S-H, Jeanloz R, Duffy TS 2002. Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophys. Res. Lett. 29:2166
    [Google Scholar]
  110. Srivastava GP. 1990. The Physics of Phonons New York: Taylor & Francis
    [Google Scholar]
  111. Stacey FD, Isaak DG. 2001. Compositional constraints on the equation of state and thermal properties of the lower mantle. Geophys. J. Int. 146:143–54
    [Google Scholar]
  112. Stackhouse S, Brodholt JP. 2008. Elastic properties of the post-perovskite phase of Fe2O3 and implications for ultra-low velocity zones. Phys. Earth Planet. Inter. 170:260–66
    [Google Scholar]
  113. Stackhouse S, Stixrude L, Karki BB 2010. Thermal conductivity of periclase (MgO) from first principles. Phys. Rev. Lett. 104:208501
    [Google Scholar]
  114. Stackhouse S, Stixrude L, Karki BB 2015. First-principles calculations of the lattice thermal conductivity of the lower mantle. Earth Planet. Sci. Lett. 427:11–17
    [Google Scholar]
  115. Stixrude L, Cohen RE, Yu R, Krakauer H 1996. Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. Am. Mineral. 81:1293–96
    [Google Scholar]
  116. Stixrude L, Lithgow-Bertelloni C. 2005. Thermodynamics of mantle minerals: 1. Physical properties. Geophys. J. Int. 162:610–32
    [Google Scholar]
  117. Stixrude L, Lithgow-Bertelloni C, Kiefer B, Fumagalli P 2007. Phase stability and shear softening in CaSiO3 perovskite at high pressure. Phys. Rev. B 75:024108
    [Google Scholar]
  118. Takeuchi N. 2007. Whole mantle SH velocity model constrained by waveform inversion based on three-dimensional Born kernels. Geophys. J. Int. 169:1153–63
    [Google Scholar]
  119. Tang X, Dong J. 2010. Lattice thermal conductivity of MgO at conditions of Earth's interior. PNAS 107:4539–43
    [Google Scholar]
  120. Tang X, Ntam MC, Dong J, Rainey ESG, Kavner A 2014. The thermal conductivity of Earth's lower mantle. Geophys. Res. Lett. 41:2746–52
    [Google Scholar]
  121. Tateno S, Hirose K, Sata N, Ohishi Y 2005. Phase relations in Mg3Al2Si3O12 to 180 GPa: effect of Al on postperovskite phase transition. Geophys. Res. Lett. 32:L15306
    [Google Scholar]
  122. Tsuchiya J. 2013. First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle. Geophys. Res. Lett. 40:4570–73
    [Google Scholar]
  123. Tsuchiya J, Mookherjee M. 2015. Crystal structure, equation of state, and elasticity of phase H (MgSiO4H2) at Earth's lower mantle pressures. Sci. Rep. 5:15534
    [Google Scholar]
  124. Tsuchiya J, Tsuchiya T. 2008. Postperovskite phase equilibria in the MgSiO3-Al2O3 system. PNAS 105:19160–64
    [Google Scholar]
  125. Tsuchiya J, Tsuchiya T. 2011. First-principles prediction of a high-pressure hydrous phase of AlOOH. Phys. Rev. B 83:054115
    [Google Scholar]
  126. Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008. First principles prediction of new high-pressure phase of InOOH. J. Mineral. Petrol. Sci. 103:116–20
    [Google Scholar]
  127. Tsuchiya J, Tsuchiya T, Tsuneyuki S 2005. First principles study of hydrogen bond symmetrization of phase D under high pressure. Am. Mineral. 90:44–49
    [Google Scholar]
  128. Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T 2002. First principles calculation of a high-pressure hydrous phase, δ-AlOOH. Geophys. Res. Lett. 29:1909
    [Google Scholar]
  129. Tsuchiya T. 2011. Elasticity of subducted basaltic crust at the lower mantle pressures: insights on the nature of deep mantle heterogeneity. Phys. Earth Planet. Inter. 188:142–49
    [Google Scholar]
  130. Tsuchiya T, Caracas R, Tsuchiya J 2004a. First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophys. Res. Lett. 31:L11610
    [Google Scholar]
  131. Tsuchiya T, Kawamura K. 2001. Systematics of elasticity: ab initio study in B1-type alkaline earth oxides. J. Chem. Phys. 114:10086–93
    [Google Scholar]
  132. Tsuchiya T, Tsuchiya J. 2006. Effect of impurity on the elasticity of perovskite and postperovskite: velocity contrast across the postperovskite transition in (Mg,Fe,Al)(Si,Al)O3. Geophys. Res. Lett. 33:L12S04
    [Google Scholar]
  133. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM 2004b. Elasticity of post-perovskite MgSiO3. Geophys. Res. Lett. 31:L14603
    [Google Scholar]
  134. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM 2004c. Phase transition in MgSiO3 perovskite in the Earth's lower mantle. Earth Planet. Sci. Lett. 224:241–48
    [Google Scholar]
  135. Tsuchiya T, Wang X. 2013. Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. J. Geophys. Res. Solid Earth 118:83–91
    [Google Scholar]
  136. Tsuchiya T, Wentzcovitch RM, da Silva CRS, de Gironcoli S, Tsuchiya J 2006a. Pressure induced high spin to low spin transition in magnesiowüstite. Phys. Status Solidi B 243:2111–16
    [Google Scholar]
  137. Tsuchiya T, Wentzcovitch RM, da Silva CRS, de Gironcoli S 2006b. Spin transition in magnesiowüstite in Earth's lower mantle. Phys. Rev. Lett. 96:198501
    [Google Scholar]
  138. Verma AK, Modak P, Stixrude L 2018. New high-pressure phases in MOOH (M = Al, Ga, In). Am. Mineral. 103:1906–17
    [Google Scholar]
  139. Wade J, Wood BJ. 2005. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236:78–95
    [Google Scholar]
  140. Wallace DC. 1972. Thermodynamics of Crystals New York: John Wiley
    [Google Scholar]
  141. Wang X, Tsuchiya T, Hase A 2015. Computational support for a pyrolitic lower mantle containing ferric iron. Nat. Geosci. 8:556–59
    [Google Scholar]
  142. Wang X, Tsuchiya T, Zeng Z 2019. Effects of Fe and Al incorporations on the bridgmanite–postperovskite coexistence domain. C. R. Geosci. 351:141–46
    [Google Scholar]
  143. Weertman J. 1957. Steady-state creep through dislocation climb. J. Appl. Phys. 28:362–64
    [Google Scholar]
  144. Wentzcovitch RM, Karki BB, Cococcioni M, de Gironcoli S 2004. Thermoelastic properties of MgSiO3-perovskite: insights on the nature of the Earth's lower mantle. Phys. Rev. Lett. 92:018501
    [Google Scholar]
  145. Wentzcovitch RM, Tsuchiya T, Tsuchiya J 2006. MgSiO3 postperovskite at D″ conditions. PNAS 103:543–46
    [Google Scholar]
  146. Yu YG, Wentzcovitch RM, Tsuchiya T, Umemoto K, Weidner DJ 2007. First principles investigation of the postspinel transition in Mg2SiO4. Geophys. Res. Lett. 34:L10306
    [Google Scholar]
  147. Zhao D. 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146:3–34
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-055139
Loading
/content/journals/10.1146/annurev-earth-071719-055139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error