1932

Abstract

A remarkable diversity of plant-eating mammals known as South American native ungulates (SANUs) flourished in South America for most of the Cenozoic. Although some of these species likely filled ecological niches similar to those of modern hoofed mammals, others differed substantially from extant artiodactyls and perissodactyls in their skull and limb anatomy and probably also in their ecology. Notoungulates and litopterns were the longest-lived and most diverse SANU clades and survived into the Quaternary; astrapotheres went extinct in the late Miocene, whereas other SANU groups were restricted to the Paleogene. Neogene notoungulates were quite specialized in craniodental structure, but many were rather unspecialized postcranially; in contrast, litopterns evolved limb specializations early in their history while maintaining more conservative dentitions. In this article, we review the current understanding of SANU evolutionary relationships and paleoecology, provide an updated compilation of genus temporal ranges, and discuss possible directions for future research.

  • ▪   South American native ungulates (SANUs) were a diverse, long-lived, and independent radiation of mammals into varied terrestrial plant-eater niches.
  • ▪   We review origins, evolution, and paleoecology of the major SANU clades: Notoungulata, Litopterna, Astrapotheria, Xenungulata, and Pyrotheria.
  • ▪   At their peak, during the Eocene and Oligocene, more than 40 genera of native ungulates inhabited South America at any one time.
  • ▪   SANUs ranged from <1 kg to several tons and evolved many combinations of diet and locomotor adaptations not seen in living ungulates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-072619-060126
2020-05-30
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-072619-060126.html?itemId=/content/journals/10.1146/annurev-earth-072619-060126&mimeType=html&fmt=ahah

Literature Cited

  1. Agnolín FL, Chimento NR. 2011. Afrotherian affinities for endemic South American “ungulates. .” Mamm. Biol. 76:101–8
    [Google Scholar]
  2. Antoine P-O, Billet G, Salas-Gismondi R, Lara J, Baby P et al. 2015. A new Carodnia Simpson, 1935 (Mammalia, Xenungulata) from the early Eocene of northwestern Peru and a phylogeny of xenungulates at species level. J. Mamm. Evol. 22:129–40
    [Google Scholar]
  3. Barnosky AD, Lindsey EL. 2010. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217:10–29
    [Google Scholar]
  4. Bastos ACF, Bergqvist LP. 2007. A postura locomotora de Protolipterna ellipsodontoides Cifelli 1993 (Mammalia: Litopterna: Protolipternidae) de Bacia de São José de Itaboraí, Rio de Janeiro (Paleoceno superior). Anu. Inst. Geociênc. 30:58–66
    [Google Scholar]
  5. Bergqvist LP. 1996. Reassociação do pós-crânio às espécies de ungulados da Bacia de S.J de ltaboraí (Paleoceno), Estado do Rio de Janeiro, e filogenia dos “Condylarthra” e ungulados sul-americanos com base nopós-crânio. Tese de Doutorado Thesis Univ. Fed. Rio J .
    [Google Scholar]
  6. Bergqvist LP. 2005. Postcranial synapomorphies supporting the monophyly of the Order Litopterna. 2nd Congresso Latino-Americano de Paleontologia de Vertebrados, Rio de Janeiro 1:48–49 Abstr .)
