1932

Abstract

Groundwater is a crucial resource for current and future generations, but it is not being sustainably used in many parts of the world. The objective of this review is to provide a clear portrait of global-scale groundwater sustainability, systems, and resources in the Anthropocene to inspire a pivot toward more sustainable pathways of groundwater use. We examine groundwater from three different but related perspectives of sustainability science, natural resource governance and management, and Earth System science. An Earth System approach highlights the connections between groundwater and the other parts of the system and how these connections are impacting, or are impacted by, groundwater pumping. Groundwater is the largest store of unfrozen freshwater on Earth and is heterogeneously connected to many Earth System processes on different timescales. We propose a definition of groundwater sustainability that has a direct link with observable data, governance, and management as well as the crucial functions and services of groundwater.

  • ▪   Groundwater is depleted or contaminated in some regions; it is ubiquitously distributed, which, importantly, makes it broadly accessible but also slow and invisible and therefore challenging to govern and manage.
  • ▪   Regional differences in priorities, hydrology, politics, culture, and economic contexts mean that different governance and management tools are important, but a global perspective can support higher level international policies in an increasingly globalized world that require broader analysis of interconnections and knowledge transfer between regions.
  • ▪   A coherent, overarching framework of groundwater sustainability is more important for groundwater governance and management than the concepts of safe yield, renewability, depletion, or stress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-055251
2020-05-30
2024-07-25
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-055251.html?itemId=/content/journals/10.1146/annurev-earth-071719-055251&mimeType=html&fmt=ahah

Literature Cited

  1. Aeschbach-Hertig W, Gleeson T. 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5:12853–61
    [Google Scholar]
  2. Alley WM, Clark BR, Ely DM, Faunt CC 2018. Groundwater development stress: global-scale indices compared to regional modeling. Groundwater 56:2266–75
    [Google Scholar]
  3. Alley WM, Healy RW, LaBaugh JW, Reilly TE 2002. Flow and storage in groundwater systems. Science 296:55751985–90
    [Google Scholar]
  4. Alley WM, Leake SA. 2004. The journey from safe yield to sustainability. Ground Water 42:112–16
    [Google Scholar]
  5. Anderson SP, von Blanckenburg F, White AF 2007. Physical and chemical controls on the critical zone. Elements 3:5315–19
    [Google Scholar]
  6. Anyah RO, Weaver CP, Miguez-Macho G, Fan Y, Robock A 2008. Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J. Geophys. Res. 113:D07103
    [Google Scholar]
  7. Araral E, Yu DJ. 2013. Comparative water law, policies, and administration in Asia: evidence from 17 countries. Water Resourc. Res. 49:95307–16
    [Google Scholar]
  8. Arthington AH, Bhaduri A, Bunn SE, Jackson SE, Tharme RE et al. 2018. The Brisbane Declaration and Global Action Agenda on Environmental Flows 2018. Front. Environ. Sci. 6:45
    [Google Scholar]
  9. Ataie-Ashtiani B, Werner AD, Simmons CT, Morgan LK, Lu C 2013. How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise. ? Hydrogeol. J. 21:71673–77
    [Google Scholar]
  10. Barlow P, Reichard E. 2010. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 18:1247–60
    [Google Scholar]
  11. Barlow PM, Leake SA. 2012. Streamflow Depletion by Wells: Understanding and Managing the Effects of Groundwater Pumping on Streamflow Reston, VA: US Geol. Survey
    [Google Scholar]
  12. Batelaan O, De Smedt F, Triest L 2003. Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J. Hydrol. 275:1–286–108
    [Google Scholar]
  13. Befus KM, Jasechko S, Luijendijk E, Gleeson T, Cardenas MB 2017. The rapid yet uneven turnover of Earth's groundwater. Geophys. Res. Lett. 44:115511–20
    [Google Scholar]
  14. Bennett EM, Solan M, Biggs R, McPhearson T, Norström AV et al. 2016. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14:8441–48
    [Google Scholar]
  15. Bethke CM, Johnson TM. 2008. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36:121–52
    [Google Scholar]
  16. Bethke CM, Marshak S. 1990. Brine migrations across North America—the plate tectonics of groundwater. Annu. Rev. Earth Planet. Sci. 18:1287–315
    [Google Scholar]
  17. Bierkens MF, Wada Y. 2019. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14:6063002
    [Google Scholar]
  18. Bluth GJ, Kump LR. 1994. Lithologic and climatologic controls of river chemistry. Geochim. Cosmochim. Acta 58:102341–59
    [Google Scholar]
  19. Boulton AJ, Hancock PJ. 2006. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 54:2133–44
    [Google Scholar]
