1932

Abstract

Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds-of-meters-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults.

  • ▪  Earthquake ruptures propagate on geological faults and dissipate energy in fracture and frictional processes from micro- (less than a millimeter) to macroscale (centimeters to kilometers).
  • ▪  The energy dissipated in earthquake rupture propagation is called fracture energy () or breakdown work () and scales with coseismic slip.
  • ▪  For earthquake ruptures in natural faults, the estimates of and are consistent with a macroscale description of causative processes.
  • ▪  The energy budget of an earthquake remains controversial, and contributions from different disciplines are required to unravel this issue.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071822-100304
2023-05-31
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-071822-100304.html?itemId=/content/journals/10.1146/annurev-earth-071822-100304&mimeType=html&fmt=ahah

Literature Cited

  1. Aben FM, Brantut N, Mitchell TM. 2020.. Off-fault damage characterization during and after experimental quasi-static and dynamic rupture in crustal rock from laboratory P wave tomography and microstructures. . J. Geophys. Res. Solid Earth 125:(8):e2020JB019860
    [Google Scholar]
  2. Aben FM, Brantut N, Mitchell TM, David EC. 2019.. Rupture energetics in crustal rock from laboratory-scale seismic tomography. . Geophys. Res. Lett. 46:(13):733744
    [Google Scholar]
  3. Abercrombie RE. 2021.. Resolution and uncertainties in estimates of earthquake stress drop and energy release. . Philos. Trans. R. Soc. A 379:(2196):20200131
    [Google Scholar]
  4. Abercrombie RE, McGarr A, Di Toro G, Kanamori H, eds. 2006.. Earthquakes: Radiated Energy and the Physics of Faulting. Geophys. Monogr. Ser . Vol. 170. Washington, DC:: AGU
    [Google Scholar]
  5. Abercrombie RE, Rice JR. 2005.. Can observations of earthquake scaling constrain slip weakening?. Geophys. J. Int. 162:(2):40624
    [Google Scholar]
  6. Acosta M, Passelègue FX, Schubnel A, Violay M. 2018.. Dynamic weakening during earthquakes controlled by fluid thermodynamics. . Nat. Commun. 9:(1):3074
    [Google Scholar]
  7. Aki K. 1980.. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. . Phys. Earth Planet. Inter. 21:(1):5060
    [Google Scholar]
  8. Andrews DJ. 1976a.. Rupture propagation with finite stress in antiplane strain. . J. Geophys. Res. 81:(20):357582
    [Google Scholar]
  9. Andrews DJ. 1976b.. Rupture velocity of plane strain shear cracks. . J. Geophys. Res. 81:(32):567987
    [Google Scholar]
  10. Andrews DJ. 2005.. Rupture dynamics with energy loss outside the slip zone. . J. Geophys. Res. 110:(B1):B01307
    [Google Scholar]
  11. Andrews DJ, Ben-Zion Y. 1997.. Wrinkle-like slip pulse on a fault between different materials. . J. Geophys. Res. 102:(B1):55371
    [Google Scholar]
  12. Archard JF. 1959.. The temperature of rubbing surfaces. . Wear 2:(6):43855
    [Google Scholar]
  13. Aretusini S, Meneghini F, Spagnuolo E, Harbord CW, Di Toro G. 2021a.. Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone. . Nat. Commun. 12:(1):2481
    [Google Scholar]
  14. Aretusini S, Núñez-Cascajero A, Spagnuolo E, Tapetado A, Vázquez C, Di Toro G. 2021b.. Fast and localized temperature measurements during simulated earthquakes in carbonate rocks. . Geophys. Res. Lett. 48:(9):e2020GL091856
    [Google Scholar]
  15. Aubry J, Passelègue FX, Deldicque D, Girault F, Marty S, et al. 2018.. Frictional heating processes and energy budget during laboratory earthquakes. . Geophys. Res. Lett. 45:(22):1227482
    [Google Scholar]
  16. Austrheim H, Boundy MT. 1994.. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. . Science 265:(5168):8283
    [Google Scholar]
  17. Barenblatt GI. 1959.. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. . J. Appl. Math. Mech. 23:(3):62236
    [Google Scholar]
  18. Barras F, Aldam M, Roch T, Brener EA, Bouchbinder E, Molinari JF. 2020.. The emergence of crack-like behavior of frictional rupture: edge singularity and energy balance. . Earth Planet. Sci. Lett. 531::115978
    [Google Scholar]
  19. Bayart E, Svetlizky I, Fineberg J. 2016.. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. . Nat. Phys. 12:(2):16670
    [Google Scholar]
  20. Bayart E, Svetlizky I, Fineberg J. 2018.. Rupture dynamics of heterogeneous frictional interfaces. . J. Geophys. Res. Solid Earth 123:(5):382848
    [Google Scholar]
  21. Beeler NM. 2006.. Inferring earthquake source properties from laboratory observations and the scope of lab contributions to source physics. . See Abercrombie et al. 2006 , pp. 99119
  22. Beeler NM. 2007.. Laboratory-observed faulting in intrinsically and apparently weak materials: strength, seismic coupling, dilatancy, and pore-fluid pressure. . In The Seismogenic Zone of Subduction Thrust Faults, ed. TH Dixon, C Moore , pp. 370449 New York:: Columbia Univ. Press
    [Google Scholar]
  23. Beeler NM, Kilgore B, McGarr A, Fletcher J, Evans J, Baker SR. 2012.. Observed source parameters for dynamic rupture with non-uniform initial stress and relatively high fracture energy. . J. Struct. Geol. 38::7789
    [Google Scholar]
  24. Ben-Zion Y. 2001.. On quantification of the earthquake source. . Seismol. Res. Lett. 72:(2):15152
    [Google Scholar]
