1932

Abstract

Distributed acoustic sensing (DAS) is an emerging technology that repurposes a fiber-optic cable as a dense array of strain sensors. This technology repeatedly pings a fiber with laser pulses, measuring optical phase changes in Rayleigh backscattered light. DAS is beneficial for studies of fine-scale processes over multi-kilometer distances, long-term time-lapse monitoring, and deployment in logistically challenging areas (e.g., high temperatures, power limitations, land access barriers). These benefits have motivated a decade of applications in subsurface imaging and microseismicity monitoring for energy production and carbon sequestration. DAS arrays have recorded microearthquakes, regional earthquakes, teleseisms, and infrastructure signals. Analysis of these wavefields is enabling earthquake seismology where traditional sensors were sparse, as well as structural and near-surface seismology. These studies improved understanding of DAS instrument response through comparison with traditional seismometers. More recently, DAS has been used to study cryosphere systems, marine geophysics, geodesy, and volcanology. Further advancement of geoscience using DAS requires several community efforts related to instrument access, training, outreach, and cyberinfrastructure.

  • ▪   DAS is a seismic acquisition technology repurposing fiber optics as arrays of dynamic strain sensors at 1- to 10-m spacing over kilometers.
  • ▪   Easy DAS installations have availed time-lapse geophysical sensing in formerly inaccessible sites: urban, icy, and offshore areas.
  • ▪   High-frequency wavefields recorded by DAS are analyzed with array-based methods to characterize seismic sources and image the subsurface.

  • ▪   DAS has shown low-frequency sensitivity in the laboratory and field, for slow hydrodynamic and geodynamic processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-072420-065213
2021-05-30
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-072420-065213.html?itemId=/content/journals/10.1146/annurev-earth-072420-065213&mimeType=html&fmt=ahah

Literature Cited

  1. Ajo-Franklin JB, Dou S, Lindsey NJ, Daley T, Freifeld B et al. 2017. Timelapse surface wave monitoring of permafrost thaw using distributed acoustic sensing and a permanent automated seismic source. SEG Tech. Prog. Expand. Abstr. 2017:5223–27
    [Google Scholar]
  2. Ajo-Franklin JB, Dou S, Lindsey NJ, Monga I, Tracy C et al. 2019. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep. 9:1328
    [Google Scholar]
  3. Baird A, Stork A, Horne S, Naldrett G, Kendall JM et al. 2020. Characteristics of microseismic data recorded by distributed acoustic sensing (DAS) systems in anisotropic media. Geophysics 85:KS139–47
    [Google Scholar]
  4. Bakku S. 2015. Fracture characterization from seismic measurements in a borehole PhD Thesis, Mass. Inst. Technol Cambridge, MA:
    [Google Scholar]
  5. Becker M, Ciervo C, Cole M, Coleman T, Mondanos M. 2017. Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies. Geophys. Res. Lett. 44:7295–302
    [Google Scholar]
  6. Becker MW, Ciervo C, Coleman T 2018. Laboratory testing of low frequency strain measured by distributed acoustic sensing. SEG Tech. Prog. Expand. Abstr. 2018:4963–66
    [Google Scholar]
  7. Becker MW, Coleman TI. 2019. Distributed acoustic sensing of strain at Earth tide frequencies. Sensors 19:1975
    [Google Scholar]
  8. Benioff H. 1935. A linear strain seismograph. Bull. Seismol. Soc. Am. 25:283–309
    [Google Scholar]
  9. Berger J, Lovberg R. 1970. Earth strain measurements with a laser interferometer: An 800-meter Michelson interferometer monitors the earth's strain field on the surface of the ground. Science 170:296–303
    [Google Scholar]
