1932

Abstract

The strong ground motions, large crustal deformation, and tsunami generated by the 2011 Tohoku-oki earthquake ( 9.1) reveal that a large coseismic slip likely propagated to shallow depth in the Japan Trench. Although data acquired by onshore networks cannot resolve the slip behavior of the updip fault rupture, marine geophysical and geological studies provide direct evidence of coseismic slip to the trench. Differential bathymetry data show ∼50 m of coseismic seafloor displacement extending to the central Japan Trench (38–39.2°N). Seismic data show that coseismic slip ruptured the seafloor within the trench. Pelagic clays may have promoted slip propagation to shallow depths, whereas disturbed/metamorphosed clays may have restricted slip to the main rupture zone. Those observations imply that a smooth, broadly distributed, weak, clay-rich sediment in a shallow part of a subduction zone is a characteristic factor that can foster a large coseismic slip to the trench and, consequently, the generation of a large tsunami.

  • ▪   During the 2011 Tohoku-oki earthquake ( 9.1), more than ∼50 m of slip occurred on a fault that ruptured the seafloor in the central Japan Trench.
  • ▪   The fault rupture reaching the seafloor caused a large tsunami.
  • ▪   Marine geophysical explorations revealed that a clay-rich sediment in the subduction zone was one factor fostering the large fault slip.
  • ▪   Understanding of slip behavior in the shallow portion of a subduction zone will help us prepare for future large tsunamis along the Japan-Kuril Trench.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-055216
2020-05-30
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-055216.html?itemId=/content/journals/10.1146/annurev-earth-071719-055216&mimeType=html&fmt=ahah

Literature Cited

  1. Ammon CJ, Ji C, Thio HK, Robinson D, Ni SD et al. 2005. Rupture process of the 2004 Sumatra-Andaman earthquake. Science 308:1133–39
    [Google Scholar]
  2. Arai K, Inoue T, Ikehara K, Sasaki T 2014. Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku earthquake. Earth Planet. Sci. Lett. 408:9–15
    [Google Scholar]
  3. Boston B, Moore GF, Nakamura Y, Kodaira S 2014. Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku. Earth Planets Space 66:135
    [Google Scholar]
  4. Brodsky EE, Mori JJ, Anderson L, Chester FM, Conin M et al. 2020. The state of stress on the fault before, during, and after a major earthquake. Annu. Rev. Earth Planet. Sci. 48: 49–74
    [Google Scholar]
  5. Buchs DM, Pilet S, Cosca M, Flores KE, Bandini AN, Baumgartner PO 2013. Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica. Geochem. Geophys. Geosyst. 14:51552–68
    [Google Scholar]
  6. Chester FM, Rowe C, Ujiie K, Kirkpatrick J, Regalla C et al. 2013. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science 342:61631208–11
    [Google Scholar]
  7. Dettmer J, Hawkins R, Cummins PR, Hossen J, Sambridge M et al. 2016. Tsunami source uncertainty estimation: the 2011 Japan tsunami. J. Geophys. Res. Solid Earth 121:4483–505
    [Google Scholar]
  8. Fujie G, Kasahara J, Hino R, Sato T, Shinohara M, Suyehiro K 2002. A significant relation between seismic activities and reflection intensities in the Japan Trench region. Geophys. Res. Lett. 29:74–14
    [Google Scholar]
  9. Fujie G, Kodaira S, Kaiho Y, Yamamoto Y, Takahashi T et al. 2018. Controlling factor of incoming plate hydration at the north-western Pacific margin. Nat. Commun. 9:13844
    [Google Scholar]
  10. Fujie G, Kodaira S, Nakamura Y, Morgan J, Dannowski A et al. 2020. Spatial variations of incoming sediments at the northeastern Japan arc and their implications for megathrust earthquakes. Geology 48:In press. https://doi.org/10.1130/G46757.1
    [Google Scholar]
  11. Fujie G, Kodaira S, Sato T, Takahashi T 2016. Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench. Geophys. Res. Lett. 43:2666–73
    [Google Scholar]
  12. Fujie G, Kodaira S, Yamashita M, Sat T, Takahashi T, Takahashi N 2013. Systematic changes in the incoming plate structure at the Kuril trench. Geophys. Res. Lett. 40:188–93