  20. Bredehoeft JD. 2002. The water budget myth revisited: why hydrogeologists model. Ground Water 40:4340–45
    [Google Scholar]
  21. Bredehoeft JD, Durbin T. 2009. Ground water development—the time to full capture problem. Ground Water 47:4506–14
    [Google Scholar]
  22. Bresciani E, Gleeson T, Goderniaux P, de Dreuzy JR, Werner AD et al. 2016. Groundwater flow systems theory: research challenges beyond the specified-head top boundary condition. Hydrogeol. J. 24:1087–90
    [Google Scholar]
  23. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:13–33
    [Google Scholar]
  24. Cai X, Wallington K, Shafiee-Jood M, Marston L 2018. Understanding and managing the food-energy-water nexus—opportunities for water resources research. Adv. Water Resour. 111:259–73
    [Google Scholar]
  25. Castilla-Rho JC, Rojas R, Andersen MS, Holley C, Mariethoz G 2017. Social tipping points in global groundwater management. Nat. Hum. Behav. 1:9640
    [Google Scholar]
  26. Climate Bonds Initiative 2018. Water infrastructure criteria under the climate bonds standard Criteria Doc. Water Consortium London, UK: https://www.climatebonds.net/files/files/Climate%20Bonds%20Water%20Infrastructure%20Full%20Criteria.pdf
    [Google Scholar]
  27. Condon LE, Maxwell RM. 2019. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5:6eaav4574
    [Google Scholar]
  28. Counc. Can. Acad 2009. The Sustainable Management of Groundwater in Canada Ottawa, Can: Counc. Can. Acad.
    [Google Scholar]
  29. Custodio E, Andreu-Rodes JM, Aragón R, Estrela T, Ferrer J et al. 2016. Groundwater intensive use and mining in south-eastern peninsular Spain: hydrogeological, economic and social aspects. Sci. Total Environ. 559:302–16
    [Google Scholar]
  30. Cuthbert MO, Gleeson T, Moosdorf N, Befus KM, Schneider A et al. 2019a. Global patterns and dynamics of climate-groundwater interactions. Nat. Clim. Change 9:137–41
    [Google Scholar]
  31. Cuthbert MO, Gleeson T, Reynolds SC, Bennett MR, Newton AC et al. 2017. Modelling the role of groundwater hydro-refugia in East African hominin evolution and dispersal. Nat. Commun. 8:15696
    [Google Scholar]
  32. Cuthbert MO, Taylor RG, Favreau G, Todd MC, Shamsudduha M et al. 2019b. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572:230–34
    [Google Scholar]
  33. CWC (Calif. Water Code) 2014. SGMA California Water Code § 10720–10737.8. California Legislative Information http://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=WAT&division=6.&title=&part=2.74.&chapter=&article
    [Google Scholar]
  34. D'Odorico P, Carr J, Dalin C, Dell'Angelo J, Konar M et al. 2019. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14:5053001
    [Google Scholar]
  35. D'Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D et al. 2018. The global food-energy-water nexus. Rev. Geophys. 56:3456–531
    [Google Scholar]
  36. Dalin C, Taniguchi M, Green TR 2019. Unsustainable groundwater use for global food production and related international trade. Glob. Sustain. 2:e12
    [Google Scholar]
  37. Dalin C, Wada Y, Kastner T, Puma MJ 2017. Groundwater depletion embedded in international food trade. Nature 543:7647700–4
    [Google Scholar]
  38. Danielopol DL, Griebler C, Gunatilaka A, Notenboom J 2003. Present state and future prospects for groundwater ecosystems. Environ. Conserv. 30:2104–30
    [Google Scholar]
  39. de Graaf IEM, Gleeson T, van Beek RLPH, Sutanudjaja EH, Bierkens MFP 2019. Environmental flow limits to global groundwater pumping. Nature 574:777690–94
    [Google Scholar]
  40. de Graaf IEM, van Beek RLPH, Gleeson T, Moosdorf N, Schmitz O et al. 2017. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resourc. 102:53–67
    [Google Scholar]
  41. Dillon P, Stuyfzand P, Grischek T, Lluria M, Pyne RDG et al. 2019. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 27:11–30
    [Google Scholar]
  42. Döll P, Fiedler K. 2008. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12:863–85
    [Google Scholar]
  43. Döll P, Müller SH, Schuh C, Portmann FT, Eicker A 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resourc. Res. 50:75698–720
    [Google Scholar]
  44. Downing RA. 1998. Groundwater: Our Hidden Asset Keyworth, UK: British Geological Survey
    [Google Scholar]
  45. Endo A, Burnett K, Orencio P, Kumazawa T, Wada C et al. 2015. Methods of the water-energy-food nexus. Water 7:105806–30
    [Google Scholar]
  46. EU (Eur. Union) 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy Pub. L. No. 32000L0060, OJ L 327 2000. http://data.europa.eu/eli/dir/2000/60/oj/eng
    [Google Scholar]
  47. Famiglietti JS. 2014. The global groundwater crisis. Nat. Clim. Change 4:11945
    [Google Scholar]
  48. Fan Y. 2015. Groundwater in the Earth's critical zone: relevance to large‐scale patterns and processes. Water Resourc. Res. 51:53052–69
    [Google Scholar]
  49. Ferguson G, Gleeson T. 2012. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2:5342–45
    [Google Scholar]
  50. Ferguson G, McIntosh JC. 2019. Comment on “Groundwater pumping is a significant unrecognized contributor to global anthropogenic element cycles. .” Groundwater 57:182–82