  10. Biondi B, Martin E, Cole S, Karrenbach M, Lindsey N. 2017. Earthquakes analysis using data recorded by the Stanford DAS array. SEG Tech. Prog. Expand. Abstr. 2017:2752–56
    [Google Scholar]
  11. Blum JA, Nooner SL, Zumberge MA. 2008. Recording Earth strain with optical fibers. IEEE Sens. J. 8:1152–60
    [Google Scholar]
  12. Bona A, Dean T, Correa J, Pevzner R, Tertyshnikov K, Zaanen LV. 2017. Amplitude and phase response of DAS receivers. 79th EAGE Conference and Exhibition in Paris, France1–5 Houten, Neth: EAGE
    [Google Scholar]
  13. Booth A, Christoffersen P, Schoonman C, Clarke A, Hubbard B et al. 2020. Distributed acoustic sensing (DAS) of seismic properties in a borehole drilled on a fast-flowing Greenlandic outlet glacier. Geophys. Res. Lett. 47:e2020GLO88148
    [Google Scholar]
  14. Bucaro J, Dardy H, Carome E. 1977. Fiber-optic hydrophone. J. Acoust. Soc. Am. 62:1302–4
    [Google Scholar]
  15. Castongia E, Wang HF, Lord N, Fratta D, Mondanos M, Chalari A. 2017. An experimental investigation of distributed acoustic sensing (DAS) on lake ice. J. Environ. Eng. Geophys. 22:167–76
    [Google Scholar]
  16. Cedilnik G, Hunt R, Lees G. 2018. Advances in train and rail monitoring with DAS. OSA Tech. Digest 2018:ThE35
    [Google Scholar]
  17. Clements T, Denolle M. 2018. Tracking groundwater levels using the ambient seismic field. Geophys. Res. Lett. 45:6459–65
    [Google Scholar]
  18. Cole J, Johnson R, Bhuta P 1977. Fiber-optic detection of sound. J. Acoust. Soc. Am. 62:1136–38
    [Google Scholar]
  19. Cole S, Karrenbach M, Kahn D, Rich J, Silver K, Langton D. 2018. Source parameter estimation from DAS microseismic data. SEG Tech. Prog. Expand. Abstr. 2018:4928–32
    [Google Scholar]
  20. Constantinou A, Farahani A, Cuny T, Hartog A. 2016. Improving DAS acquisition by real-time monitoring of wireline cable coupling. SEG Tech. Prog. Expand. Abstr. 2016:5603–7
    [Google Scholar]
  21. Correa J, Pevzner R, Bona A, Tertyshnikov K, Freifeld B et al. 2019. 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: a case study from the CO2CRC Otway Project. Interpretation 7:SA11–19
    [Google Scholar]
  22. Dakin J. 1990. Distributed fibre optic sensor system UK Patent GB2222247A
    [Google Scholar]
  23. Daley T, Freifeld B, Ajo-Franklin J, Dou S, Pevzner R et al. 2013. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Leading Edge 32:936–42
    [Google Scholar]
  24. Daley T, Miller D, Dodds K, Cook P, Freifeld B. 2016. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prospect. 64:1318–34
    [Google Scholar]
  25. Daley T, Solbau R, Ajo-Franklin J, Benson S 2007. Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72:A57–61
    [Google Scholar]
  26. Dean T, Cuny T, Hartog AH. 2017. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing. Geophys. Prospect. 65:184–93
    [Google Scholar]
  27. DeWolf S, Wyatt FK, Zumberge MA, Hatfield W. 2015. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain. Rev. Sci. Instrum. 86:114502
    [Google Scholar]
  28. Dou S, Ajo-Franklin J, Daley T, Robertson M, Wood T, Freifeld B. 2016. Surface orbital vibrator (SOV) and fiber-optic DAS: field demonstration of economical, continuous-land seismic time-lapse monitoring from the Australian CO2CRC Otway site. SEG Tech. Prog. Expand. Abstr. 2016:5552–56
    [Google Scholar]
  29. Dou S, Lindsey N, Wagner A, Daley T, Freifeld B et al. 2017. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry example. Sci. Rep. 7:11620
    [Google Scholar]
  30. Egorov A, Pevzner R, Bóna A, Glubokobskikh S, Puzyrev V et al. 2017. Time-lapse full waveform inversion of vertical seismic profile data: workflow and application to the CO2CRC Otway project. Geophys. Res. Lett. 44:7211–18
    [Google Scholar]
  31. Eickhoff W, Ulrich R. 1981. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 39:693–95
    [Google Scholar]