    [Google Scholar]
  13. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:815–20
    [Google Scholar]
  14. Fujiwara T, dos Santos Ferreira C, Bachmann AK, Strasser M, Wefer G et al. 2017. Seafloor displacement after the 2011 Tohoku-oki earthquake in the northern Japan Trench examined by repeated bathymetric surveys. Geophys. Res. Lett. 44:11833–39
    [Google Scholar]
  15. Fujiwara T, Hirano N, Abe N, Takizawa K 2007. Subsurface structure of the “petit-spot” volcanoes on the northwestern Pacific Plate. Geophys. Res. Lett. 34:L13305
    [Google Scholar]
  16. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y 2011. The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science 334:60601240
    [Google Scholar]
  17. Fulton PM, Brodsky EE. 2016. In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone. Geology 44:10851–54
    [Google Scholar]
  18. Fulton PM, Brodsky EE, Kano Y, Mori J, Chester F et al. 2013. Low coseismic friction on the Tohoku-oki fault determined from temperature measurements. Science 342:61631214–17
    [Google Scholar]
  19. Fulton PM, Brodsky EE, Mori J, Chester F 2019. Tōhoku-oki fault zone frictional heat measured: during IODP Expeditions 343 and 343T. Oceanography 32:1102–4
    [Google Scholar]
  20. Goldfinger C, Nelson CH, Johnson JE 2003. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems. Ann. Geophys. 46:1169–94
    [Google Scholar]
  21. Goldfinger C, Patton J, Van Daele M, Moernaut J, Nelson CH et al. 2014. Can turbidites be used to reconstruct a paleoearthquake record for the central Sumatra margin. ? Geology 42:e344
    [Google Scholar]
  22. Hayes GP. 2011. Rapid source characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:4
    [Google Scholar]
  23. Hirano N, Takahashi E, Yamamoto J, Abe N, Ingle SP et al. 2006. Volcanism in response to plate flexure. Science 313:57921426–28
    [Google Scholar]
  24. Hossen MJ, Cummins PR, Roberts SG, Allgeyer S 2015. Time reversal imaging of the tsunami source. Pure Appl. Geophys. 172:969–84
    [Google Scholar]
  25. Hydrogr. Oceanogr. Dep., Jpn. Coast Guard, JAMSTEC 2011. [Compilation of Tohoku-oki bathymetric data before the 2011 Tohoku-oki earthquake]. Seismol. Soc. Jpn. News Lett 23:235–36 In Japanese )
    [Google Scholar]
  26. Ide S, Baltay A, Beroza GC 2011. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-oki earthquake. Science 332:1426–29
    [Google Scholar]
  27. Iinuma T, Hino R, Kido M, Inazu D, Osada Y et al. 2012. Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res. 117:B7B07409
    [Google Scholar]
  28. Ikari MJ, Kameda J, Saffer DM, Kopf AJ 2015. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 412:35–41
    [Google Scholar]
  29. Ikehara K, Itaki T, TuZino T, Hoyanagi K 2014. Deep-sea turbidite evidence on the recurrence of large earthquakes off Shakotan Peninsula, northeastern Japan Sea. Submarine Mass Movements and Their Consequences S Krastel 639–47 Dordrecht, Neth.: Springer
    [Google Scholar]
  30. Ikehara K, Kanamatsu T, Nagahashi Y, Strasser M, Fink H et al. 2016. Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments in the Japan Trench over the past 1,500 years. Earth Planet. Sci. Lett. 445:48–56
    [Google Scholar]
  31. Ikehara K, Usami K, Kanamatsu T, Arai K, Yamaguchi A, Fukuchi R 2018. Spatial variability in sediment lithology and sedimentary processes along the Japan Trench: use of deep-sea turbidite records to reconstruct past large earthquakes. Geol. Soc. Lond. Spec. Publ. 456:175–89
    [Google Scholar]
  32. Ito A, Fujie G, Miura S, Kodaira S, Kaneda Y, Hino R 2005. Bending of the subducting oceanic plate and its implication for rupture propagation of large interplate earthquakes off Miyagi, Japan, in the Japan Trench subduction zone. Geophys. Res. Lett. 32:5L05310
    [Google Scholar]
  33. Ito A, Fujie G, Tsuru T, Kodaira S, Nakanishi A, Kaneda Y 2004. Fault plane geometry in the source region of the 1994 Sanriku-oki earthquake. Earth Planet. Sci. Lett. 223:1–2163–75
    [Google Scholar]