    [Google Scholar]
  51. Ferguson G, McIntosh JC, Grasby SE, Hendry MJ, Jasechko S et al. 2018. The persistence of brines in sedimentary basins. Geophys. Res. Lett. 45:104851–58
    [Google Scholar]
  52. Fetter CW. 2001. Applied Hydrogeology Upper Saddle River, NJ: Prentice-Hall
    [Google Scholar]
  53. Fogg GE, LaBolle EM. 2006. Motivation of synthesis, with an example on groundwater quality sustainability. Water Resour. Res. 42:W03S05
    [Google Scholar]
  54. Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J 2010. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15:420
    [Google Scholar]
  55. Foster S, Chilton J, Nijsten G-J, Richts A 2013. Groundwater—a global focus on the ‘local resource. .’ Curr. Opin. Environ. Sustain. 5:6685–95
    [Google Scholar]
  56. Foster S, MacDonald A. 2014. The ‘water security’ dialogue: why it needs to be better informed about groundwater. Hydrogeol. J. 22:71489–92
    [Google Scholar]
  57. Foster SSD, Chilton PJ. 2003. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. B 358:1957–72
    [Google Scholar]
  58. Foster SSD, Loucks DP. 2006. Non-Renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers Paris: UNESCO
    [Google Scholar]
  59. Garven G, Freeze RA. 1984. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1, mathematical and numerical model. Am. J. Sci. 284:101085–124
    [Google Scholar]
  60. Giordano M. 2009. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resourc. 34:153–78
    [Google Scholar]
  61. Giordano M, Villholth KG. 2007. The Agricultural Groundwater Revolution: Opportunities and Threats to Development, Vol. 3: Cambridge, MA: CABI
    [Google Scholar]
  62. Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y et al. 2012b. Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50:119–26
    [Google Scholar]
  63. Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB 2016. The global volume and distribution of modern groundwater. Nat. Geosci. 9:2161–67
    [Google Scholar]
  64. Gleeson T, Marklund L, Smith L, Manning AH 2011. Classifying the water table at regional to continental scales. Geophys. Res. Lett. 38:5L05401
    [Google Scholar]
  65. Gleeson T, Wang-Erlandsson L, Porkka M, Zipper SC, Jaramillo F et al. 2020. Illuminating water cycle modifications and Earth System resilience in the Anthropocene. Water Resourc. Res. 56:e24390
    [Google Scholar]
  66. Gleeson T, Richter B. 2018. How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River Res. Appl. 34:183–92
    [Google Scholar]
  67. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH 2012a. Water balance of global aquifers revealed by groundwater footprint. Nature 488:7410197–200
    [Google Scholar]
  68. Gleeson T, Wagener T, Döll P, Bierkens M, Wada Y et al. 2019. Groundwater representation in continental to global hydrologic models: a call for open and holistic evaluation, conceptualization and classification. EarthArXiv. https://doi.org/10.31223/osf.io/zxyku
    [Crossref] [Google Scholar]
  69. Goff M, Crow B. 2014. What is water equity? The unfortunate consequences of a global focus on ‘drinking water. .’ Water Int 39:2159–71
    [Google Scholar]
  70. Grasby SE, Betcher RN. 2002. Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Can. J. Earth Sci. 39:71053–63
    [Google Scholar]
  71. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM et al. 2011. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405:3–4532–60
    [Google Scholar]
  72. Griebler C, Avramov M. 2015. Groundwater ecosystem services: a review. Freshw. Sci. 34:1355–67
    [Google Scholar]
  73. Guppy L, Uyttendaele P, Villholth KG, Smakhtin V 2018. Groundwater and Sustainable Development Goals: Analysis of Interlinkages Hamilton, Can.: UNU-INWEH
    [Google Scholar]
  74. Gupta J, Pahl-Wostl C. 2013. Global water governance in the context of global and multilevel governance: its need, form, and challenges. Ecol. Soc. 18:453
    [Google Scholar]
  75. Haitjema HM, Mitchell-Bruker S. 2005. Are water tables a subdued replica of the topography. ? Ground Water 43:781–86
    [Google Scholar]
  76. Hanor JS. 1994. Origin of saline fluids in sedimentary basins. Geol. Soc. Lond. Spec. Publ. 78:1151–74
    [Google Scholar]
  77. Hardin G. 1968. The tragedy of the commons. Science 162:38591243–48
    [Google Scholar]
  78. Hayashi M, Rosenberry DO. 2002. Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40:3309–16
    [Google Scholar]
  79. Healy RW. 2010. Estimating Groundwater Recharge New York: Cambridge Univ. Press
    [Google Scholar]
  80. Heistermann M. 2017. HESS opinions: a planetary boundary on freshwater use is misleading. Hydrol. Earth Syst. Sci. 21:73455–61
    [Google Scholar]
  81. Hindle AD. 1997. Petroleum migration pathways and charge concentration: a three-dimensional model. AAPG Bull 81:91451–81
    [Google Scholar]
  82. Hiscock KM. 2005. Hydrogeology: Principles and Practice Malden, MA: Blackwell
    [Google Scholar]