    [Google Scholar]
  7. Bergqvist LP, von Koenigswald W 2017. The dentition of Carodnia vieirai (Mammalia: Xenungulata): enamel microstructure and mastication pattern. Palaeontol. Electron. 20:20.2.30A
    [Google Scholar]
  8. Billet G. 2010. New observations on the skull of Pyrotherium (Pyrotheria, Mammalia) and new phylogenetic hypotheses on South American ungulates. J. Mamm. Evol. 17:21–59
    [Google Scholar]
  9. Billet G. 2011. Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J. Syst. Palaeontol. 9:481–97
    [Google Scholar]
  10. Billet G, de Muizon C, Schellhorn R, Ruf I, Ladevèze S, Bergqvist L 2015. Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia). Zoolog. J. Linn. Soc. 173:956–87
    [Google Scholar]
  11. Billet G, Martin T. 2011. No evidence for an afrotherian-like delayed dental eruption in South American notoungulates. Naturwissenschaften 98:509–17
    [Google Scholar]
  12. Bonaparte JF, Morales J. 1997. Un primitivo Notonychopidae (Litopterna) del Paleoceno inferior de Punta Peligro, Chubut, Argentina. Estud. Geol. 53:263–74
    [Google Scholar]
  13. Bond M. 1986. Los ungulados fósiles de Argentina: evolución y paleoambientes. Actas IV Congr. Argent. Paleontol. Bioestratigr. 2:173–85
    [Google Scholar]
  14. Bond M. 1999. Quaternary native ungulates of southern South America. A synthesis. Quat. S. Am. Antarct. Penins. 12:177–206
    [Google Scholar]
  15. Bond M, Kramarz A, MacPhee RDE, Reguero M 2011. A new astrapothere (Mammalia, Meridiungulata) from La Meseta Formation, Seymour (Marambio) Island, and a reassessment of previous records of Antarctic astrapotheres. Am. Mus. Novit. 3718:1–16
    [Google Scholar]
  16. Bond M, Perea D, Ubilla M, Tauber A 2001. Neolicaphrium recens Frenguelli, 1921, the only surviving Proterotheriidae (Litopterna, Mammalia) into the South American Pleistocene. Palaeovertebrata 30:37–50
    [Google Scholar]
  17. Bond M, Reguero MA, Vizcaíno SF, Marenssi SA 2006. A new ‘South American ungulate’ (Mammalia: Litopterna) from the Eocene of the Antarctic Peninsula. Geol. Soc. Lond. Spec. Publ. 258:163–76
    [Google Scholar]
  18. Bond M, Vucetich MG. 1983. Indalecia grandensis gen. et sp. nov. del Eoceno temprano del noroeste argentino, tipo de una nueva subfamilia de los Adianthidae (Mammalia, Litopterna). Rev. Asoc. Geol. Argent. 38:107–17
    [Google Scholar]
  19. Brinkman PD. 2010. Charles Darwin's Beagle voyage, fossil vertebrate succession, and “the gradual birth & death of species. .” J. Hist. Biol. 43:363–99
    [Google Scholar]
  20. Buckley M. 2015. Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates. .’ Proc. R. Soc. B: Biol. Sci. 282:20142671
    [Google Scholar]
  21. Cain A. 1984. Islands and evolution: theory and opinion in Darwin's earlier years. Biol. J. Linn. Soc. 21:5–27
    [Google Scholar]
  22. Carlini AA, Gelfo JN, Sánchez R 2006. A new Megadolodinae (Mammalia, Litopterna, Proterotheriidae) from the Urumaco Formation (late Miocene) of Venezuela. J. Syst. Palaeontol. 4:279–84
    [Google Scholar]
  23. Carrillo JD, Amson E, Jaramillo C, Sánchez R, Quiroz L et al. 2018. The Neogene record of northern South American native ungulates. Smithson. Contrib. Paleobiol. 101:1–67
    [Google Scholar]
  24. Carrillo JD, Asher RJ. 2017. An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina. Palaeontol. Electron. 20:20.2.34A
    [Google Scholar]
  25. Cassini GH, Cerdeño E, Villafañe A, Muñoz NA 2012. Paleobiology of Santacrucian native ungulates (Meridiungulata; Astrapotheria, Litopterna and Notoungulata). Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation SF Vizcaíno, RF Kay, MS Bargo 243–86 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  26. Chaffee RG. 1952. The Deseadan vertebrate fauna of the Scarritt Pocket, Patagonia. Bull. Am. Mus. Nat. Hist. 98:509–62
    [Google Scholar]
  27. Cifelli RL. 1983a. Eutherian tarsals from the late Paleocene of Brazil. Am. Mus. Novit. 2761:1–31
    [Google Scholar]
  28. Cifelli RL. 1983b. The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am. Mus. Novit. 2772:1–49
    [Google Scholar]
  29. Cifelli RL. 1991. A new adianthid litoptern (Mammalia) from the Miocene of Chile. Rev. Chil. Hist. Nat. 64:119–25
    [Google Scholar]
  30. Cifelli RL. 1993. The phylogeny of the native South American ungulates. Mammal Phylogeny: Placentals FS Szalay, MJ Novacek, MC McKenna 195–216 New York: Springer-Verlag
    [Google Scholar]
  31. Cifelli RL, Guerrero J. 1997. Litopterns. Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia RF Kay, RH Madden, RL Cifelli, JJ Flynn 289–302 Washington, DC: Smithsonian Inst.