  32. Fang G, Li Y, Zhao Y, Martin E 2020. Urban near-surface seismic monitoring using distributed acoustic sensing. Geophys. Res. Lett. 47:e2019GL086115
    [Google Scholar]
  33. Farhadiroushan M, Parker TR, Shatalin S. 2009. Method and apparatus for optical sensing US Patent WO2010136810A2
    [Google Scholar]
  34. Fernández-Ruiz MR, Soto MA, Williams EF, Martin-Lopez S, Zhan Z et al. 2020. Distributed acoustic sensing for seismic activity monitoring. APL Photonics 5:030901
    [Google Scholar]
  35. Frignet B, Hartog A, Mackie D, Kotov O, Liokumovich L. 2014. Distributed vibration sensing on optical fibre: field testing in borehole seismic applications. Proc. SPIE 9157:91575N
    [Google Scholar]
  36. Gabai H, Eyal A. 2016. On the sensitivity of distributed acoustic sensing. Opt. Lett. 41:5648–51
    [Google Scholar]
  37. Gilley B, Atchison C, Feig A, Stokes A. 2015. Impact of inclusive field trips. Nat. Geosci. 8:579–80
    [Google Scholar]
  38. Güemes A, Fernández-López A, Díaz-Maroto P, Lozano A, Sierra-Perez J. 2018. Structural health monitoring in composite structures by fiber-optic sensors. Sensors 18:1094
    [Google Scholar]
  39. Harris K, White D, Samson C. 2017. Imaging the Aquistore reservoir after 36 kilotonnes of CO2 injection using distributed acoustic sensing. Geophysics 82:M81–96
    [Google Scholar]
  40. Hartog A. 2017. An Introduction to Distributed Optical Fibre Sensors Boca Raton, FL: CRC
    [Google Scholar]
  41. Hartog A, Frignet B, Mackie D, Clark M. 2014. Vertical seismic optical profiling on wireline logging cable. Geophys. Prospect. 62:693–701
    [Google Scholar]
  42. Huot F, Biondi B, Beroza G. 2018a. Jump-starting neural network training for seismic problems. SEG Tech. Prog. Expand. Abstr. 2018:2191–95
    [Google Scholar]
  43. Huot F, Martin E, Biondi B 2018b. Automated ambient noise processing applied to fiber optic seismic acquisition (DAS). SEG Tech. Prog. Expand. Abstr. 2018:4688–92
    [Google Scholar]
  44. Hutko A, Bahavar M, Trabant C, Weekly R, Van Fossen M, Ahern T. 2017. Data products at the IRIS-DMC: growth and usage. Seismol. Res. Lett. 88:892–903
    [Google Scholar]
  45. Inbal A, Cristea-Platon T, Ampuero JP, Hillers G, Agnew D, Hough SE. 2018. Sources of long-range anthropogenic noise in southern California and implications for tectonic tremor detection. Bull. Seismol. Soc. Am. 108:3511–27
    [Google Scholar]
  46. Iten M. 2012. Novel Applications of Distributed Fiber-Optic Sensing in Geotechnical Engineering Zurich: vdf Hochschulverlag AG
    [Google Scholar]
  47. Jakkampudi S, Shen J, Li W, Dev A, Zhu T, Martin E 2020. Footstep detection in urban seismic data with a convolutional neural network. Leading Edge 39:654–60
    [Google Scholar]
  48. Jin G, Roy B 2017. Hydraulic-fracture geometry characterization using low-frequency DAS signal. Leading Edge 36:975–80
    [Google Scholar]
  49. Jousset P, Reinsch T, Ryberg T, Blanck H, Clarke A et al. 2018. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 9:2509
    [Google Scholar]
  50. Karrenbach M, Cole S, Ridge A, Boone K, Kahn D et al. 2018. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing. Geophysics 84:D11–23
    [Google Scholar]
  51. Karrenbach M, Kahn D, Cole S, Ridge A, Boone K et al. 2017. Hydraulic-fracturing-induced strain and microseismic using in situ distributed fiber-optic sensing. Leading Edge 36:837–44
    [Google Scholar]
  52. Kishida K, Yamauchi Y, Guzik A. 2014. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system. Photonic Sens 4:1–11
    [Google Scholar]
  53. Kiyashchenko D, Mateeva A, Duan Y, Johnson D, Pugh J et al. 2020. Frequent 4D monitoring with DAS 3D VSP in deep water to reveal injected water-sweep dynamics. Leading Edge 39:471–79
    [Google Scholar]
  54. Kong Q, Allen RM, Schreier L, Kwon YW. 2016. Myshake: a smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2:e1501055