  83. Hiscock KM, Bense VF. 2014. Hydrogeology: Principles and Practice Chichester, UK: Blackwell. , 2nd ed..
    [Google Scholar]
  84. Hiscock KM, Rivett MO, Davison RM 2002. Sustainable groundwater development. Geol. Soc. Lond. Spec. Publ. 193:1–14
    [Google Scholar]
  85. Hoekstra AY. 2017. Global food and trade dimensions of groundwater governance. Advances in Groundwater Governance KG Villholth, E López-Gunn, JAM Van Der Gun, K Conti, A Garrido 353–66 Boca Raton, FL: CRC
    [Google Scholar]
  86. Holland G, Lollar BS, Li L, Lacrampe-Couloume G, Slater GF, Ballentine CJ 2013. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497:7449357
    [Google Scholar]
  87. Holley C, Sinclair D. 2013. Deliberative participation, environmental law and collaborative governance: insights from surface and groundwater studies. Environ. Plan. Law J. 30:132–55
    [Google Scholar]
  88. Hornberger G, Perrone D. 2019. Water Resources: Science and Society Baltimore, MD: Johns Hopkins Univ. Press. , 1st ed..
    [Google Scholar]
  89. Hu C, Muller-Karger FE, Swarzenski PW 2006. Hurricanes, submarine groundwater discharge, and Florida's red tides. Geophys. Res. Lett. 33:11L11601
    [Google Scholar]
  90. Hulme P, Fletcher S, Brown L 2002. Incorporation of groundwater modelling in the sustainable management of groundwater resources. Geol. Soc. Lond. Spec. Publ. 193:183–90
    [Google Scholar]
  91. Ingebritsen SE, Manning CE. 1999. Geological implications of a permeability-depth curve for the continental crust. Geology 27:121107–10
    [Google Scholar]
  92. Jin L, Andrews DM, Holmes GH, Lin H, Brantley SL 2011. Opening the “black box”: Water chemistry reveals hydrological controls on weathering in the Susquehanna Shale Hills Critical Zone Observatory. Vadose Zone J 10:3928–42
    [Google Scholar]
  93. Johannes RE. 1980. Ecological significance of the submarine discharge of groundwater. Mar. Ecol. Prog. Ser. 3:4365–73
    [Google Scholar]
  94. Kahil T, Parkinson S, Satoh Y, Greve P, Burek P et al. 2018. A continental-scale hydroeconomic model for integrating water-energy-land nexus solutions. Water Resourc. Res. 54:107511–33
    [Google Scholar]
  95. Kalf FRP, Woolley DR. 2005. Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol. J. 13:1295–312
    [Google Scholar]
  96. Kazemi G, Lehr J, Perrochet P 2006. Groundwater Age Hoboken, NJ: Wiley-Interscience
    [Google Scholar]
  97. Kemper KE. 2007. Instruments and institutions for groundwater management. The Agricultural Groundwater Revolution: Opportunities and Threats to Development M Giordano, KG Villholth pp. 153–72 Wallingford, UK/Cambridge, MA: CABI
    [Google Scholar]
  98. Keranen KM, Weingarten M. 2018. Induced seismicity. Annu. Rev. Earth Planet. Sci. 46:149–74
    [Google Scholar]
  99. Keune J, Sulis M, Kollet S, Siebert S, Wada Y 2018. Human water use impacts on the strength of the continental sink for atmospheric water. Geophys. Res. Lett. 45:94068–76
    [Google Scholar]
  100. Kløve B, Ala-Aho P, Bertrand G, Boukalova Z, Ertürk A et al. 2011. Groundwater dependent ecosystems. Part I: hydroecological status and trends. Environ. Sci. Policy 14:7770–81
    [Google Scholar]
  101. Konikow LF. 2013. Groundwater Depletion in the United States (1900–2008) Reston, VA: US Geol. Survey
    [Google Scholar]
  102. Konikow LF, Kendy E. 2005. Groundwater depletion: a global problem. Hydrogeol. J. 13:1317–20
    [Google Scholar]
  103. Konikow LF, Leake SA. 2014. Depletion and capture: revisiting “the source of water derived from wells. .” Groundwater 52:S1100–11
    [Google Scholar]
  104. Krakauer NY, Li H, Fan Y 2014. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9:3034003
    [Google Scholar]
  105. Kresic N. 2009. Groundwater Resources: Sustainability, Management and Restoration New York: McGraw-Hill
    [Google Scholar]
  106. Lall U, Josset L, Russo T 2020. A snapshot of the world's groundwater: change and the unknown. Annu. Rev. Environ. Resour45: In press. https://doi.org/10.1146/annurev-environ-102017-025800
    [Crossref] [Google Scholar]
  107. Lautze J, de Silva S, Giordano M, Sanford L 2011. Putting the cart before the horse: water governance and IWRM. Nat. Resourc. Forum 35:11–8
    [Google Scholar]