    [Google Scholar]
  32. Cifelli RL, Soria MF. 1983. Systematics of the Adianthidae (Litopterna, Mammalia). Am. Mus. Novit. 2771:1–25
    [Google Scholar]
  33. Cione AL, Soibelzon L, Tonni EP 2003. The broken zig-zag: late Cenozoic large mammal and tortoise extinction in South America. Rev. Mus. Argent. Cienc. Nat. 5:1–19
    [Google Scholar]
  34. Coombs MC. 1983. Large mammalian clawed herbivores: a comparative study. Trans. Am. Philos. Soc. 73:1–96
    [Google Scholar]
  35. Corona A, Ubilla M, Perea D 2019. New records and diet reconstruction using dental microwear analysis for Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae). Andean Geol 46:153–67
    [Google Scholar]
  36. Croft DA. 2016. Horned Armadillos and Rafting Monkeys: The Fascinating Fossil Mammals of South America Bloomington: Indiana Univ. Press
    [Google Scholar]
  37. Croft DA. 2017. Patterns of limb elongation in endemic South American ungulates (Notoungulata and Litopterna) as measured by metatarsal/femur ratio. J. Vertebrate Paleontol. 2017:100 Abstr .)
    [Google Scholar]
  38. Croft DA, Anaya F. 2006. A new middle Miocene hegetotheriid (Notoungulata: Typotheria) and a phylogeny of the Hegetotheriidae. J. Vertebr. Paleontol. 26:387–99
    [Google Scholar]
  39. Croft DA, Anderson LC. 2008. Locomotion in the extinct notoungulate Protypotherium. Palaeontol. Electron 11:11.1.1A
    [Google Scholar]
  40. Croft DA, Carlini AA, Ciancio MR, Brandoni D, Drew NE et al. 2016. New mammal faunal data from Cerdas, Bolivia, a middle-latitude Neotropical site that chronicles the end of the Middle Miocene Climatic Optimum in South America. J. Vertebr. Paleontol. 36:e1163574
    [Google Scholar]
  41. Croft DA, Flynn JJ, Wyss AR 2004. Notoungulata and Litopterna of the early Miocene Chucal Fauna, northern Chile. Fieldiana Geol 50:1–52
    [Google Scholar]
  42. Croft DA, Flynn JJ, Wyss AR 2008. The Tinguiririca Fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arq. Mus. Nac. Rio J. 66:191–211
    [Google Scholar]
  43. Croft DA, Guder P. 2014. Analysis of intramembral proportions in endemic South American ungulates and comparisons to modern taxa. 4th International Paleontological Congress—Abstract Volume C Rubenstein 190 Mendoza, Argentina: CCT-CONICET
    [Google Scholar]
  44. Croft DA, Martinez J-N, Tapia PM. 2019. The first record of a Miocene terrestrial mammal (Astrapotheriidae: Uruguaytheriinae) from northern coastal Peru. Ameghiniana In press. https://doi.org/10.5710/AMGH.01.10.2019.3265
    [Crossref] [Google Scholar]
  45. Croft DA, Weinstein D. 2008. The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeogr. Palaeoclimatol. Palaeoecol. 269:103–14
    [Google Scholar]
  46. Damuth J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements. Body Size in Mammalian Paleobiology: Estimation and Biological Implications J Damuth, BJ MacFadden 229–53 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  47. de Muizon C, Billet G, Argot C, Ladevèze S, Goussard F 2015. Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology. Geodiversitas 37:397–634
    [Google Scholar]
  48. de Muizon C, Cifelli RL 2000. The “condylarths” (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): implications on the origin of the South American ungulates. Geodiversitas 22:47–150
    [Google Scholar]
  49. de Muizon C, Cifelli RL, Bergqvist LP 1998. Eutherian tarsals from the early Paleocene of Bolivia. J. Vertebr. Paleontol. 18:655–63
    [Google Scholar]
  50. de Paula Couto C. 1952. Fossil mammals from the beginning of the Cenozoic in Brazil. Condylarthra, Litopterna, Xenungulata and Astrapotheria. Bull. Am. Mus. Nat. Hist. 99:359–94
    [Google Scholar]
  51. del Papa C, Kirschbaum A, Powell J, Brod A, Hongn F, Pimentel M 2010. Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: a new approach for reconstructing an Eocene foreland basin in NW Argentina. J. S. Am. Earth Sci. 29:327–45
    [Google Scholar]
  52. Dozo MT, Martínez G. 2016. First digital cranial endocasts of late Oligocene Notohippidae (Notoungulata): implications for endemic South American ungulates brain evolution. J. Mamm. Evol. 23:1–16
    [Google Scholar]
  53. Dunn RE, Strömberg CAE, Madden RH, Kohn MJ, Carlini AA 2015. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347:258–61
    [Google Scholar]