    [Google Scholar]
  55. Kowarik S, Hussels MT, Chruscicki S, Münzenberger S, Lämmerhirt A et al. 2020. Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis. Sensors 20:450
    [Google Scholar]
  56. Kreger ST, Klein JW, Rahim NAA, Bos JJ. 2015. Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry. Proc. SPIE 9480:948006
    [Google Scholar]
  57. Kuvshinov B. 2016. Interaction of helically wound fibre-optic cables with plane seismic waves. Geophys. Prospect. 64:671–88
    [Google Scholar]
  58. Lancelle C. 2016. Distributed acoustic sensing for imaging near-surface geology and monitoring traffic at Garner Valley, California PhD Thesis, Univ. Wisconsin–Madison Madison, WI:
    [Google Scholar]
  59. Lellouch A, Lindsey NJ, Ellsworth WL, Biondi BL. 2020a. Comparison between distributed acoustic sensing and geophones: downhole microseismic monitoring of the FORGE geothermal experiment. Seismol. Res. Lett. 91:63256–68
    [Google Scholar]
  60. Lellouch A, Meadows MA, Nemeth T, Biondi B. 2020b. Fracture properties estimation using digital acoustic sensing recording of guided waves in unconventional reservoirs. Geophysics 85:M85–95
    [Google Scholar]
  61. Lellouch A, Yuan S, Spica Z, Biondi B, Ellsworth W. 2019. Seismic velocity estimation using passive downhole distributed acoustic sensing records: examples from the San Andreas Fault Observatory at Depth. J. Geophys. Res. Solid Earth 124:6931–48
    [Google Scholar]
  62. Li YG, Leary P. 1990. Fault zone trapped seismic waves. Bull. Seismol. Soc. Am. 80:1245–71
    [Google Scholar]
  63. Li Z, Zhan Z. 2018. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: a case study at the Brady geothermal field. Geophys. J. Int. 215:1583–93
    [Google Scholar]
  64. Lim Chen Ning I, Sava P. 2018. Multicomponent distributed acoustic sensing: concept and theory. Geophysics 83:P1–8
    [Google Scholar]
  65. Lin FC, Li D, Clayton RW, Hollis D. 2013. High-resolution 3D shallow crustal structure in Long Beach, California: application of ambient noise tomography on a dense seismic array. Geophysics 78:Q45–56
    [Google Scholar]
  66. Lindsey N. 2019. Fiber-optic seismology in theory and practice PhD Thesis, Univ. Calif., Berkeley
    [Google Scholar]
  67. Lindsey NJ, Dawe TC, Ajo-Franklin JB. 2019. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366:1103–7
    [Google Scholar]
  68. Lindsey NJ, Martin ER, Dreger DS, Freifeld B, Cole S et al. 2017. Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44:11792–99
    [Google Scholar]
  69. Lindsey NJ, Rademacher H, Ajo-Franklin JB. 2020. On the broadband instrument response of fiber-optic DAS arrays. J. Geophys. Res. Solid Earth 125:e2019JB018145
    [Google Scholar]
  70. Lopez J, Mateeva A, Chalenski D, Przybysz-Jarnut J. 2017. Valuation of distributed acoustic sensing VSP for frequent monitoring in deepwater. SEG Tech. Prog. Expand. Abstr. 2017:6044–48
    [Google Scholar]
  71. Luo B, Trainor-Guitton W, Bozdaǧ E, LaFlame L, Cole S, Karrenbach M 2020. Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves. Geophys. J. Int. 222:2147–62
    [Google Scholar]
  72. Marra G, Clivati C, Luckett R, Tampellini A, Kronjäger J et al. 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361:486–90
    [Google Scholar]
  73. Martin E. 2018. Passive imaging and characterization of the subsurface with distributed acoustic sensing PhD Thesis, Stanford Univ. Stanford, CA:
    [Google Scholar]
  74. Martin E, Ajo-Franklin J, Lindsey N, Daley T, Freifeld B et al. 2015. Applying interferometry to ambient seismic noise recorded by a trenched distributed acoustic sensing array. SEP 158:247–54
    [Google Scholar]
  75. Martin E, Castillo C, Cole S, Sawasdee P, Yuan S et al. 2017a. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: active, passive, and ambient-noise analysis. Leading Edge 36:1025–31
