1932

Abstract

Understanding the evolution and processes that shape our planet critically depends on the robustness of the absolute ages and process durations obtained from rocks and crystals. Two main aspects of time information on magmatic systems are currently at the forefront of new knowledge. The capacity to determine process durations on human timescales makes it possible to relate the magma dynamics below active volcanoes with the monitoring signals measured at the surface, thereby improving eruption hazards mitigation. The combination of precise in situ dating of accessory minerals and diffusion chronometry is unraveling the incremental growth of large silica-rich magma reservoirs over thousands to hundreds of thousands of years and illuminates the complex relationships between plutonic and volcanic systems. Further progress could be made by decreasing the volume of the analyzed crystals and the error of time determinations, addressing the crystal representativeness and sampling bias, and connecting the time information with physicochemical models of magmatic systems.

  • ▪   Rock-forming minerals are time capsules of magmatic processes that occur on human timescales and can help to better anticipate volcanic eruptions.
  • ▪   In situ dating of accessory minerals reveals that large magma reservoirs evolve through multiple thermal fluctuations of over tens to hundreds of thousands of years.
  • ▪   Progress on conceptual models of magma storage and rejuvenation requires improved error analysis of timescales and representativeness of crystal populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080320-060708
2021-05-30
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-080320-060708.html?itemId=/content/journals/10.1146/annurev-earth-080320-060708&mimeType=html&fmt=ahah