  54. Elissamburu A. 2004. Análisis morfométrico y morfofunctional del esqueleto appendicular de Paedotherium (Mammalia, Notoungulata). Ameghiniana 41:363–80
    [Google Scholar]
  55. Elissamburu A. 2010. Estudio biomecánico y morfofuncional del esqueleto apendicular de Homalodotherium Flower 1873 (Mammalia, Notoungulata). Ameghiniana 47:25–43
    [Google Scholar]
  56. Elissamburu A. 2012. Estimación de la masa corporal en géneros del Orden Notoungulata. Estud. Geol. 68:91–111
    [Google Scholar]
  57. Ercoli MD, Álvarez A, Candela AM 2019. Sciuromorphy outside rodents reveals an ecomorphological convergence between squirrels and extinct South American ungulates. Commun. Biol. 2:202
    [Google Scholar]
  58. Fariña RA, Blanco RE, Christiansen P 2005. Swerving as the escape strategy of Macrauchenia patachonica Owen (Mammalia; Litopterna). Ameghiniana 42:751–60
    [Google Scholar]
  59. Fariña RA, Vizcaíno SF, Bargo MS 1998. Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozool. Neotrop. 5:87–108
    [Google Scholar]
  60. Fernández-Monescillo M, Quispe BM, Pujos F, Antoine P-O 2018. Functional anatomy of the forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and evolutionary insights at the family level. J. Mamm. Evol. 25:197–211
    [Google Scholar]
  61. Fernicola JC, Vizcaíno SF, De Iuliis G 2009. The fossil mammals collected by Charles Darwin in South America during his travels on board the HMS Beagle. Rev. Asoc. Geol. Argent. 64:147–59
    [Google Scholar]
  62. Flynn JJ, Wyss AR, Croft DA, Charrier R 2003. The Tinguiririca fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal “Age. .” Palaeogeogr. Palaeoclimatol. Palaeoecol. 195:229–59
    [Google Scholar]
  63. Forasiepi AM, MacPhee RDE, Hernández del Pino S, Schmidt GI, Amson E, Grohé C 2016. Exceptional skull of Huayqueriana (Mammalia, Litopterna, Macraucheniidae) from the late Miocene of Argentina: anatomy, systematics, and paleobiological implications. Bull. Am. Mus. Nat. Hist. 404:1–76
    [Google Scholar]
  64. Fortelius M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool. Fennica 108:1–76
    [Google Scholar]
  65. García-López DA, Babot MJ. 2014. The auditory region of the middle Eocene Litopterna Indalecia grandensis Bond & Vucetich, 1983: anatomical and phylogenetic approach. 4th International Paleontological Congress—Abstract Volume C Rubenstein 183 Mendoza, Argentina: CCT-CONICET
    [Google Scholar]
  66. Gelfo JN. 2004. A new South American mioclaenid (Mammalia: Ungulatomorpha) from the Tertiary of Pat-agonia, Argentina. Ameghiniana 41:475–84
    [Google Scholar]
  67. Gelfo JN. 2006. Los Didolodontidae (Mammalia: Ungulatomorpha) del Terciario Sudamericano. Sistemática, origen y evolución PhD Thesis, Univ. Nacional de La Plata
    [Google Scholar]
  68. Gelfo JN. 2007. The ‘condylarth’ Raulvaccia peligrensis (Mammalia: Didolodontidae) from the Paleocene of Patagonia, Argentina. J. Vertebr. Paleontol. 27:651–60
    [Google Scholar]
  69. Gelfo JN. 2010. The “condylarth” Didolodontidae from Gran Barranca: history of the bunodont South American mammals up to the Eocene-Oligocene transition. The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia RH Madden, AA Carlini, MG Vucetich, RF Kay 130–42 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  70. Gelfo JN. 2016. Considerations about the evolutionary stasis of Notiolofos arquinotiensis (Mammalia: Sparnotheriodontidae), Eocene of Seymour Island, Antarctica. Ameghiniana 53:316–32
    [Google Scholar]
  71. Gelfo JN, López GM, Bond M 2008. A new Xenungulata (Mammalia) from the Paleocene of Patagonia, Argentina. J. Paleontol. 82:329–35
    [Google Scholar]
  72. Gelfo JN, López GM, Lorente M 2016. Los ungulados arcaicos de América del Sur: “Condylarthra” y Litopterna. Contribuciones Del Museo Argent. De Cienc. Naturales 6:285–91
    [Google Scholar]
  73. Gelfo JN, Lorente M. 2010. Asociaciones de elementos postcraneales en ungulados nativos del Paleógeno. Rev. Cienc. Morfol. 12:1–6
    [Google Scholar]
  74. Gelfo JN, Lorente M. 2012. The alleged astragalar remains of Didolodus Ameghino, 1897 (Mammalia, Panameriungulata) and a critic of isolated bone association models. Bull. Geosci. 87:249–59
    [Google Scholar]
  75. Goillot C, Antoine PO, Tejada J, Pujos F, Gismondi RS 2011. Middle Miocene Uruguaytheriinae (Mammalia, Astrapotheria) from Peruvian Amazonia and a review of the astrapotheriid fossil record in northern South America. Geodiversitas 33:331–45