  25. Ben-Zion Y, Ampuero J-P. 2009.. Seismic radiation from regions sustaining material damage. . Geophys. J. Int. 178:(3):135156
    [Google Scholar]
  26. Ben-Zion Y, Sammis CG. 2013.. Shear heating during distributed fracturing and pulverization of rocks. . Geology 41:(2):13942
    [Google Scholar]
  27. Biegel RL, Sammis CG, Rosakis AJ. 2008.. An experimental study of the effect of off-fault damage on the velocity of a slip pulse. . J. Geophys. Res. 113:(B4):B04302
    [Google Scholar]
  28. Billi A, Storti F. 2004.. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. . Tectonophysics 384:(1):11528
    [Google Scholar]
  29. Bizzarri A. 2010.. On the relations between fracture energy and physical observables in dynamic earthquake models. . J. Geophys. Res. 115:(B10):B10307
    [Google Scholar]
  30. Bizzarri A. 2011.. On the deterministic description of earthquakes. . Rev. Geophys. 49:(3):RG3002
    [Google Scholar]
  31. Bizzarri A, Cocco M. 2006.. A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach. . J. Geophys. Res. 111:(B5):B05303
    [Google Scholar]
  32. Bouchon M. 1997.. The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data. . J. Geophys. Res. 102:(B6):1173144
    [Google Scholar]
  33. Boulton C, Yao L, Faulkner DR, Townend J, Toy VG, et al. 2017.. High-velocity frictional properties of Alpine Fault rocks: mechanical data, microstructural analysis, and implications for rupture propagation. . J. Struct. Geol. 97::7192
    [Google Scholar]
  34. Boutareaud S, Hirose T, Andréani M, Pec M, Calugaru D-G, et al. 2012.. On the role of phyllosilicates on fault lubrication: insight from micro- and nanostructural investigations on talc friction experiments. . J. Geophys. Res. 117:(B8):B08408
    [Google Scholar]
  35. Brace WF, Walsh JB. 1962.. Some direct measurements of the surface energy of quartz and orthoclase. . Am. Mineral. 47:(9–10):111122
    [Google Scholar]
  36. Brantut N, Heap MJ, Meredith PG, Baud P. 2013.. Time-dependent cracking and brittle creep in crustal rocks: a review. . J. Struct. Geol. 52::1743
    [Google Scholar]
  37. Brantut N, Schubnel A, Rouzaud J-N, Brunet F, Shimamoto T. 2008.. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. . J. Geophys. Res. 113:(B10):B10401
    [Google Scholar]
  38. Brantut N, Viesca RC. 2017.. The fracture energy of ruptures driven by flash heating. . Geophys. Res. Lett. 44:(13):671825
    [Google Scholar]
  39. Brener EA, Bouchbinder E. 2021.. Unconventional singularities and energy balance in frictional rupture. . Nat. Commun. 12:(1):2585
    [Google Scholar]
  40. Broberg KB. 1978.. On transient sliding motion. . Geophys. J. Int. 52:(3):397432
    [Google Scholar]
  41. Brodsky EE, Kanamori H. 2001.. Elastohydrodynamic lubrication of faults. . J. Geophys. Res. 106:(B8):1635774
    [Google Scholar]
  42. Brodsky EE, Mori JJ, Anderson L, Chester FM, Conin M, et al. 2020.. The state of stress on the fault before, during, and after a major earthquake. . Annu. Rev. Earth Planet. Sci. 48::4974
    [Google Scholar]
  43. Brune JN. 1970.. Tectonic stress and the spectra of seismic shear waves from earthquakes. . J. Geophys. Res. 75:(26):49975009
    [Google Scholar]
  44. Caine JS, Evans JP, Forster CB. 1996.. Fault zone architecture and permeability structure. . Geology 24:(11):102528
    [Google Scholar]
  45. Causse M, Dalguer LA, Mai PM. 2014.. Variability of dynamic source parameters inferred from kinematic models of past earthquakes. . Geophys. J. Int. 196:(3):175469
    [Google Scholar]
  46. Chang JC, Lockner AD, Reches Z. 2012.. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments. . Science 338:(6103):1015
    [Google Scholar]
  47. Chen J, Niemeijer AR, Fokker PA. 2017.. Vaporization of fault water during seismic slip. . J. Geophys. Res. Solid Earth 122:(6):423776
    [Google Scholar]
  48. Chen X, Chitta SS, Zu X, Reches Z. 2021.. Dynamic fault weakening during earthquakes: rupture or friction?. Earth Planet. Sci. Lett. 575::117165
    [Google Scholar]
  49. Chester FM, Chester JS. 1998.. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. . Tectonophysics 295:(1–2):199221
    [Google Scholar]
  50. Chester FM, Chester JS, Kirschner DL, Schulz SE, Evans JP. 2004.. Structure of large-displacement, strike-slip fault zones in the brittle continental crust. . In Rheology and Deformation of the Lithosphere at Continental Margins, ed. GD Karner, B Taylor, NW Driscoll, DL Kohlstedt , pp. 22360 New York:: Columbia Univ. Press
    [Google Scholar]
  51. Chester FM, Evans JP, Biegel RL. 1993.. Internal structure and weakening mechanisms of the San Andreas Fault. . J. Geophys. Res. 98:(B1):77186
    [Google Scholar]
  52. Chester FM, Logan JM. 1986.. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. . Pure Appl. Geophys. 124:(1):79106
    [Google Scholar]
  53. Chester JS, Chester FM, Kronenberg AK. 2005.. Fracture surface energy of the Punchbowl fault, San Andreas system. . Nature 437:(7055):13336
    [Google Scholar]
  54. Choi J-H, Edwards P, Ko K, Kim Y-S. 2016.. Definition and classification of fault damage zones: a review and a new methodological approach. . Earth-Sci. Rev. 152::7087
    [Google Scholar]
  55. Cocco M, Bizzarri A. 2002.. On the slip-weakening behavior of rate- and state dependent constitutive laws. . Geophys. Res. Lett. 29:(11):1516