  34. Ito Y, Tsuji T, Osada Y, Kido M, Inazu D et al. 2011. Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38:7L00G05
    [Google Scholar]
  35. JAMSTEC (Jpn. Agency Mar.-Earth Sci. Technol.) 2015. Natsushima Cruise Report NT15-07 Kanagawa, Jpn: JAMSTEC
    [Google Scholar]
  36. Jolivet L, Tamaki K. 1992. Neogene kinematics in the Japan region and volcanic activity of the northeast Japan arc. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 127/128 K Tamaki, K Suyehiro, J Allan, M McWilliams et al.1311–31 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  37. Kameda J, Shimizu M, Ujiie K, Hirose T, Ikari M et al. 2015. Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology 43:2155–58
    [Google Scholar]
  38. Kawamura K, Sasaki T, Kanamatsu T, Sakaguchi A, Ogawa Y 2012. Large submarine landslides in the Japan Trench: a new scenario for additional tsunami generation. Geophys. Res. Lett. 39:5L05308
    [Google Scholar]
  39. Kido M, Osada Y, Fujimoto H, Hino R, Ito Y 2011. Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38:24L24303
    [Google Scholar]
  40. Kirkpatrick JD, Rowe CD, Ujiie K, Moore JC, Regalla C et al. 2015. Structure and lithology of the Japan Trench subduction plate boundary fault. Tectonics 34:153–69
    [Google Scholar]
  41. Kodaira S, Nakamura Y, Fujie G, Miura S 2019. Marine active-source seismic studies in the Japan Trench: a seismogenic zone in an ocean-continent collision zone. Acta Geol. Sinica 93:94–95
    [Google Scholar]
  42. Kodaira S, Nakamura Y, Yamamoto Y, Obana K, Fujie G et al. 2017. Depth-varying structural characters in the rupture zone of the 2011 Tohoku-oki earthquake. Geosphere 13:51408–24
    [Google Scholar]
  43. Kodaira S, No T, Nakamura Y, Fujiwara T, Kaiho Y et al. 2012. Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat. Geosci. 5:646–50
    [Google Scholar]
  44. Koketsu K, Yokota Y, Nishimura N, Yagi Y, Miyazaki S et al. 2011. A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett. 310:3–4480–87
    [Google Scholar]
  45. Kubo H, Kakehi Y. 2013. Source process of the 2011 Tohoku earthquake estimated from the joint inversion of teleseismic body waves and geodetic data including seafloor observation data: source model with enhanced reliability by using objectively determined inversion settings. Bull. Seismol. Soc. Am. 103:1195–220
    [Google Scholar]
  46. Lay T. 2018. A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophysics 733:4–36
    [Google Scholar]
  47. Lay T, Ammon CJ, Kanamori H, Xue L, Kim MJ 2011. Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:732
    [Google Scholar]
  48. Lay T, Kanamori H. 2011. Insights from the great 2011 Japan earthquake. Phys. Today 64:1233–39
    [Google Scholar]
  49. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN et al. 2005. The great Sumatra-Andaman earthquake of 26 December 2004. Science 308:57251127–33
    [Google Scholar]
  50. Lotto GC, Dunham EM, Jeppson TN, Tobin HJ 2017. The effect of compliant prisms on subduction zone earthquakes and tsunamis. Earth Planet. Sci. Lett. 458:213–22
    [Google Scholar]
  51. Melgar D, Bock Y. 2015. Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. J. Geophys. Res. Solid Earth 120:3324–492
    [Google Scholar]
  52. Meng L, Inbal A, Ampuero JP 2011. A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L00G07
    [Google Scholar]
  53. Miura S, Takahashi N, Nakanishi A, Ito A, Kodaira S et al. 2001. Seismic velocity structure off Miyagi fore-arc region, Japan Trench, using ocean bottom seismographic data. Front. Res. Earth Evol. 1:337–40
    [Google Scholar]
  54. Miura S, Takahashi N, Nakanishi A, Tsuru T, Kodaira S, Kaneda Y 2005. Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics 407:3–4165–88
    [Google Scholar]
  55. Mochizuki K, Yamada T, Shinohara M, Yamanaka Y, Kanazawa T 2008. Weak interplate coupling by seamounts and repeating M ∼ 7 earthquakes. Science 321:58931194–97
    [Google Scholar]