    [Google Scholar]
  76. Gomes Rodrigues H, Herrel A, Billet G 2017. Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals. PNAS 114:1069–74
    [Google Scholar]
  77. Green JL, Croft DA. 2018. Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities DA Croft, DF Su, SW Simpson 53–73 Cham, Switz: Springer Nature
    [Google Scholar]
  78. Higgins P. 2018. Isotope ecology from biominerals. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities DA Croft, DF Su, SW Simpson 99–120 Cham, Switz: Springer Nature
    [Google Scholar]
  79. Hopkins SSB. 2018. Estimation of body size in fossil mammals. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities DA Croft, DF Su, SW Simpson 7–22 Cham, Switz: Springer Nature
    [Google Scholar]
  80. Houssaye A, Fernandez V, Billet G 2016. Hyperspecialization in some South American endemic ungulates revealed by long bone microstructure. J. Mamm. Evol. 23:221–35
    [Google Scholar]
  81. Janis CM. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. Teeth Revisited: Proceedings of the VIIth International Congress of Dental Morphology DE Russell, JP Santoro, D Sigogneau-Russell 371–91 Paris: Editions du Muséum
    [Google Scholar]
  82. Janis CM. 2007. Artiodactyl paleoecology and evolutionary trends. The Evolution of Artiodactyls DR Prothero, SE Foss 292–302 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  83. Jerison HJ. 1971. Quantitative analysis of the evolution of the camelid brain. Am. Nat. 105:227–39
    [Google Scholar]
  84. Johnson SC, Madden RH. 1997. Uruguaytheriine astrapotheres of tropical South America. Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia RF Kay, RH Madden, RL Cifelli, JJ Flynn 355–81 Washington, DC: Smithsonian Inst.
    [Google Scholar]
  85. Kay RF, Madden RH. 1997. Paleogeography and paleoecology. Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia RF Kay, RH Madden, RL Cifelli, JJ Flynn 520–50 Washington, DC: Smithsonian Inst.
    [Google Scholar]
  86. Kohn MJ, Strömberg CAE, Madden RH, Dunn RE, Evans S et al. 2015. Quasi-static Eocene–Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435:24–37
    [Google Scholar]
  87. Kramarz AG, Bond M. 2011. A new early Miocene astrapotheriid (Mammalia, Astrapotheria) from Northern Patagonia, Argentina. Neues Jahrb. Geol. Paläontol.-Abh. 260:277–87
    [Google Scholar]
  88. Kramarz AG, Bond M. 2014a. Critical revision of the alleged delayed dental eruption in South American “ungulates. .” Mamm. Biol. 79:170–75
    [Google Scholar]
  89. Kramarz AG, Bond M. 2014b. Reconstruction of the dentition of Propyrotherium saxeum Ameghino, 1901 (Mammalia, Pyrotheria): taxonomic and phylogenetic implications. J. Vertebr. Paleontol. 34:434–43
    [Google Scholar]
  90. Kramarz AG, Bond M, Rougier GW 2017. Re-description of the auditory region of the putative basal astrapothere (Mammalia) Eoastrapostylops riolorense Soria and Powell, 1981. Systematic and phylogenetic considerations. Ann. Carnegie Mus. 84:95–164
    [Google Scholar]
  91. López GM. 2010. Divisaderan: Land Mammal Age or local fauna?. The Paleontology of Gran Barranca. Evolution and Environmental Change Through the Middle Cenozoic of Patagonia RH Madden, AA Carlini, MG Vucetich, RF Kay 410–20 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  92. Lorente M. 2015. Desarrollo de modelos de asociación y clasificaciones de restos postcraneanos aislados de ungulados nativos del Paleoceno-Eoceno de América del Sur PhD Thesis, Univ. Nacional de La Plata
    [Google Scholar]
  93. Lorente M, Gelfo JN, López GM 2014. Postcranial anatomy of the early notoungulate Allalmeia atalaensis from the Eocene of Argentina. Alcheringa 38:398–411
    [Google Scholar]
  94. Lorente M, Gelfo JN, López GM 2019. First skeleton of the notoungulate mammal Notostylops murinus and palaeobiology of Eocene Notostylopidae. Lethaia 52:244–59
    [Google Scholar]
  95. Lucas SG. 1986. Pyrothere systematics and a Caribbean route for land-mammal dispersal during the Paleocene. Rev. Geol. Am. Cent. 5:1–35
    [Google Scholar]
  96. Maas MC. 1997. Enamel microstructure in notoungulates. Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia RF Kay, RH Madden, RL Cifelli, JJ Flynn 319–34 Washington, DC: Smithsonian Inst.