    [Google Scholar]
  56. Cocco M, Spudich P, Tinti E. 2006.. On the mechanical work absorbed on faults during earthquake ruptures. . See Abercrombie et al. 2006 , pp. 23754
  57. Cocco M, Tinti E. 2008.. Scale dependence in the dynamics of earthquake propagation: evidence from seismological and geological observations. . Earth Planet. Sci. Lett. 273:(1–2):12331
    [Google Scholar]
  58. Cocco M, Tinti E, Cirella A. 2016.. On the scale dependence of earthquake stress drop. . J. Seismol. 20:(4):115170
    [Google Scholar]
  59. Collettini C, Viti C, Tesei T, Mollo S. 2013.. Thermal decomposition along natural carbonate faults during earthquakes. . Geology 41:(8):92730
    [Google Scholar]
  60. Cornelio C, Passelègue FX, Spagnuolo E, Di Toro G, Violay M. 2020.. Effect of fluid viscosity on fault reactivation and coseismic weakening. . J. Geophys. Res. Solid Earth 125::e2019JB018883
    [Google Scholar]
  61. Cornelio C, Spagnuolo E, Aretusini S, Nielsen S, Passelègue F, et al. 2022.. Determination of parameters characteristic of dynamic weakening mechanisms during seismic faulting in cohesive rocks. . J. Geophys. Res. Solid Earth 127::e2022JB024356
    [Google Scholar]
  62. Cornelio C, Spagnuolo E, Di Toro G, Nielsen SB, Violay M. 2019.. Mechanical behaviour of fluid-lubricated faults. . Nat. Commun. 10:(1):1274
    [Google Scholar]
  63. Cowie PA, Attal M, Tucker GE, Whittaker AC, Naylor M, et al. 2006.. Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. . Basin Res. 18:(3):23166
    [Google Scholar]
  64. De Paola N, Hirose T, Mitchell T, Di Toro G, Viti C, Shimamoto T. 2011.. Fault lubrication and earthquake propagation in thermally unstable rocks. . Geology 39:(1):3538
    [Google Scholar]
  65. De Paola N, Holdsworth RE, Viti C, Collettini C, Bullock R. 2015.. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation?. Earth Planet. Sci. Lett. 431::4858
    [Google Scholar]
  66. Del Gaudio P, Di Toro G, Han R, Hirose T, Nielsen SB, et al. 2009.. Frictional melting of peridotite and seismic slip. . J. Geophys. Res. 114:(B6):B06306
    [Google Scholar]
  67. Delle Piane C, Clennell MB, Keller JVA, Giwelli A, Luzin V. 2017.. Carbonate hosted fault rocks: a review of structural and microstructural characteristic with implications for seismicity in the upper crust. . J. Struct. Geol. 103::1736
    [Google Scholar]
  68. Demurtas M, Fondriest M, Balsamo F, Clemenzi L, Storti F, et al. 2016.. Structure of a normal seismogenic fault zone in carbonates: the Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). . J. Struct. Geol. 90::185206
    [Google Scholar]
  69. Demurtas M, Smith SAF, Prior DJ, Brenker FE, Di Toro G. 2019.. Grain size sensitive creep during simulated seismic slip in nanogranular fault gouges: constraints from transmission Kikuchi diffraction (TKD). . J. Geophys. Res. Solid Earth 124:(10):10197209
    [Google Scholar]
  70. Di Toro G, Aretusini S, Cornelio C, Nielsen S, Spagnuolo E, et al. 2021.. Friction during earthquakes: 25 years of experimental studies. . IOP Conf. Ser. Earth Environ. Sci. 861::052032
    [Google Scholar]
  71. Di Toro G, Han R, Hirose T, De Paola N, Nielsen S, et al. 2011.. Fault lubrication during earthquakes. . Nature 471:(7339):49498
    [Google Scholar]
  72. Di Toro G, Hirose T, Nielsen SB, Pennacchioni G, Shimamoto T. 2006.. Natural and experimental evidence of melt lubrication of faults during earthquakes. . Science 311:(5761):64749
    [Google Scholar]
  73. Di Toro G, Nielsen S, Pennacchioni G. 2005a.. Earthquake rupture dynamics frozen in exhumed ancient faults. . Nature 436:(7053):100912
    [Google Scholar]
  74. Di Toro G, Pennacchioni G, Teza G. 2005b.. Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. . Tectonophysics 402:(1–4):320
    [Google Scholar]
  75. Dieterich JH. 1979.. Modeling of rock friction: 1. Experimental results and constitutive equations. . J. Geophys. Res. 84:(B5):216168
    [Google Scholar]
  76. Dor O, Ben-Zion Y, Rockwell TK, Brune J. 2006.. Pulverized rocks in the Mojave section of the San Andreas Fault Zone. . Earth Planet. Sci. Lett. 245:(3):64254
    [Google Scholar]
  77. Dunham EM, Belanger D, Cong L, Kozdon JE. 2011a.. Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 1: Planar faults. . Bull. Seismol. Soc. Am. 101:(5):2296307
    [Google Scholar]
  78. Dunham EM, Belanger D, Cong L, Kozdon JE. 2011b.. Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 2: Nonplanar faults. . Bull. Seismol. Soc. Am. 101:(5):230822
    [Google Scholar]
  79. Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, et al. 2010.. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. . J. Struct. Geol. 32:(11):155775
    [Google Scholar]
  80. Faulkner DR, Lewis AC, Rutter EH. 2003.. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. . Tectonophysics 367:(3):23551
    [Google Scholar]
  81. Faulkner DR, Mitchell TM, Behnsen J, Hirose T, Shimamoto T. 2011.. Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. . Geophys. Res. Lett. 38:(18):L18303
    [Google Scholar]
  82. Favreau P, Archuleta RJ. 2003.. Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake. . Geophys. Res. Lett. 30:(5):1198
    [Google Scholar]
  83. Fialko Y. 2015.. Fracture and frictional mechanics: theory. . In Treatise on Geophysics 4, ed. G Schubert , pp. 7391 Amsterdam:: Elsevier, 2nd ed.