  108. Lee CH. 1915. Determination of safe yield of underground reservoirs of the closed basin type. Trans. Am. Soc. Civil Eng. 78:148–251
    [Google Scholar]
  109. Lee Y-W, Kim G. 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci. 71:1–2309–17
    [Google Scholar]
  110. Lemieux JM, Sudicky EA, Peltier WR, Tarasov L 2008. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J. Geophys. Res. 113:F1F01011
    [Google Scholar]
  111. Lerner DN. 1997. Too much or too little: recharge in urban areas. Groundwater in the Urban Environment J Chilton 41–7 Brookfield, VT: Balkema
    [Google Scholar]
  112. Loaiciga HA, Valdes JB, Vogel R, Garvey J, Schwarz H 1996. Global warming and the hydrologic cycle. J. Hydrol. 174:183–127
    [Google Scholar]
  113. Lohman SW. 1972. Definitions of Selected Ground-Water Terms, Revisions and Conceptual Refinements Washington, DC: US Geol. Survey
    [Google Scholar]
  114. Lopez-Gunn E, Jarvis WT. 2009. Groundwater governance and the Law of the Hidden Sea. Water Policy 11:6742–62
    [Google Scholar]
  115. Lu F, Ocampo-Raeder C, Crow B 2014. Equitable water governance: future directions in the understanding and analysis of water inequities in the global South. Water Int 39:2129–42
    [Google Scholar]
  116. Luijendijk E, Gleeson T, Moosdorf N 2019. The flow of fresh groundwater and solutes to the world's oceans and coastal ecosystems. Nat. Commun. EarthArXiv. https://eartharxiv.org/sw8r4
    [Google Scholar]
  117. Machel H-G, Mountjoy EW. 1986. Chemistry and environments of dolomitization—a reappraisal. Earth-Sci. Rev. 23:3175–222
    [Google Scholar]
  118. Madani K, Dinar A. 2012. Non-cooperative institutions for sustainable common pool resource management: application to groundwater. Ecol. Econ. 74:034–45
    [Google Scholar]
  119. Margat J, Foster S, Droubi A 2006. Concept and importance of non-renewable resources. Non-Renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers S Foster, DP Loucks 13–24 Paris: UNESCO
    [Google Scholar]
  120. Margat J, Van der Gun J 2013. Groundwater Around the World: A Geographic Synopsis London: CRC
    [Google Scholar]
  121. Martini AM, Walter LM, Budai JM, Ku TC, Kaiser CJ, Schoell M 1998. Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochim. Cosmochim. Acta 62:101699–720
    [Google Scholar]
  122. Maxwell RM, Condon LE. 2016. Connections between groundwater flow and transpiration partitioning. Science 353:6297377–80
    [Google Scholar]
  123. Maxwell RM, Kollet SJ. 2008. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1:10665–69
    [Google Scholar]
  124. Mays LW. 2013. Groundwater resources sustainability: past, present, and future. Water Resourc. Manag. 27:134409–24
    [Google Scholar]
  125. McIntosh JC, Ferguson G. 2019. Conventional oil—the forgotten part of the water-energy nexus. Groundwater 57:669–77
    [Google Scholar]
  126. McIntosh JC, Schaumberg C, Perdrial J, Harpold A, Vázquez-Ortega A et al. 2017. Geochemical evolution of the Critical Zone across variable time scales informs concentration-discharge relationships: Jemez River Basin Critical Zone Observatory. Water Resourc. Res. 53:54169–96
    [Google Scholar]
  127. McIntosh JC, Schlegel ME, Person M 2012. Glacial impacts on hydrologic processes in sedimentary basins: evidence from natural tracer studies. Geofluids 12:17–21
    [Google Scholar]
  128. Megdal SB. 2018. Invisible water: the importance of good groundwater governance and management. npj Clean Water 1:115
    [Google Scholar]
  129. Megdal SB, Gerlak AK, Varady RG, Huang L-Y 2015. Groundwater governance in the United States: common priorities and challenges. Groundwater 53:5677–84
    [Google Scholar]
  130. Meinzer OE. 1923. Outline of Ground-Water Hydrology, with Definitions Washington, DC: US Geol. Survey
    [Google Scholar]
  131. Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H et al. 2016. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534:124–38
    [Google Scholar]
  132. Michael HA, Post VEA, Wilson AM, Werner AD 2018. Science, society, and the coastal groundwater squeeze. Rev. Geophys. 53:2610–17
    [Google Scholar]
  133. Michael HA, Russoniello CJ, Byron LA 2013. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Resourc. Res. 49:42228–40
    [Google Scholar]