    [Google Scholar]
  97. MacFadden BJ. 2005. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat. Res. 64:113–24
    [Google Scholar]
  98. MacFadden BJ, Shockey BJ. 1997. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23:77–100
    [Google Scholar]
  99. MacFadden BJ, Wang Y, Cerling TE, Anaya F 1994. South American fossil mammals and carbon isotopes: a 25 million-year sequence from the Bolivian Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol 107:257–68
    [Google Scholar]
  100. Macrini TE, Flynn JJ, Ni X, Croft DA, Wyss AR 2013. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters. J. Anat. 223:442–61
    [Google Scholar]
  101. Madden RH. 2015. Hypsodonty in Mammals Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  102. McGrath AJ, Anaya F, Croft DA 2018. Two new macraucheniids (Mammalia: Litopterna) from the late middle Miocene (Laventan South American Land Mammal Age) of Quebrada Honda, Bolivia. J. Vertebr. Paleontol. 38:e1461632
    [Google Scholar]
  103. McGrath AJ, Anaya F, Croft DA 2019. Hidden in the tropics: new trends in diversity and body size in a clade of South American native ungulates (Litopterna). Geol. Soc. Am. 51: Abstr .)
    [Google Scholar]
  104. McGrath AJ, Wyss AR. 2017. Escape behaviors in litopterns (Meridiungulata; Mammalia) across the Great American Biotic Interchange. J. Vertebr. Paleontol. 2017:161 Abstr .)
    [Google Scholar]
  105. McKenna MC. 1975. Toward a phylogenetic classification of the Mammalia. Phylogeny of the Primates WP Luckett, FS Szalay 21–46 New York: Plenum
    [Google Scholar]
  106. McKenna MC, Bell SK. 1997. Classification of Mammals Above the Species Level New York: Columbia Univ. Press
    [Google Scholar]
  107. Morosi E, Ubilla M. 2019. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 31:196–202
    [Google Scholar]
  108. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A et al. 2013. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–67
    [Google Scholar]
  109. Palazzesi L, Barreda V. 2012. Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nat. Comm. 3:1294
    [Google Scholar]
  110. Pascual R, Odreman Rivas O 1973. Las unidades estratigráficas del Terciario portadoras de mamíferos. Su distribución y sus relaciones con los acontecimientos diastróficos. Actas 5th Congr. Geol. Argent. 3:293–338
    [Google Scholar]
  111. Pascual R, Ortiz-Jaureguizar E, Prado JL 1996. Land mammals: paradigm for Cenozoic South American geobiotic evolution. Contributions of Southern South America to Vertebrate Paleontology G Arratia, AM Albino 265–319 Munich: Pfeil
    [Google Scholar]
  112. Pascual R, Vucetich MG, Fernández J 1978. Los primeros mamíferos (Notoungulata, Henricosborniidae) de la Formación Mealla (Group Salta, Subgrupo Santa Barbara). Sus implicancias filogenéticas, taxonómicas y cronológicas. Ameghiniana 15:366–90
    [Google Scholar]
  113. Patterson B. 1977. A primitive pyrothere (Mammalia, Notoungulata) from the early Tertiary of northwestern Venezuela. Fieldiana Geol 33:397–422
    [Google Scholar]
  114. Patterson B, Pascual R. 1968. The fossil mammal fauna of South America. Q. Rev. Biol. 43:409–51
    [Google Scholar]
  115. Reguero MA, Candela AM, Cassini GH 2010. Hypsodonty and body size in rodent-like notoungulates. The Paleontology of Gran Barranca. Evolution and Environmental Change Through the Middle Cenozoic of Patagonia RH Madden, AA Carlini, MG Vucetich, RF Kay 362–71 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  116. Rensberger JM, Pfretzschner HU. 1992. Enamel structure in astrapotheres and its functional implications. Scan. Microsc. 6:495–510
    [Google Scholar]
  117. Riggs ES. 1935. A skeleton of Astrapotherium. Field Mus. Nat. Hist 6:167–76
    [Google Scholar]
  118. Riggs ES. 1937. Mounted skeleton of Homalodotherium. Field Mus. Nat. Hist 6:233–43