    [Google Scholar]
  84. Fondriest M, Aretusini S, Di Toro G, Smith SAF. 2015.. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: the Foiana Fault Zone (Southern Alps, Italy). . Tectonophysics 654::5674
    [Google Scholar]
  85. Fondriest M, Balsamo F, Bistacchi A, Clemenzi L, Demurtas M, et al. 2020.. Structural complexity and mechanics of a shallow crustal seismogenic source (Vado di Corno Fault Zone, Italy). . J. Geophys. Res. Solid Earth 125:(9):e2019JB018926
    [Google Scholar]
  86. Fondriest M, Smith SAF, Candela T, Nielsen SB, Mair K, Di Toro G. 2013.. Mirror-like faults and power dissipation during earthquakes. . Geology 41:(11):117578
    [Google Scholar]
  87. French ME, Kitajima H, Chester JS, Chester FM, Hirose T. 2014.. Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault. . J. Geophys. Res. Solid Earth 119:(3):1777802
    [Google Scholar]
  88. Freund LB. 1979.. The mechanics of dynamic shear crack propagation. . J. Geophys. Res. 84:(B5):2199209
    [Google Scholar]
  89. Fukuyama E, Madariaga R. 1998.. Rupture dynamics of a planar fault in a 3D elastic medium: rate- and slip-weakening friction. . Bull. Seismol. Soc. Am. 88:(1):117
    [Google Scholar]
  90. Fulton PM, Rathbun AP. 2011.. Experimental constraints on energy partitioning during stick-slip and stable sliding within analog fault gouge. . Earth Planet. Sci. Lett. 308:(1):18592
    [Google Scholar]
  91. Gallovič F, Valentová L', Ampuero J-P, Gabriel A-A. 2019.. Bayesian dynamic finite-fault inversion: 1. Method and synthetic test. . J. Geophys. Res. Solid Earth 124:(7):694969
    [Google Scholar]
  92. Gallovič F, Zahradník J, Plicka V, Sokos E, Evangelidis C, et al. 2020.. Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazığ earthquake, Turkey. . Commun. Earth Environ. 1:(1):40
    [Google Scholar]
  93. Giacomel P, Spagnuolo E, Nazzari M, Marzoli A, Passelegue F, et al. 2018.. Frictional instabilities and carbonation of basalts triggered by injection of pressurized H2O- and CO2-rich fluids. . Geophys. Res. Lett. 45:(12):603241
    [Google Scholar]
  94. Goldsby DL, Tullis TE. 2011.. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. . Science 334:(6053):21618
    [Google Scholar]
  95. Green HW II, Shi F, Bozhilov K, Xia G, Reches Z. 2015.. Phase transformation and nanometric flow cause extreme weakening during fault slip. . Nat. Geosci. 8:(6):48489
    [Google Scholar]
  96. Gregg JM. 1983.. On the formation and occurrence of saddle dolomite: discussion. . J. Sediment. Res. 53:(3):102526
    [Google Scholar]
  97. Griffith AA. 1921.. VI. The phenomena of rupture and flow in solids. . Philos. Trans. R. Soc. A 221:(582–93):16398
    [Google Scholar]
  98. Griffith WA, Nielsen SB, Di Toro G, Smith SAF. 2010.. Rough faults, distributed weakening, and off-fault deformation. . J. Geophys. Res. 115:(8):B08409
    [Google Scholar]
  99. Guatteri M, Mai PM, Beroza GC, Boatwright J. 2003.. Strong ground-motion prediction from stochastic-dynamic source models. . Bull. Seismol. Soc. Am. 93:(1):30113
    [Google Scholar]
  100. Guatteri M, Spudich P. 2000.. What can strong-motion data tell us about slip-weakening fault-friction laws?. Bull. Seismol. Soc. Am. 90:(1):98116
    [Google Scholar]
  101. Guatteri M, Spudich P, Beroza GC. 2001.. Inferring rate and state friction parameters from a rupture model of the 1995 Hyogo-ken Nanbu (Kobe) Japan earthquake. . J. Geophys. Res. 106:(B11):2651121
    [Google Scholar]
  102. Guérin-Marthe S, Nielsen SB, Bird R, Giani S, Di Toro G. 2019.. Earthquake nucleation size: evidence of loading rate dependence in laboratory faults. . J. Geophys. Res. Solid Earth 124:(1):689708
    [Google Scholar]
  103. Hakami H, Stephansson O. 1990.. Shear fracture energy of Stripa granite—results of controlled triaxial testing. . Eng. Fract. Mech. 35:(4):85565
    [Google Scholar]
  104. Han R, Hirose T, Shimamoto T. 2010.. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. . J. Geophys. Res. 115:(B3):B03412
    [Google Scholar]
  105. Han R, Shimamoto T, Hirose T, Ree J-H, Ando J. 2007.. Ultralow friction of carbonate faults caused by thermal decomposition. . Science 316:(5826):87881
    [Google Scholar]
  106. Harbord C, Brantut N, Spagnuolo E, Di Toro G. 2021.. Fault friction during simulated seismic slip pulses. . J. Geophys. Res. Solid Earth 126:(8):e2021JB022149
    [Google Scholar]
  107. Harris RA. 2017.. Large earthquakes and creeping faults. . Rev. Geophys. 55:(1):16998
    [Google Scholar]
  108. Heaton TH. 1990.. Evidence for and implications of self-healing pulses of slip in earthquake rupture. . Phys. Earth Planet. Inter. 64:(1):120
    [Google Scholar]
  109. Hirose T, Bystricky M. 2007.. Extreme dynamic weakening of faults during dehydration by coseismic shear heating. . Geophys. Res. Lett. 34:(14):L14311
    [Google Scholar]
  110. Hou L, Ma S, Shimamoto T, Chen J, Yao L, et al. 2012.. Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake. . Earthq. Sci. 25:(3):197217
    [Google Scholar]
  111. Ida Y. 1972.. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. . J. Geophys. Res. 77:(20):3796805
    [Google Scholar]
  112. Ide S, Takeo M. 1997.. Determination of constitutive relations of fault slip based on seismic wave analysis. . J. Geophys. Res. 102:(B12):2737991
    [Google Scholar]
  113. Ikari MJ, Ito Y, Ujiie K, Kopf AJ. 2015.. Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. . Nat. Geosci. 8:(11):87074
    [Google Scholar]
  114. Irwin GR. 1956.. Onset of fast crack propagation in high strength steel and aluminum alloys. . NRL Rep. 4763, Nav. Res. Lab., Washington DC:
    [Google Scholar]
  115. Irwin GR. 1957.. Analysis of stresses and strains near the end of a crack traversing a plate. . J. Appl. Mech. 24:(3):36164
    [Google Scholar]
  116. Johnson SE, Song WJ, Vel SS, Song BR, Gerbi CC. 2021.. Energy partitioning, dynamic fragmentation, and off-fault damage in the earthquake source volume. . J. Geophys. Res. Solid Earth 126:(11):e2021JB022616
    [Google Scholar]
  117. Kammer DS, McLaskey GC. 2019.. Fracture energy estimates from large-scale laboratory earthquakes. . Earth Planet. Sci. Lett. 511::3643
    [Google Scholar]
  118. Kanamori H, Rivera L. 2006.. Energy partitioning during an earthquake. . See Abercrombie et al. 2006 , pp. 313
  119. Ke C-Y, McLaskey GC, Kammer DS. 2018.. Rupture termination in laboratory-generated earthquakes. . Geophys. Res. Lett. 45:(23):1278492
    [Google Scholar]
  120. Knopoff L. 1958.. Energy release in earthquakes. . Geophys. J. Int. 1:(1):4452
    [Google Scholar]
  121. Kostrov BV, Das S. 1988.. Principles of Earthquake Source Mechanics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  122. Lachenbruch AH, Sass JH. 1980.. Heat flow and energetics of the San Andreas fault zone. . J. Geophys. Res. 85:(10):6185222
    [Google Scholar]
  123. Lambert V, Lapusta N. 2020.. Rupture-dependent breakdown energy in fault models with thermo-hydro-mechanical processes. . Solid Earth 11:(6):2283302
    [Google Scholar]
  124. Liu Z, Rummel F. 1990.. Shear fracture energy of rock at high pressure and high temperature. . Phys. Chem. Earth 17::99109
    [Google Scholar]
  125. Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A. 1991.. Quasi-static fault growth and shear fracture energy in granite. . Nature 350:(6313):3942
    [Google Scholar]
  126. Lockner DA, Okubo PG. 1983.. Measurements of frictional heating in granite. . J. Geophys. Res. 88:(B5):431320
    [Google Scholar]
  127. Lyakhovsky V. 2001.. Scaling of fracture length and distributed damage. . Geophys. J. Int. 144::11422
    [Google Scholar]
  128. Ma K-F, Tanaka H, Song S-R, Wang C-Y, Hung J-H, et al. 2006.. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. . Nature 444:(7118):47376
    [Google Scholar]
  129. Madariaga R. 1978.. The dynamic field of Haskell's rectangular dislocation fault model. . Bull. Seismol. Soc. Am. 68:(4):86987
    [Google Scholar]
  130. Mai PM, Somerville P, Pitarka A, Dalguer L, Song S, et al. 2006.. On scaling of fracture energy and stress drop in dynamic rupture models: consequences for near-source ground-motions. . See Abercrombie et al. 2006 , pp. 28393
  131. Mai PM, Thingbaijam KKS. 2014.. SRCMOD: an online database of finite-fault rupture models. . Seismol. Res. Lett. 85:(6):134857
    [Google Scholar]
  132. Malagnini L, Munafo’ I, Cocco M, Nielsen S, Mayeda K, Boschi E. 2014.. Gradual fault weakening with seismic slip: inferences from the seismic sequences of L'Aquila, 2009, and Northridge, 1994. . Pure Appl. Geophys. 171:(10):270930
    [Google Scholar]
  133. Marone C. 1998.. Laboratory-derived friction laws and their application to seismic faulting. . Annu. Rev. Earth Planet. Sci. 26::64396
    [Google Scholar]
  134. Masoch S, Gomila R, Fondriest M, Jensen E, Mitchell T, et al. 2021.. Structural evolution of a crustal-scale seismogenic fault in a magmatic arc: the Bolfin Fault Zone (Atacama Fault System). . Tectonics 40:(8):e2021TC006818
    [Google Scholar]
  135. McLaskey GC, Kilgore BD, Beeler NM. 2015.. Slip-pulse rupture behavior on a 2 m granite fault. . Geophys. Res. Lett. 42:(17):703945
    [Google Scholar]
  136. McLaskey GC, Kilgore BD, Lockner DA, Beeler NM. 2014.. Laboratory generated M-6 earthquakes. . Pure Appl. Geophys. 171:(10):260115
    [Google Scholar]
  137. Mia MS, Abdelmeguid M, Elbanna AE. 2022.. Spatio-temporal clustering of seismicity enabled by off-fault plasticity. . Geophys. Res. Lett. 49:(8):e2021GL097601
    [Google Scholar]
  138. Mitchell TM, Faulkner DR. 2009.. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. . J. Struct. Geol. 31:(8):80216
    [Google Scholar]
  139. Mizoguchi K, Hirose T, Shimamoto T, Fukuyama E. 2007.. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. . Geophys. Res. Lett. 34:(1):L01308
    [Google Scholar]
  140. Moore DE, Lockner DA. 1995.. The role of microcracking in shear-fracture propagation in granite. . J. Struct. Geol. 17:(1):95114
    [Google Scholar]
  141. Murphy S, Di Toro G, Romano F, Scala A, Lorito S, et al. 2018.. Tsunamigenic earthquake simulations using experimentally derived friction laws. . Earth Planet. Sci. Lett. 486::15565
    [Google Scholar]
  142. Nielsen S, Di Toro G, Hirose T, Shimamoto T. 2008.. Frictional melt and seismic slip. . J. Geophys. Res. 113:(B1):B01308
    [Google Scholar]
  143. Nielsen S, Madariaga R. 2003.. On the self-healing fracture mode. . Bull. Seismol. Soc. Am. 93:(6):237588
    [Google Scholar]
  144. Nielsen S, Spagnuolo E, Smith SAF, Violay M, Di Toro G, Bistacchi A. 2016a.. Scaling in natural and laboratory earthquakes. . Geophys. Res. Lett. 43:(4):150410
    [Google Scholar]
  145. Nielsen S, Spagnuolo E, Violay M, Di Toro G. 2021.. Thermal weakening friction during seismic slip: experiments and models with heat sources and sinks. . J. Geophys. Res. Solid Earth 126:(5):e2020JB020652
    [Google Scholar]
  146. Nielsen S, Spagnuolo E, Violay M, Smith S, Di Toro G, Bistacchi A. 2016b.. G: fracture energy, friction and dissipation in earthquakes. . J. Seismol. 20:(4):1187205
    [Google Scholar]