  134. Miller GT, Spoolman S. 2011. Living in the Environment: Principles, Connections, and Solutions Boston, MA: Nelson Education
    [Google Scholar]
  135. Miro M, Famiglietti J. 2018. Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California's Central Valley. Remote Sensing 10:1143
    [Google Scholar]
  136. Moench M. 2004. Groundwater: the challenge of monitoring and management. The World's Water 2004–2005: The Biennial Report on Freshwater Resources PH Gleick, NL Cain 79–100 Washington, DC: Island Press
    [Google Scholar]
  137. Moore WS. 2010. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2:59–88
    [Google Scholar]
  138. Moosdorf N, Oehler T. 2017. Societal use of fresh submarine groundwater discharge: an overlooked water resource. Earth-Sci. Rev. 171:338–48
    [Google Scholar]
  139. Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow RC, Klinck BA 2003. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management Nairobi, Kenya: UNEP
    [Google Scholar]
  140. Mukherjee A, Bhanja SN, Wada Y 2018. Groundwater depletion causing reduction of baseflow triggering Ganges River summer drying. Sci. Rep. 8:112049
    [Google Scholar]
  141. Mukherji A, Shah T. 2005. Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeol. J. 13:1328–45
    [Google Scholar]
  142. Nelson RL, Perrone D. 2016. Local groundwater withdrawal permitting laws in the south‐western US: California in comparative context. Groundwater 54:6747–53
    [Google Scholar]
  143. Neuzil CE. 1994. How permeable are clays and shales. ? Water Resour. Res. 30:145–50
    [Google Scholar]
  144. Newman C, Howitt R, MacEwan D 2018. How are Western water districts managing groundwater basins. ? Calif. Agric. 72:128–37
    [Google Scholar]
  145. O'Hare M, Fairchild D, Hajali P, Canter LW 1986. Artificial Recharge of Ground Water: Status and Potential in the Contiguous United States Chelsea, MI: Lewis Publishers
    [Google Scholar]
  146. Ostrom E. 1990. Governing the Commons: The Evolution of Institutions for Collective Action Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  147. Ostrom E. 2005. Understanding Institutional Diversity Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  148. Ostrom E. 2007. A diagnostic approach for going beyond panaceas. PNAS 104:3915181–87
    [Google Scholar]
  149. Pahl-Wostl C, Conca K, Kramer A, Maestu J, Schmidt F 2013. Missing links in global water governance: a processes-oriented analysis. Ecol. Soc. 18:233
    [Google Scholar]
  150. Perrone D, Jasechko S. 2017. Dry groundwater wells in the western United States. Environ. Res. Lett. 12:10104002
    [Google Scholar]
  151. Perrone D, Jasechko S. 2019. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2:773–82
    [Google Scholar]
  152. Person M, McIntosh J, Bense V, Remenda VH 2007. Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev. Geophys. 45:3RG3007
    [Google Scholar]
  153. Person MA, Raffensperger JP, Ge S, Garven G 1996. Basin-scale hydrogeologic modeling. Rev. Geophys. 34:161–87
    [Google Scholar]
  154. Phansalkar SJ. 2007. Water, equity and development. Int. J. Rural Manag. 3:11–25
    [Google Scholar]
  155. Phillips FM, Castro MC. 2003. Groundwater dating and residence-time measurements. Treatise Geochem 5:605
    [Google Scholar]
  156. Power G, Brown RS, Imhof JG 1999. Groundwater and fish—insights from northern North America. Hydrol. Process. 13:3401–22
    [Google Scholar]
  157. Raffensperger JP, Garven G. 1995. The formation of unconformity-type uranium ore deposits; 1, coupled groundwater flow and heat transport modeling. Am. J. Sci. 295:5581–636
    [Google Scholar]
  158. Rica M, Petit O, López-Gunn E 2018. Understanding groundwater governance through a social ecological system framework—relevance and limits. Advances in Groundwater Governance KG Villholth, E López-Gunn, JAM Van Der Gun, K Conti, A Garrido 55–72 Boca Raton, FL: CRC
    [Google Scholar]
  159. Richey AS, Thomas BF, Lo M-H, Reager JT, Famiglietti JS et al. 2015. Quantifying renewable groundwater stress with GRACE. Water Resourc. Res. 51:75217–38
    [Google Scholar]
  160. Robinson J. 2004. Squaring the circle? Some thoughts on the idea of sustainable development. Ecol. Econ. 48:4369–84
    [Google Scholar]