    [Google Scholar]
  119. Sánchez-Villagra MR, Burnham RJ, Campbell DC, Feldmann RM, Gaffney ES et al. 2000. A new near-shore marine fauna and flora from the early Neogene of northwestern Venezuela. J. Paleontol. 74:957–68
    [Google Scholar]
  120. Scarano AC, Carlini AA, Illius AW 2011. Interatheriidae (Typotheria; Notoungulata), body size and paleoecology characterization. Mamm. Biol. 76:109–14
    [Google Scholar]
  121. Scott WB. 1910. Mammalia of the Santa Cruz Beds. Volume VII, Paleontology. Part I, Litopterna. Reports of the Princeton University Expeditions to Patagonia, 1896–1899 WB Scott 1–156 Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  122. Scott WB. 1912. Mammalia of the Santa Cruz Beds. Volume VI, Paleontology. Part II, Toxodonta. Reports of the Princeton University Expeditions to Patagonia, 1896-1899 WB Scott 111–238 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  123. Scott WB. 1937. The Astrapotheria. Proc. Am. Philos. Soc. 77:309–93
    [Google Scholar]
  124. Shockey BJ. 1997. Two new notoungulates (Family Notohippidae) from the Salla Beds of Bolivia (Deseadan: late Oligocene): systematics and functional morphology. J. Vertebr. Paleontol. 17:584–99
    [Google Scholar]
  125. Shockey BJ. 1999. Postcranial osteology and functional morphology of the Litopterna of Salla, Bolivia (late Oligocene). J. Vertebr. Paleontol. 19:383–90
    [Google Scholar]
  126. Shockey BJ. 2001. Specialized knee joints in some extinct, endemic, South American herbivores. Acta Palaeontol. Pol. 46:277–88
    [Google Scholar]
  127. Shockey BJ, Anaya F. 2004. Pyrotherium macfaddeni, sp. nov. (late Oligocene, Bolivia) and the pedal morphology of pyrotheres. J. Vertebr. Paleontol. 24:481–88
    [Google Scholar]
  128. Shockey BJ, Anaya F. 2008. Postcranial osteology of mammals from Salla, Bolivia (late Oligocene): form, function, and phylogenetic implications. Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay EJ Sargis, M Dagosto 135–57 New York: Springer
    [Google Scholar]
  129. Shockey BJ, Croft DA, Anaya F 2007. Analysis of function in the absence of extant functional analogs: a case study of mesotheriid notoungulates. Paleobiology 33:227–47
    [Google Scholar]
  130. Shockey BJ, Flynn JJ. 2007. Morphological diversity in the postcranial skeleton of Casamayoran (?middle to late Eocene) Notoungulata and foot posture in notoungulates. Am. Mus. Novit. 3601:1–26
    [Google Scholar]
  131. Simpson GG. 1950. History of the faunas of Latin America. Am. Sci. 38:361–89
    [Google Scholar]
  132. Simpson GG. 1980. Splendid Isolation: The Curious History of South American Mammals New Haven, CT: Yale Univ. Press
    [Google Scholar]
  133. Soria MF. 1980a. Las afinidades de Phoradiadus divortiensis Simpson, Minoprio y Patterson, 1962. Circ. Inf. Asoc. Paleontol. Argent. 4:20
    [Google Scholar]
  134. Soria MF. 1980b. Una nueva y problemática forma de ungulado del Casamayorense. Actas II Congr. Argent. Paleontol. Bioestratigr. y I Congr. Latinoam. Paleontol. 3:193–203
    [Google Scholar]
  135. Soria MF. 1989. Notopterna; un nuevo orden de mamíferos ungulados Eógenos de America del Sur; Parte I, Los Amilnedwardsidae. Ameghiniana 25:245–58
    [Google Scholar]
  136. Soria MF. 2001. Los Proterotheriidae (Mammalia, Litopterna), sistemática, origen y filogenia. Monograf.Museo Argent. Cienc. Nat. 1:1–167
    [Google Scholar]
  137. Soria MF, Powell JE. 1981. Un primitivo Astrapotheria (Mammalia) y la edad de la Formación Río Loro, Provincia de Tucumán, República Argentina. Ameghiniana 18:155–68
    [Google Scholar]
  138. Sosa LM, García López DA 2018. Structural variation of the masseter muscle in Typotheria (Mammalia, Notoungulata). Ser. Correl. Geol. 34:53–70
    [Google Scholar]
  139. Stebbins GL. 1981. Coevolution of grasses and herbivores. Ann. Mo. Bot. Gard. 68:75–86