  56. Moore JC, Plank TA, Chester FM, Polissar PJ, Savage HM 2015. Sediment provenance and controls on slip propagation: lessons learned from the 2011 Tohoku and other great earthquakes of the subducting northwest Pacific plate. Geosphere 11:3533–41
    [Google Scholar]
  57. Mori J, Chester FM, Brodsky EE, Kodaira S 2014. Investigation of the huge tsunami from the 2011 Tōhoku-oki, Japan, earthquake using ocean floor boreholes to the fault zone. Oceanography 27:2132–37
    [Google Scholar]
  58. Nakamura Y, Kodaira S, Cook BJ, Jeppson T, Kasaya T et al. 2014. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low V p, high V p/V s in the transparent frontal prism. Earth Planets Space 66:1121
    [Google Scholar]
  59. Nakamura Y, Kodaira S, Miura S, Regalla C, Takahashi N 2013. High-resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan. Geophys. Res. Lett. 40:91713–18
    [Google Scholar]
  60. Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF et al. 2003. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–63
    [Google Scholar]
  61. Noguchi T, Tanikawa W, Hirose T, Lin W, Kawagucci S et al. 2012. Dynamic process of turbidity generation triggered by the 2011 Tohoku-Oki earthquake. Geochem. Geophys. Geosyst. 13:Q11003
    [Google Scholar]
  62. Oguri K, Furushima Y, Toyofuku T, Kasaya T, Wakita M et al. 2016. Long-term monitoring of bottom environments of the continental slope off Otsuchi Bay, northeastern Japan. J. Oceanogr. 72:151–66
    [Google Scholar]
  63. Ohira A, Kodaira S, Fujie G, No T, Nakamura Y et al. 2018. Seismic structure of the oceanic crust around petit-spot volcanoes in the outer-rise region of the Japan Trench. Geophys. Res. Lett. 45:2011123–29
    [Google Scholar]
  64. Ozawa S, Nishimura T, Munekane H, Suito H, Kobayashi T et al. 2012. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J. Geophys. Res. 117:B7B07404
    [Google Scholar]
  65. Park JO, Tsuru T, Kodaira S, Cummins PR, Kaneda Y 2002. Splay fault branching along the Nankai subduction zone. Science 297:55841157–60
    [Google Scholar]
  66. Patton JR, Goldfinger C, Morey AE, Romos C, Black B, Djadjadhardia YU 2013. Seismoturbidite record as preserved at core sites at the Cascadia and Sumatra–Andaman subduction zones. Nat. Hazards Earth Syst. Sci. 13:833–67
    [Google Scholar]
  67. Pouderoux H, Proust JN, Lamarche G 2014. Submarine paleoseismology of the northern Hikurangi subduction margin of New Zealand as deduced from turbidite record since 16 ka. Quat. Sci. Rev. 84:116–31
    [Google Scholar]
  68. Pytte AM, Reynolds RC. 1989. The thermal transformation of smectite to illite. Thermal History of Sedimentary Basins ND Naeser, TH McCulloh 133–40 New York: Springer
    [Google Scholar]
  69. Rabinowitz HS, Savage HM, Plank T, Polissar PJ, Kirkpatrick JD, Rowe CD 2015. Multiple major faults at the Japan Trench: chemostratigraphy of the plate boundary at IODP Exp. 343: JFAST. Earth Planet. Sci. Lett. 423:57–66
    [Google Scholar]
  70. Romano F, Piatanesi A, Lorito S, D'Agostino N, Hirata K et al. 2012. Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake. Sci. Rep. 2:385
    [Google Scholar]
  71. Saito T, Ito Y, Inazu D, Hino R 2011. Tsunami source of the 2011 Tohoku-oki earthquake, Japan: inversion analysis based on dispersive tsunami simulations. Geophys. Res. Lett. 38:L00G19
    [Google Scholar]
  72. Satake K, Fujii Y, Harada T, Namegaya Y 2013. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull. Seismol. Soc. Am. 103:2B1473–92
    [Google Scholar]
  73. Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M et al. 2011. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science 332:1395
    [Google Scholar]
  74. Sawai Y, Namegaya Y, Okamura Y, Satake K, Shishikura M 2012. Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys. Res. Lett. 39:L21309
    [Google Scholar]
  75. Shao G, Li X, Ji C, Maeda T 2011. Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space 63:559–64
    [Google Scholar]
  76. Shipboard Sci. Party 1980. Site 436, Japan Trench outer rise, Leg 56. Initial Reports of the Deep Sea Drilling Project, 56/57, Pt 1 Shipboard Sci. Party 399–446 Washington, DC: US Govt. Print. Off.