    [Google Scholar]
  76. Martin E, Castillo C, Cole S, Sawasdee P, Yuan S et al. 2017b. Seismic monitoring leveraging existing telecom infrastructure at the Stanford distributed acoustic sensing array: active, passive and ambient noise analysis. Leading Edge 36:1025–31
    [Google Scholar]
  77. Martin E, Huot F, Ma Y, Cieplicki R, Cole S et al. 2018a. A seismic shift in scalable acquisition demands new processing: fiber-optic seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal. IEEE Signal Proc. Mag. 35:31–40
    [Google Scholar]
  78. Martin E, Lindsey N, Ajo-Franklin J, Biondi B. 2018b. Introduction to interferometry of fiber optic strain measurements. EarthArXiv. https://doi.org/10.31223/osf.io/s2tjd
    [Crossref]
  79. Martin E, Lindsey N, Dou S, Ajo-Franklin J, Wagner A et al. 2016. Interferometry of a roadside DAS array in Fairbanks. AK. SEG Tech. Prog. Expand. Abstr. 2016:2725–29
    [Google Scholar]
  80. Martins HF, Fernández-Ruiz MR, Costa L, Williams E, Zhan Z et al. 2019. Monitoring of remote seismic events in metropolitan area fibers using distributed acoustic sensing (DAS) and spatiotemporal signal processing Paper presented at the Optical Fiber Communication Conference Optical Society of America San Diego, CA: Mar. 3
    [Google Scholar]
  81. Masoudi A, Belal M, Newson T. 2013. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 24:085204
    [Google Scholar]
  82. Masoudi A, Newson TP. 2016. Contributed review: distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 87:011501
    [Google Scholar]
  83. Masoudi A, Pilgrim JA, Newson TP, Brambilla G. 2019. Subsea cable condition monitoring with distributed optical fiber vibration sensor. J. Lightwave Technol. 37:1352–58
    [Google Scholar]
  84. Mateeva A, Lopez J, Chalenski D, Tatanova M, Zwartjes P et al. 2017. 4D DAS VSP as a tool for frequent seismic monitoring in deep water. Leading Edge 36:995–1000
    [Google Scholar]
  85. Mateeva A, Lopez J, Mestayer J, Wills P, Cox B et al. 2013a. Distributed acoustic sensing for reservoir monitoring with VSP. Leading Edge 32:1278–83
    [Google Scholar]
  86. Mateeva A, Lopez J, Potters H, Mestayer J, Cox B et al. 2014. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys. Prospect. 62:679–92
    [Google Scholar]
  87. Mateeva A, Mestayer J, Cox B, Kiyashchenko D, Wills P et al. 2012. Advances in distributed acoustic sensing (DAS) for VSP. SEG Tech. Prog. Expand. Abstr. https://doi.org/10.1190/segam2012-0739.1
    [Crossref] [Google Scholar]
  88. Mateeva A, Mestayer J, Yang Z, Lopez J, Wills P et al. 2013b. Dual-well 3D VSP in deepwater made possible by DAS. SEG Tech. Prog. Expand. Abstr. 2013:5062–66
    [Google Scholar]
  89. McDaris J, Manduca C, Iverson E, Huyck Orr C 2018. Looking in the right places: minority-serving institutions as sources of diverse Earth science learners. J. Geosci. Educ. 65:407–15
    [Google Scholar]
  90. Mestayer J, Cox B, Wills P, Kiyashchenko D, Lopez J et al. 2011. Field trials of distributed acoustic sensing for geophysical monitoring. SEG Tech. Prog. Expand. Abstr. 2011:4253–57
    [Google Scholar]
  91. Milne D, Masoudi A, Ferro E, Watson G, Le Pen L 2020. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing. Mech. Syst. Sign. Proc. 142:106769
    [Google Scholar]
  92. Minardo A, Porcaro G, Giannetta D, Bernini R, Zeni L. 2013. Railway traffic monitoring using Brillouin distributed sensors. Proc. SPIE 8794:87943C
    [Google Scholar]
  93. Muanenda Y. 2018. Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. J. Sens. 2018:3897873
    [Google Scholar]
  94. Munn JD, Coleman TI, Parker BL, Mondanos MJ, Chalari A. 2017. Novel cable coupling technique for improved shallow distributed acoustic sensor VSPs. J. Appl. Geophys. 138:72–79
    [Google Scholar]