  147. Niemeijer A, Di Toro G, Griffith WA, Bistacchi A, Smith SAF, Nielsen S. 2012.. Inferring earthquake physics and chemistry using an integrated field and laboratory approach. . J. Struct. Geol. 39::236
    [Google Scholar]
  148. Ohl M, Plümper O, Chatzaras V, Wallis D, Vollmer C, Drury M. 2020.. Mechanisms of fault mirror formation and fault healing in carbonate rocks. . Earth Planet. Sci. Lett. 530::115886
    [Google Scholar]
  149. Ohnaka M. 1996.. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: a physical model of earthquake generation processes. . PNAS 93:(9):3795802
    [Google Scholar]
  150. Ohnaka M. 2003.. A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. . J. Geophys. Res. 108:(B2):2080
    [Google Scholar]
  151. Ohnaka M. 2013.. The Physics of Rock Failure and Earthquakes. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  152. Ohnaka M, Akatsu M, Mochizuki H, Odedra A, Tagashira F, Yamamoto Y. 1997.. A constitutive law for the shear failure of rock under lithospheric conditions. . Tectonophysics 277:(1):127
    [Google Scholar]
  153. Ohnaka M, Shen L. 1999.. Scaling of the shear rupture process from nucleation to dynamic propagation: implications of geometric irregularity of the rupturing surfaces. . J. Geophys. Res. 104:(B1):81744
    [Google Scholar]
  154. Ohnaka M, Yamashita T. 1989.. A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters. . J. Geophys. Res. 94:(B4):4089104
    [Google Scholar]
  155. Okubo K, Bhat HS, Rougier E, Marty S, Schubnel A, et al. 2019.. Dynamics, radiation, and overall energy budget of earthquake rupture with coseismic off-fault damage. . J. Geophys. Res. Solid Earth 124:(11):11771801
    [Google Scholar]
  156. Okubo PG, Dieterich JH. 1981.. Fracture energy of stick-slip events in a large scale biaxial experiment. . Geophys. Res. Lett. 8:(8):88790
    [Google Scholar]
  157. Okubo PG, Dieterich JH. 1984.. Effects of physical fault properties on frictional instabilities produced on simulated faults. . J. Geophys. Res. 89:(B7):581727
    [Google Scholar]
  158. Oohashi K, Hirose T, Takahashi M, Tanikawa W. 2015.. Dynamic weakening of smectite-bearing faults at intermediate velocities: implications for subduction zone earthquakes. . J. Geophys. Res. Solid Earth 120:(3):157286
    [Google Scholar]
  159. Ostermeijer GA, Mitchell TM, Aben FM, Dorsey MT, Browning J, et al. 2020.. Damage zone heterogeneity on seismogenic faults in crystalline rock; a field study of the Borrego Fault, Baja California. . J. Struct. Geol. 137::104016
    [Google Scholar]
  160. Paglialunga F, Passelègue FX, Brantut N, Barras F, Lebihain M, Violay M. 2022.. On the scale dependence in the dynamics of frictional rupture: constant fracture energy versus size-dependent breakdown work. . Earth Planet. Sci. Lett. 584::117442
    [Google Scholar]
  161. Palmer AC, Rice JR. 1973.. The growth of slip surfaces in the progressive failure of over-consolidated clay. . Proc. R. Soc. A. 332:(1591):52748
    [Google Scholar]
  162. Passelègue FX, Latour S, Schubnel A, Nielsen S, Bhat HS, Madariaga R. 2017.. Influence of fault strength on precursory processes during laboratory earthquakes. . In Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, ed. MY Thomas, TM Mitchell, HS Bhat , pp. 22942. Geophys. Monogr. Ser . 227. Washington, DC:: AGU
    [Google Scholar]
  163. Passelègue FX, Schubnel A, Nielsen SB, Bhat HS, Deldicque D, Madariaga R. 2016a.. Dynamic rupture processes inferred from laboratory microearthquakes. . J. Geophys. Res. Solid Earth 121:(6):434365
    [Google Scholar]
  164. Passelègue FX, Spagnuolo E, Violay M, Nielsen SB, Di Toro G, Schubnel A. 2016b.. Frictional evolution, acoustic emissions activity, and off-fault damage in simulated faults sheared at seismic slip rates. . J. Geophys. Res. Solid Earth 121:(10):7490513
    [Google Scholar]
  165. Paterson MS, Wong T. 2005.. Experimental Rock Deformation—The Brittle Field. Berlin:: Springer-Verlag
    [Google Scholar]
  166. Pec M, Stünitz H, Heilbronner R, Drury M, de Capitani C. 2012.. Origin of pseudotachylites in slow creep experiments. . Earth Planet. Sci. Lett. 355–56::299310
    [Google Scholar]
  167. Peng Z, Gomberg J. 2010.. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. . Nat. Geosci. 3:(9):599607
    [Google Scholar]
  168. Peyrat S, Olsen K, Madariaga R. 2001.. Dynamic modeling of the 1992 Landers earthquake. . J. Geophys. Res. 106:(B11):2646782
    [Google Scholar]
  169. Pittarello L, Di Toro G, Bizzarri A, Pennacchioni G, Hadizadeh J, Cocco M. 2008.. Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy). . Earth Planet. Sci. Lett. 269:(1):13139
    [Google Scholar]
  170. Pozzi G, De Paola N, Holdsworth RE, Bowen L, Nielsen SB, Dempsey ED. 2019.. Coseismic ultramylonites: an investigation of nanoscale viscous flow and fault weakening during seismic slip. . Earth Planet. Sci. Lett. 516::16475
    [Google Scholar]
  171. Pozzi G, De Paola N, Nielsen SB, Holdsworth RE, Bowen L. 2018.. A new interpretation for the nature and significance of mirror-like surfaces in experimental carbonate-hosted seismic faults. . Geology 46:(7):58386
    [Google Scholar]
  172. Rabinowicz E. 1966.. Friction and wear of materials. . J. Appl. Mech. 33:(2):479
    [Google Scholar]
  173. Reches Z, Dewers TA. 2005.. Gouge formation by dynamic pulverization during earthquake rupture. . Earth Planet. Sci. Lett. 235:(1):36174
    [Google Scholar]
  174. Reid HF. 1910.. The California Earthquake of April 18, 1906, Vol. 2: The Mechanics of the Earthquake. Washington, DC:: Carnegie Inst