    [Google Scholar]
  77. Shishikura M. 2007. Age and distribution of tsunami deposit in the Ishinomaki Plain, northeastern Japan. Annu. Rep. Act. Fault Paleoearthq. Res. 7:31–46
    [Google Scholar]
  78. Strasser M, Kölling M, Ferreira CDS, Fink HG, Fujiwara T et al. 2013. A slump in the trench: tracking the impact of the 2011 Tohoku-Oki earthquake. Geology 41:8935–38
    [Google Scholar]
  79. Sun T, Wang K, Fujiwara T, Kodaira S, He J 2017. Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nat. Commun. 8:14044
    [Google Scholar]
  80. Tajima F, Mori J, Kennett BL 2013. A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): large-scale rupture across heterogeneous plate coupling. Tectonophysics 586:15–34
    [Google Scholar]
  81. Takahashi N, Kodaira S, Tsuru T, Park JO, Kaneda Y et al. 2000. Detailed plate boundary structure off northeast Japan coast. Geophys. Res. Lett. 27:131977–80
    [Google Scholar]
  82. Takahashi N, Kodaira S, Tsuru T, Park JO, Kaneda Y et al. 2004. Seismic structure and seismogenesis off Sanriku region, northeastern Japan. Geophys. J. Int. 159:1129–45
    [Google Scholar]
  83. Tanikawa W, Hirose T, Mukoyoshi H, Tadai O, Lin W 2013. Fluid transport properties in sediments and their role in large slip near the surface of the plate boundary fault in the Japan Trench. Earth Planet. Sci. Lett. 382:150–60
    [Google Scholar]
  84. Tanioka Y, Seno T. 2001. Sediment effect on tsunami generation of 1896 Sanriku tsunami earthquake. Geophys. Res. Lett. 28:173389–92
    [Google Scholar]
  85. Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T et al. 2014. Did submarine landslide contribute to the 2011 Tohoku tsunami. ? Mar. Geol. 357:344–61
    [Google Scholar]
  86. Tobin HJ, Kimura G, Kodaira S 2019. Processes governing giant subduction earthquakes. Oceanography 32:180–93
    [Google Scholar]
  87. Tomita F, Kido M, Ohta Y, Iinuma T, Hino R 2017. Along-trench variation in seafloor displacements after the 2011 Tohoku earthquake. Sci. Adv. 3:7e1700113
    [Google Scholar]
  88. Toyofuku T, Duros P, Fontanier C, Mamo B, Bichon S et al. 2014. Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tohoku-Oki tsunami. Sci. Rep. 4:7517
    [Google Scholar]
  89. Tsuji T, Ito Y, Kido M, Osada Y, Fujimoto H 2011. Potential tsunamigenic faults of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:758
    [Google Scholar]
  90. Tsuru T, Park JO, Miura S, Kodaira S, Kido Y, Hayashi T 2002. Along-arc structural variation of the plate boundary at the Japan Trench margin: implication of interplate coupling. J. Geophys. Res. 107:B122357
    [Google Scholar]
  91. Tsuru T, Park JO, Takahashi N, Kodaira S, Kido Y et al. 2000. Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. J. Geophys. Res. 105:B716403–13
    [Google Scholar]
  92. Ujiie K, Tanaka H, Saito T, Tsutsumi A, Mori JJ et al. 2013. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science 342:61631211–14
    [Google Scholar]
  93. Ujiie K, Tsutsumi A. 2010. High-velocity frictional properties of clay-rich fault gouge in a megasplay fault zone, Nankai subduction zone. Geophys. Res. Lett. 37:24L24310
    [Google Scholar]
  94. Usami K, Ikehara K, Jenkins RG, Ashi J 2018. Benthic foraminiferal evidence of deep-sea sediment transport by the 2011 Tohoku-oki earthquake and tsunami. Mar. Geol. 384:214–24
    [Google Scholar]
  95. von Huene R, Culotta R 1989. Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160:75–90
    [Google Scholar]
  96. von Huene R, Klaeschen D, Cropp B, Miller J 1994. Tectonic structure across the accretionary and erosional parts of the Japan Trench margin. J. Geophys. Res. 99:B1122349–61
    [Google Scholar]
  97. von Huene R, Lallemand S 1990. Tectonic erosion along the Japan and Peru convergent margins. Geol. Soc. Am. Bull. 102:704–20
    [Google Scholar]
  98. Yamazaki Y, Cheung KF, Lay T 2017. A self-consistent fault slip model for the 2011 Tohoku earthquake and tsunami. J. Geophys. Res. Solid Earth 123:21435–58
    [Google Scholar]
  99. Yue H, Lay T. 2011. Inversion of high-rate (1-sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophys. Res. Lett. 38:L00G09
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-055216
Loading
/content/journals/10.1146/annurev-earth-071719-055216
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error