  95. Natl. Acad. Sci. Med 2020. A Vision for NSF Earth Sciences 2020–2030: Earth in Time Washington, DC: Natl. Acad.
    [Google Scholar]
  96. Paitz P, Sager K, Fichtner A. 2018. Rotation and strain ambient noise interferometry. Geophys. J. Int. 216:1938–52
    [Google Scholar]
  97. Papp B, Donno D, Martin JE, Hartog AH. 2017. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments. Geophys. Prospect. 65:1186–204
    [Google Scholar]
  98. Parker T, Shatalin S, Farhadiroushan M 2014. Distributed acoustic sensing—a new tool for seismic applications. First Break 32:61–69
    [Google Scholar]
  99. Pelecanos L, Soga K, Elshafie M, de Battista N, Kechavari C et al. 2018. Distributed fiber optic sensing of axially loaded bored piles. J. Geotech. Geoenviron. Eng. 144:04017122
    [Google Scholar]
  100. Peng F, Duan N, Rao YJ, Li J. 2014. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technol. Lett. 26:2055–57
    [Google Scholar]
  101. Posey R, Johnson G, Vohra S 2000. Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electron. Lett. 36:1688–89
    [Google Scholar]
  102. Rodríguez Tribaldos V, Ajo-Franklin J, Dou S, Lindsey N, Ulrich C et al. 2020. Surface wave imaging using distributed acoustic sensing deployed on dark fiber: moving beyond high frequency noise. EarthArXiv. https://doi.org/10.31223/osf.io/jb2na
    [Crossref]
  103. Rost S, Thomas C. 2002. Array seismology: methods and applications. Rev. Geophys. 40:2–12-27
    [Google Scholar]
  104. Schenato L, Palmieri L, Camporese M, Bersan S, Cola S et al. 2017. Distributed optical fibre sensing for early detection of shallow landslides triggering. Sci. Rep. 7:14686
    [Google Scholar]
  105. Schmandt B, Clayton RW. 2013. Analysis of teleseismic P waves with a 5200-station array in Long Beach, California: evidence for an abrupt boundary to inner borderland rifting. J. Geophys. Res. Solid Earth 118:5320–38
    [Google Scholar]
  106. Shan G, Kommedal J, Nahm J. 2015. VSP field trials of distributed acoustic sensing in Trinidad and Gulf of Mexico. SEG Tech. Prog. Expand. Abstr. 2015:5539–43
    [Google Scholar]
  107. Shapiro N, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 31:L07614
    [Google Scholar]
  108. Sherman C, Mellors R, Morris J, Ryerson F. 2019. Geomechanical modeling of distributed fiber-optic sensor measurements. Interpretation 7:SA21–27
    [Google Scholar]
  109. Sladen A, Rivet D, Ampuero JP, De Barros L, Hello Y et al. 2019. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 10:5777
    [Google Scholar]
  110. Soga K, Luo L. 2018. Distributed fiber optics sensors for civil engineering infrastructure sensing. J. Struct. Integr. Maint. 3:1–21
    [Google Scholar]
  111. Spica Z, Perton M, Martin E, Beroza G, Biondi B. 2020. Urban seismic site characterization by fiber-optic seismology. J. Geophys. Res. Solid Earth 125:e2019JB018656
    [Google Scholar]
  112. Spikes KT, Tisato N, Hess TE, Holt JW. 2019. Comparison of geophone and surface-deployed distributed acoustic sensing seismic data. Geophysics 84:A25–29
    [Google Scholar]
  113. Timofeev AV. 2015. Monitoring the railways by means of C-OTDR technology. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 9:634–37
    [Google Scholar]
  114. Wagner AM, Lindsey NJ, Dou S, Gelvin A, Saari S et al. 2018. Permafrost degradation and subsidence observations during a controlled warming experiment. Sci. Rep. 8:10908
    [Google Scholar]
  115. Walter F, Gräff D, Lindner F, Paitz P, Köpfli M et al. 2020. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 11:2436
    [Google Scholar]
  116. Wang H, Zeng X, Miller D, Fratta D, Feigle K et al. 2018. Ground motion response to a ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophys. J. Int. 312:2020–36