    [Google Scholar]
  175. Rempe M, Smith S, Mitchell T, Hirose T, Di Toro G. 2017.. The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates. . J. Struct. Geol. 97::10417
    [Google Scholar]
  176. Rice JR. 1968.. A path independent integral and the approximate analysis of strain concentration by notches and cracks. . J. Appl. Mech. 35::37986
    [Google Scholar]
  177. Rice JR. 1979.. The mechanics of earthquake rupture. . In Physics of Earth's Interior, ed. AM Dziewonski, E Boschi , pp. 555649 New York:: North-Holland
    [Google Scholar]
  178. Rice JR. 2006.. Heating and weakening of faults during earthquake slip. . J. Geophys. Res. 111:(B5):B05311
    [Google Scholar]
  179. Rice JR, Cocco M. 2007.. Seismic fault rheology and earthquake dynamics. . The Dynamics of Fault Zones, ed. MR Handy , pp. 1621 Cambridge, MA:: MIT Press
    [Google Scholar]
  180. Rice JR, Sammis CG, Parsons R. 2005.. Off-fault secondary failure induced by a dynamic slip pulse. . Bull. Seismol. Soc. Am. 95:(1):10934
    [Google Scholar]
  181. Rivera L, Kanamori H. 2005.. Representations of the radiated energy in earthquakes. . Geophys. J. Int. 162:(1):14855
    [Google Scholar]
  182. Rockwell T, Sisk M, Girty G, Dor O, Wechsler N, Ben-Zion Y. 2009.. Chemical and physical characteristics of pulverized Tejon Lookout Granite adjacent to the San Andreas and Garlock faults: implications for earthquake physics. . Pure Appl. Geophys. 166:(10):172546
    [Google Scholar]
  183. Rosakis AJ. 2002.. Intersonic shear cracks and fault ruptures. . Adv. Phys. 51:(4):1189257
    [Google Scholar]
  184. Rowe CD, Moore JC, Meneghini F, McKeirnan AW. 2005.. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. . Geology 33:(12):93740
    [Google Scholar]
  185. Ruina A. 1983.. Slip instability and state variable friction laws. . J. Geophys. Res. 88:(B12):1035970
    [Google Scholar]
  186. Rummel F, Alheid HJ, Frohn C. 1978.. Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding. . Pure Appl. Geophys. 116:(4):74364
    [Google Scholar]
  187. Sammis C, King G, Biegel R. 1987.. The kinematics of gouge deformation. . Pure Appl. Geophys. 125:(5):777812
    [Google Scholar]
  188. Sammis CG, King GCP. 2007.. Mechanical origin of power law scaling in fault zone rock. . Geophys. Res. Lett. 34:(4):L04312
    [Google Scholar]
  189. Savage HM, Brodsky EE. 2011.. Collateral damage: evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. . J. Geophys. Res. 116:(B3):B03405
    [Google Scholar]
  190. Sawai M, Hirose T, Kameda J. 2014.. Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake. . Earth Planets Space 66:(1):65
    [Google Scholar]
  191. Sawai M, Shimamoto T, Togo T. 2012.. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. . J. Struct. Geol. 38::11738
    [Google Scholar]
  192. Scholz CH. 2019.. The Mechanics of Earthquakes and Faulting. Cambridge, UK:: Cambridge Univ. Press, 3rd ed.
    [Google Scholar]
  193. Scholz CH, Dawers NH, Yu J-Z, Anders MH, Cowie PA. 1993.. Fault growth and fault scaling laws: preliminary results. . J. Geophys. Res. 98:(B12):2195161
    [Google Scholar]
  194. Scuderi MM, Tinti E, Cocco M, Collettini C. 2020.. The role of shear fabric in controlling breakdown processes during laboratory slow-slip events. . J. Geophys. Res. Solid Earth 125:(11):e2020JB020405
    [Google Scholar]
  195. Sellers EJ, Kataka MO, Linzer LM. 2003.. Source parameters of acoustic emission events and scaling with mining-induced seismicity. . J. Geophys. Res. 108:(B9):2418
    [Google Scholar]
  196. Selvadurai PA. 2019.. Laboratory insight into seismic estimates of energy partitioning during dynamic rupture: an observable scaling breakdown. . J. Geophys. Res. Solid Earth 124:(11):1135079
    [Google Scholar]
  197. Selvadurai PA, Glaser SD. 2017.. Asperity generation and its relationship to seismicity on a planar fault: a laboratory simulation. . Geophys. J. Int. 208:(2):100925
    [Google Scholar]
  198. Seyler CE, Kirkpatrick JD, Savage HM, Hirose T, Faulkner DR. 2020.. Rupture to the trench? Frictional properties and fracture energy of incoming sediments at the Cascadia subduction zone. . Earth Planet. Sci. Lett. 546::116413
    [Google Scholar]
  199. Shipton ZK, Soden AM, Kirkpatrick JD, Bright AM, Lunn RJ. 2006.. How thick is a fault? Fault displacement-thickness scaling revisited. . See Abercrombie et al. 2006 , pp. 19398
  200. Sibson RH. 1975.. Generation of pseudotachylyte by ancient seismic faulting. . Geophys. J. R. Astron. Soc. 43:(3):77594
    [Google Scholar]
  201. Sibson RH. 1986.. Brecciation processes in fault zones: inferences from earthquake rupturing. . Pure Appl. Geophys. 124:(1–2):15975
    [Google Scholar]
  202. Sibson RH. 2003.. Thickness of the seismic slip zone. . Bull. Seismol. Soc. Am. 93:(3):116978
    [Google Scholar]
  203. Siman-Tov S, Aharonov E, Sagy A, Emmanuel S. 2013.. Nanograins form carbonate fault mirrors. . Geology 41:(6):7036
    [Google Scholar]
  204. Smith SAF, Di Toro G, Kim S, Ree J-H, Nielsen S, et al. 2013.. Coseismic recrystallization during shallow earthquake slip. . Geology 41:(1):6366
    [Google Scholar]
  205. Spagnuolo E, Plümper O, Violay M, Cavallo A, Di Toro G. 2015.. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. . Sci. Rep. 5:(1):16112
    [Google Scholar]
  206. Storti F, Billi A, Salvini F. 2003.. Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis. . Earth Planet. Sci. Lett. 206:(1):17386
    [Google Scholar]
  207. Svetlizky I, Fineberg J. 2014.. Classical shear cracks drive the onset of dry frictional motion. . Nature 509:(7499):2058