  161. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS et al. 2009. A safe operating space for humanity. Nature 461:7263472–75
    [Google Scholar]
  162. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III et al. 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14:2472–75
    [Google Scholar]
  163. Rodell M, Velicogna I, Famiglietti JS 2009. Satellite-based estimates of groundwater depletion in India. Nature 460:7258999–1002
    [Google Scholar]
  164. Rousseau‐Gueutin P, Love AJ, Vasseur G, Robinson NI, Simmons CT, De Marsily G 2013. Time to reach near‐steady state in large aquifers. Water Resourc. Res. 49:106893–908
    [Google Scholar]
  165. Rumsey CA, Miller MP, Schwarz GE, Hirsch RM, Susong DD 2017. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. Hydrol. Process. 31:264705–18
    [Google Scholar]
  166. Sagala JK, Smith ZA. 2008. Comparative groundwater management: findings from an exploratory global survey. Water Int 33:2258–67
    [Google Scholar]
  167. Sahuquillo A, Capilla J, Cortina LM, Vila XS 2005. Groundwater Intensive Use: IAH Selected Papers on Hydrogeology 7: Boca Raton, FL: CRC
    [Google Scholar]
  168. Sawyer AH, David CH, Famiglietti JS 2016. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353:6300705–7
    [Google Scholar]
  169. Scanlon BR, Healy RW, Cook PG 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10:118–39
    [Google Scholar]
  170. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB et al. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20:3335–70
    [Google Scholar]
  171. Scanlon BR, Reedy RC, Male F, Walsh M 2017a. Water issues related to transitioning from conventional to unconventional oil production in the Permian Basin. Environ. Sci. Technol. 51:1810903–12
    [Google Scholar]
  172. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob. Change Biol. 11:101577–93
    [Google Scholar]
  173. Scanlon BR, Ruddell BL, Reed PM, Hook RI, Zheng C et al. 2017b. The food-energy-water nexus: transforming science for society. Water Resourc. Res. 53:53550–56
    [Google Scholar]
  174. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR et al. 2009. Early-warning signals for critical transitions. Nature 461:726053–59
    [Google Scholar]
  175. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W et al. 2012. Anticipating critical transitions. Science 338:6105344–48
    [Google Scholar]
  176. Schmidt SI, Cuthbert MO, Schwientek M 2017. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions. Sci. Total Environ. 592:215–27
    [Google Scholar]
  177. Schwartz FW, Zhang H. 2003. Fundamentals of Ground Water New York: Wiley
    [Google Scholar]
  178. Sen A. 2000. Development as Freedom New York: Anchor Books
    [Google Scholar]
  179. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J et al. 2010. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14:101863–80
    [Google Scholar]
  180. Simkus DN, Slater GF, Lollar BS, Wilkie K, Kieft TL et al. 2016. Variations in microbial carbon sources and cycling in the deep continental subsurface. Geochim. Cosmochim. Acta 173:264–83
    [Google Scholar]
  181. Slomp CP, Van Cappellen P 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol. 295:1–464–86
    [Google Scholar]
  182. Small C, Nicholls RJ. 2003. A global analysis of human settlement in coastal zones. J. Coast. Res. 19:584–99
    [Google Scholar]
  183. Springer A, Stevens L. 2009. Spheres of discharge of springs. Hydrogeol. J. 17:183–93
    [Google Scholar]
  184. Stahl MO. 2019. Groundwater pumping is a significant unrecognized contributor to global anthropogenic element cycles. Groundwater 57:3455–64
    [Google Scholar]
  185. Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C 2015. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev 2:181–98
    [Google Scholar]
  186. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:62231259855
    [Google Scholar]
  187. Steffen W, Rockström J, Richardson K, Lenton TM, Folke C et al. 2018. Trajectories of the Earth System in the Anthropocene. PNAS 115:338252–59
    [Google Scholar]
  188. Steffen W, Sanderson RA, Tyson PD, Jäger J, Matson PA et al. 2006. Global Change and the Earth System: A Planet Under Pressure Berlin: Springer
    [Google Scholar]
  189. Stonestrom DA, Scanlon BR, Zhang L 2018. Introduction to special section on impacts of land use change on water resources. Water Resourc. Res 45:W00A00