    [Google Scholar]
  117. Wang X, Williams E, Karrenbach M, González Herráez M, Fidalgo Martins H, Zhan Z 2020. Rose parade seismology: signatures of floats and bands on optical fiber. Seismol. Res. Lett. 91:2395–98
    [Google Scholar]
  118. Webster P, Wall J, Perkins C, Molenaar M. 2013. Micro-seismic detection using distributed acoustic sensing. SEG Tech. Prog. Expand. Abstr. 2013:2459–63
    [Google Scholar]
  119. Wheeler LN, Take WA, Hoult NA, Le H. 2019. Use of fiber optic sensing to measure distributed rail strains and determine rail seat forces under a moving train. Can. Geotech. J. 56:1–13
    [Google Scholar]
  120. Wiesmeyr C, Litzenberger M, Waser M, Papp A, Garn H et al. 2020. Real-time train tracking from distributed acoustic sensing data. Appl. Sci. 10:448
    [Google Scholar]
  121. Williams EF, Fernández-Ruiz MR, Magalhaes R, Vanthillo R, Zhan Z et al. 2019. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 10:5778
    [Google Scholar]
  122. Woolard A, Tarazaga P. 2018. Applications of dispersion compensation for indoor vibration event localization. J. Vib. Control 24:5108–17
    [Google Scholar]
  123. Yavuz S, Freifeld B, Pevzner R, Dzunic A, Ziramov S et al. 2019. The initial appraisal of buried DAS system in CO2CRC Otway Project: the comparison of buried standard fibre-optic and helically wound cables using 2D imaging. Explor. Geophys. 50:12–21
    [Google Scholar]
  124. Yu C, Zhan Z, Lindsey NJ, Ajo-Franklin JB, Robertson M. 2019. The potential of DAS in teleseismic studies: insights from the Goldstone experiment. Geophys. Res. Lett. 46:1320–28
    [Google Scholar]
  125. Yuan S, Lellouch A, Clapp R, Biondi B. 2020. Near-surface characterization using a roadside distributed acoustic sensing array. arXiv:2006.01360 [physics.geo-ph]
  126. Zeng X, Lancelle C, Thurber C, Fratta D, Wang H et al. 2017. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California. Bull. Seismol. Soc. Am. 107:603–10
    [Google Scholar]
  127. Zeng X, Thurber C, Wang H, Fratta D, Matzel E, PoroTomo Team 2016. High-resolution shallow structure revealed with ambient noise tomography on a dense array Paper presented at the 42nd Workshop on Geothermal Reservoir Engineering Stanford, CA: Feb. 13–15
    [Google Scholar]
  128. Zhang CC, Shi B, Gu K, Liu SP, Wu JH et al. 2018. Vertically distributed sensing of deformation using fiber optic sensing. Geophys. Res. Lett. 45:11732–41
    [Google Scholar]
  129. Zhirnov A, Fedorov A, Stepanov K, Nesterov E, Karasik V et al. 2016. Effects of laser frequency drift in phase-sensitive optical time-domain reflectometry fiber sensors. arXiv:1604.08854 [physics.ins-det]
  130. Zhou J, Pan Z, Ye Q, Cai H, Qu R, Fang Z. 2013. Characteristics and explanations of interference fading of a φ-OTDR with a multi-frequency source. J. Lightwave Technol. 31:2947–54
    [Google Scholar]
  131. Zhu T, Shen J, Martin ER. 2020. Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania USA. Solid Earth Discuss https://doi.org/10.5194/se-2020-103
    [Crossref] [Google Scholar]
  132. Zhu T, Stensrud DJ. 2019. Characterizing thunder-induced ground motions using fiber-optic distributed acoustic sensing array. J. Geophys. Res. Atmos. 124:12810–23
    [Google Scholar]
  133. Zumberge MA, Hatfield W, Wyatt FK. 2018. Measuring seafloor strain with an optical fiber interferometer. Earth Space Sci 5:371–79
    [Google Scholar]
  134. Zumberge MA, Wyatt FK, Dong XY, Hanada H. 1988. Optical fibers for measurement of Earth strain. Appl. Opt. 27:4131–38
    [Google Scholar]
/content/journals/10.1146/annurev-earth-072420-065213
Loading
/content/journals/10.1146/annurev-earth-072420-065213
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error