    [Google Scholar]
  208. Swanson MT. 1988.. Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. . J. Struct. Geol. 10:(8):81328
    [Google Scholar]
  209. Tal Y, Faulkner D. 2022.. The effect of fault roughness and earthquake ruptures on the evolution and scaling of fault damage zones. . J. Geophys. Res. Solid Earth 127::e2021JB023352
    [Google Scholar]
  210. Tinti E, Casarotti E, Ulrich T, Taufiqurrahman T, Li D, Gabriel A-A. 2021.. Constraining families of dynamic models using geological, geodetic and strong ground motion data: the Mw 6.5, October 30th, 2016, Norcia earthquake, Italy. . Earth Planet. Sci. Lett. 576::117237
    [Google Scholar]
  211. Tinti E, Cocco M, Fukuyama E, Piatanesi A. 2009.. Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes. . Geophys. J. Int. 177:(3):120520
    [Google Scholar]
  212. Tinti E, Fukuyama E, Piatanesi A, Cocco M. 2005a.. A kinematic source-time function compatible with earthquake dynamics. . Bull. Seismol. Soc. Am. 95:(4):121123
    [Google Scholar]
  213. Tinti E, Spudich P, Cocco M. 2005b.. Earthquake fracture energy inferred from kinematic rupture models on extended faults. . J. Geophys. Res. 110:(12):B12303. Erratum . 2008.. J. Geophys. Res. 113:(B7):B07301
    [Google Scholar]
  214. Togo T, Shimamoto T. 2012.. Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion: an experimental study. . J. Struct. Geol. 38::13955
    [Google Scholar]
  215. Togo T, Shimamoto T, Ma S, Hirose T. 2011.. High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake. . Earthq. Sci. 24:(3):26781
    [Google Scholar]
  216. Togo T, Yao L, Ma S, Shimamoto T. 2016.. High-velocity frictional strength of Longmenshan fault gouge and its comparison with an estimate of friction from the temperature anomaly in WFSD-1 drill hole. . J. Geophys. Res. Solid Earth 121:(7):532848
    [Google Scholar]
  217. Tullis TE. 2015.. Mechanisms for friction of rock at earthquake slip rates. . In Treatise on Geophysics 4, ed. G Schubert , pp. 13152 Amsterdam:: Elsevier, 2nd ed.
    [Google Scholar]
  218. Udias A, Madariaga R, Buforn E. 2014.. Source Mechanisms of Earthquakes. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  219. Ueda T, Obata M, Di Toro G, Kanagawa K, Ozawa K. 2008.. Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies. . Geology 36:(8):60710
    [Google Scholar]
  220. Ujiie K, Tanaka H, Saito T, Tsutsumi A, Mori JJ, et al. 2013.. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. . Science 342::121114
    [Google Scholar]
  221. Ujiie K, Tsutsumi A. 2010.. High-velocity frictional properties of clay-rich fault gouge in a megasplay fault zone, Nankai subduction zone. . Geophys. Res. Lett. 37:(24):L24310
    [Google Scholar]
  222. Ulrich T, Vater S, Madden EH, Behrens J, van Dinther Y, et al. 2019.. Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami. . Pure Appl. Geophys. 176:(10):4069109
    [Google Scholar]
  223. Vannucchi P, Spagnuolo E, Aretusini S, Di Toro G, Ujiie K, et al. 2017.. Past seismic slip-to-the-trench recorded in Central America megathrust. . Nat. Geosci. 10:(12):93540
    [Google Scholar]
  224. Vermilye JM, Scholz CH. 1998.. The process zone: a microstructural view of fault growth. . J. Geophys. Res. 103:(B6):1222337
    [Google Scholar]
  225. Viesca RC, Garagash DI. 2015.. Ubiquitous weakening of faults due to thermal pressurization. . Nat. Geosci. 8:(11):87579
    [Google Scholar]
  226. Violay M, Nielsen S, Gibert B, Spagnuolo E, Cavallo A, et al. 2014.. Effect of water on the frictional behavior of cohesive rocks during earthquakes. . Geology 42:(1):2730
    [Google Scholar]
  227. Violay M, Nielsen S, Spagnuolo E, Cinti D, Di Toro G, Di Stefano G. 2013.. Pore fluid in experimental calcite-bearing faults: abrupt weakening and geochemical signature of co-seismic processes. . Earth Planet. Sci. Lett. 361::7484
    [Google Scholar]
  228. Wawersik WR, Brace WF. 1971.. Post-failure behavior of a granite and diabase. . Rock Mech. 3:(2):6185
    [Google Scholar]
  229. Wibberley CAJ, Shimamoto T. 2003.. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. . J. Struct. Geol. 25:(1):5978
    [Google Scholar]
  230. Wibberley CAJ, Shimamoto T. 2005.. Earthquake slip weakening and asperities explained by thermal pressurization. . Nature 436:(7051):68992
    [Google Scholar]
  231. Wibberley CAJ, Yielding G, Di Toro G. 2008.. Recent advances in the understanding of fault zone internal structure: a review. . Geol. Soc. Lond. Spec. Publ. 299:(1):533
    [Google Scholar]
  232. Wilson B, Dewers T, Reches Z, Brune J. 2005.. Particle size and energetics of gouge from earthquake rupture zones. . Nature 434:(7034):74952
    [Google Scholar]
  233. Wong T-F. 1982.. Shear fracture energy of Westerly granite from post-failure behavior. . J. Geophys. Res. 87:(B2):9901000
    [Google Scholar]
  234. Wong T-F. 1986.. On the normal stress dependence of the shear fracture energy. . In Earthquake Source Mechanics, , pp. 111 Washington, DC:: AGU
    [Google Scholar]
  235. Yao L, Ma S, Shimamoto T, Togo T. 2013.. Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. . Tectonophysics 599::13556
    [Google Scholar]
  236. Yoshimitsu N, Kawakata H, Takahashi N. 2014.. Magnitude −7 level earthquakes: a new lower limit of self-similarity in seismic scaling relationships. . Geophys. Res. Lett. 41:(13):4495502
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071822-100304
Loading
/content/journals/10.1146/annurev-earth-071822-100304
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error