    [Google Scholar]
  140. Stirton RA. 1953. A new genus of Interatheres from the Miocene of Colombia. Univ. Calif. Publ. Geol. Sci. 29:265–348
    [Google Scholar]
  141. Strömberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA 2013. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat. Commun. 4:1478
    [Google Scholar]
  142. Su DF, Croft DA. 2018. Making sense of the evidence: synthesizing paleoecological data. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities DA Croft, DF Su, SW Simpson 395–404 Cham, Switz: Springer Nature
    [Google Scholar]
  143. Townsend KE, Croft DA. 2008. Diets of notoungulates from the Santa Cruz Formation, Argentina: new evidence from enamel microwear. J. Vertebr. Paleontol. 28:217–30
    [Google Scholar]
  144. Vallejo-Pareja MC, Carrillo JD, Moreno-Bernal JW, Pardo-Jaramillo M, Rodriguez-Gonzalez DF, Muñoz-Duran J 2015. Hilarcotherium castanedaii, gen. et sp. nov., a new Miocene astrapothere (Mammalia, Astrapotheriidae) from the Upper Magdalena Valley, Colombia. J. Vertebr. Paleontol. 35:e903960
    [Google Scholar]
  145. Vera B, Reguero MA, González-Ruiz L 2017. The Interatheriinae notoungulates from the middle Miocene Collón Curá Formation in Argentina. Acta Palaeontol. Pol. 62:845–63
    [Google Scholar]
  146. von Koenigswald W. 1997. Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. Tooth Enamel Microstructure W von Koenigswald, PM Sander 137–61 Rotterdam, Neth: A. A. Balkema
    [Google Scholar]
  147. von Koenigswald W. 2018. Specialized wear facets and late ontogeny in mammalian dentitions. Hist. Biol. 30:7–29
    [Google Scholar]
  148. von Koenigswald W, Martin T, Billet G 2015. Enamel microstructure and mastication in Pyrotherium romeroi (Pyrotheria, Mammalia). Paläontol. Z. 89:593–609
    [Google Scholar]
  149. Webb SD. 1976. Mammalian faunal dynamics of the great American interchange. Paleobiology 2:220–34
    [Google Scholar]
  150. Webb SD. 1991. Ecogeography and the Great American Interchange. Paleobiology 17:266–80
    [Google Scholar]
  151. Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S et al. 2015. Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature 522:81–84
    [Google Scholar]
  152. Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JLA et al. 2017. A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica. Nat. Commun 8:15951
    [Google Scholar]
  153. Weston EM, Madden RH, Sánchez-Villagra MR 2004. Early Miocene astrapotheres (Mammalia) from northern South America. Fossils of the Miocene Castillo Formation, Venezuela: Contributions on Neotropical Palaeontology MR Sánchez-Villagra, JA Clack 81–97 London: Palaeontological Soc.
    [Google Scholar]
  154. Williamson TE, Carr TD. 2007. Bomburia and Ellipsodon (Mammalia: Mioclaenidae) from the early Paleocene of New Mexico. J. Paleontol. 81:966–85
    [Google Scholar]
  155. Woodburne MO. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. J. Mamm. Evol. 17:245–64
    [Google Scholar]
  156. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN et al. 2014. Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J. Mamm. Evol. 21:1–73
    [Google Scholar]
  157. Wyss AR, Flynn JJ, Norell MA, Swisher CC III, Novacek MJ et al. 1994. Paleogene mammals from the Andes of central Chile: a preliminary taxonomic, biostratigraphic, and geochronologic assessment. Am. Mus. Novit. 3098:1–31
    [Google Scholar]
  158. Zack SP, Penkrot TA, Krause DW, Maas MC 2005. A new apheliscine “condylarth” mammal from the late Paleocene of Montana and Alberta and the phylogeny of “hyopsodontids.”. Acta Palaeontol. Pol. 50:809–30
    [Google Scholar]
/content/journals/10.1146/annurev-earth-072619-060126
Loading
/content/journals/10.1146/annurev-earth-072619-060126
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error