    [Google Scholar]
  190. Taylor RG, Scanlon B, Doll P, Rodell M, van Beek R et al. 2013. Ground water and climate change. Nat. Clim. Change 3:4322–29
    [Google Scholar]
  191. Theesfeld I. 2010. Institutional challenges for national groundwater governance: policies and issues. Ground Water 48:1131–42
    [Google Scholar]
  192. Theis CV. 1940. The source of water derived from wells. Civil Eng 10:277–80
    [Google Scholar]
  193. Thomas BF, Famiglietti JS. 2019. Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep. 9:14124
    [Google Scholar]
  194. Thurner S, Hanel R, Klimek P 2018. Introduction to the Theory of Complex Systems Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  195. Todd DK. 1959. Ground Water Hydrology New York: John Wiley
    [Google Scholar]
  196. Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 68:164795–812
    [Google Scholar]
  197. Tóth J. 1999. Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol. J. 7:11–14
    [Google Scholar]
  198. Townend J, Zoback MD. 2000. How faulting keeps the crust strong. Geology 28:5399–402
    [Google Scholar]
  199. Treidel H, Martin-Bordes JL, Gurdak JJ 2011. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations Boca Raton, FL:: CRC
    [Google Scholar]
  200. TWI2050 (The World in 2050) 2018. Transformations to Achieve the Sustainable Development Goals. Laxenburg, Austria: IIASA
  201. UN FAO (Food and Agriculture Organization of the United Nations) 2016. Shared Global Vision for Groundwater Governance 2030 and a Call for Action Rome: Food and Agriculture Organization of the United Nations. , Revis. ed..
    [Google Scholar]
  202. Van der Gun J, Lipponen A 2010. Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2:113418–35
    [Google Scholar]
  203. Varady RG, van Weert F, Megdal SB, Gerlak A, Iskandar CA 2013. Thematic Paper No. 5: Groundwater Policy and Governance. Rome: Groundwater Governance
    [Google Scholar]
  204. Villholth KG, Conti K. 2018. Groundwater Governance: Rationale, Definition, Current State and Heuristic Framework KG Villholth, E López-Gunn, K Conti, A Garrido, JAM van der Gun Leiden, Neth.: CRC/Balkema
    [Google Scholar]
  205. Wada Y. 2016. Modeling groundwater depletion at regional and global scales: present state and future prospects. Surv. Geophys. 37:2419–51
    [Google Scholar]
  206. Wada Y, Heinrich L. 2013. Assessment of transboundary aquifers of the world—vulnerability arising from human water use. Environ. Res. Lett. 8:2024003
    [Google Scholar]
  207. Wada Y, van Beek LPH, Bierkens MFP 2012. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resourc. Res. 48:6W00L06
    [Google Scholar]
  208. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37:20L20402
    [Google Scholar]
  209. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ et al. 2010. The future of hydrology: an evolving science for a changing world. Water Resourc. Res. 46:5W05301
    [Google Scholar]
  210. Weise H, Auge H, Baessler C, Baerlund I, Bennett EM et al. 2019. Resilience trinity: safeguarding ecosystem services across three different time horizons and decision contexts. bioRxiv.549873 https://www.biorxiv.org/content/10.1101/549873v1
    [Google Scholar]
  211. Werner AD, Bakker M, Post VE, Vandenbohede A, Lu C et al. 2013. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resourc. 51:3–26
    [Google Scholar]
  212. Werner AD, Simmons CT. 2009. Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47:2197–204
    [Google Scholar]
  213. Winter TC. 2007. The role of ground water in generating streamflow in headwater areas and in maintaining base blow. J. Am. Water Resourc. Assoc. 43:115–25
    [Google Scholar]
  214. World Comm. Environ. Dev 1987. Our Common Future Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  215. Zektser IS, Dzhamalov RG, Everett LG 2007. Submarine Groundwater Boca Raton, FL: CRC
    [Google Scholar]
  216. Zektser IS, Everett LG. 2000. Groundwater and the Environment: Applications for the Global Community Boca Raton, FL: CRC
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-055251
Loading
/content/journals/10.1146/annurev-earth-071719-055251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error