Literature Cited

  1. Albarède F. 1993. Residence time analysis of geochemical fluctuations in volcanic series. Geochim. Cosmochim. Acta 57:3615–21
    [Google Scholar]
  2. Albert H, Costa F, Di Muro A, Herrin J, Métrich N, Deloule E 2019. Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Réunion). Earth Planet. Sci. Lett. 515:187–99
    [Google Scholar]
  3. Albert H, Larrea P, Costa F, Widom E, Siebe C 2020. Crystals reveal magma convection and melt transport in dyke-fed eruptions. Sci. Rep. 10:111632
    [Google Scholar]
  4. Allan ASR, Morgan DJ, Wilson CJN, Millet MA 2013. From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contrib. Mineral. Petrol. 166:1143–64
    [Google Scholar]
  5. Allègre C. 2008. Isotope Geology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. Andersen NL, Jicha BR, Singer BS, Hildreth W 2017. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. PNAS 114:4712407–12
    [Google Scholar]
  7. Bachmann O, Huber C. 2019. The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J. Petrol. 60:13–18
    [Google Scholar]
  8. Bacon CR, Lowenstern JB. 2005. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet. Sci. Lett. 233:3–4277–93
    [Google Scholar]
  9. Barboni M, Annen C, Schoene B 2015. Evaluating the construction and evolution of upper crustal magma reservoirs with coupled U/Pb zircon geochronology and thermal modeling: a case study from the Mt. Capanne pluton (Elba, Italy). Earth Planet. Sci. Lett. 432:436–48
    [Google Scholar]
  10. Barboni M, Boehnke P, Schmitt AK, Harrison TM, Shane P et al. 2016. Warm storage for arc magmas. PNAS 113:4913959–64
    [Google Scholar]
  11. Barth A, Newcombe M, Plank T, Gonnermann H, Hajimirza S et al. 2019. Magma decompression rate correlates with explosivity at basaltic volcanoes—constraints from water diffusion in olivine. J. Volcanol. Geotherm. Res. 387:106664
    [Google Scholar]
  12. Bergantz GW, Schleicher JM, Burgisser A 2015. Open-system dynamics and mixing in magma mushes. Nat. Geosci. 8:10793–96
    [Google Scholar]
  13. Bindeman IN, Melnik OE. 2016. Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling. J. Petrol. 57:3437–60
    [Google Scholar]
  14. Bragagni A, Avanzinelli R, Freymuth H, Francalanci L 2014. Recycling of crystal mush-derived melts and short magma residence times revealed by U-series disequilibria at Stromboli volcano. Earth Planet. Sci. Lett. 404:206–19
    [Google Scholar]
  15. Brenna M, Cronin SJ, Smith IEM, Tollan PME, Scott JM et al. 2018. Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar, Auckland Volcanic Field, New Zealand. Earth Planet. Sci. Lett. 499:13–22
    [Google Scholar]
  16. Cao M, Evans NJ, Reddy SM, Fougerouse D, Hollings P et al. 2019. Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: implications for magmatic processes. Am. Mineral. 104:3391–402
    [Google Scholar]
  17. Cashman KV, Sparks RSJ, Blundy JD 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:6331eaag3055
    [Google Scholar]
  18. Chakraborty S. 2010. Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev. Mineral. Geochem. 72:603–39
    [Google Scholar]
  19. Chamberlain KJ, Morgan DJ, Wilson CJN 2014. Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib. Mineral. Petrol. 168:11034
    [Google Scholar]
  20. Chambers M, Memeti V, Eddy MP, Schoene B 2020. Half a million years of magmatic history recorded in a K-feldspar megacryst of the Tuolumne Intrusive Complex. California, USA: Geology 48:4400–4
    [Google Scholar]
  21. Cheng L, Costa F. 2019. Statistical analysis of crystal populations and links to volcano deformation for more robust estimates of magma replenishment volumes. Geology 47:1171–75
    [Google Scholar]
  22. Cheng L, Costa F, Bergantz G 2020. Linking fluid dynamics and olivine crystal scale zoning during simulated magma intrusion. Contrib. Mineral. Petrol. 175:653
    [Google Scholar]
  23. Cheng L, Costa F, Carniel R 2017. Unraveling the presence of multiple plagioclase populations and identification of representative two-dimensional sections using a statistical and numerical approach. Am. Mineral. 102:91894–905
    [Google Scholar]
  24. Cherniak DJ. 1995. Diffusion of lead in plagioclase and K-feldspar: an investigation using Rutherford Backscattering and Resonant Nuclear Reaction Analysis. Contrib. Mineral. Petrol. 120:3–4358–71
    [Google Scholar]
  25. Cherniak DJ. 1996. Strontium diffusion in sanidine and albite, and general comments on strontium diffusion in alkali feldspars. Geochim. Cosmochim. Acta 60:245037–43
    [Google Scholar]
  26. Cherniak DJ. 1998. Pb diffusion in clinopyroxene. Chem. Geol. 150:1–2105–17
    [Google Scholar]
  27. Cherniak DJ. 2001. Pb diffusion in Cr diopside, augite, and enstatite, and consideration of the dependence of cation diffusion in pyroxene on oxygen fugacity. Chem. Geol. 177:3–4381–97
    [Google Scholar]
  28. Cherniak DJ. 2002. Ba diffusion in feldspar. Geochim. Cosmochim. Acta 66:91641–50
    [Google Scholar]
  29. Cherniak DJ. 2003. REE diffusion in feldspar. Chem. Geol. 193:1–225–41
    [Google Scholar]
  30. Cherniak DJ. 2010. REE diffusion in olivine. Am. Mineral. 95:2–3362–68
    [Google Scholar]
  31. Cherniak DJ, Hanchar JM, Watson EB 1997. Rare-earth diffusion in zircon. Chem. Geol. 134:4289–301
    [Google Scholar]
  32. Cherniak DJ, Liang Y. 2007. Rare earth element diffusion in natural enstatite. Geochim. Cosmochim. Acta 71:51324–40
    [Google Scholar]
  33. Cherniak DJ, Liang Y. 2012. Ti diffusion in natural pyroxene. Geochim. Cosmochim. Acta 98:31–47
    [Google Scholar]
  34. Cherniak DJ, Liang Y. 2014. Titanium diffusion in olivine. Geochim. Cosmochim. Acta 147:43–57
    [Google Scholar]
  35. Cherniak DJ, Van Orman JA 2014. Tungsten diffusion in olivine. Geochim. Cosmochim. Acta 129:1–12
    [Google Scholar]
  36. Cherniak DJ, Watson EB. 1994. A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochim. Cosmochim. Acta 58:235179–90
    [Google Scholar]
  37. Cherniak DJ, Watson EB. 2001. Pb diffusion in zircon. Chem. Geol. 172:1–25–24
    [Google Scholar]
  38. Cherniak DJ, Watson EB, Wark DA 2007. Ti diffusion in quartz. Chem. Geol. 236:1–265–74
    [Google Scholar]
  39. Coleman DS, Gray W, Glazner AF 2004. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:5433–36
    [Google Scholar]
  40. Condomines M, Gauthier PJ, Sigmarsson O 2003. Timescales of magma chamber processes and dating of young volcanic rocks. Rev. Mineral. Geochem. 52:125–74
    [Google Scholar]
  41. Coogan LA, Hain A, Stahl S, Chakraborty S 2005a. Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C. Geochim. Cosmochim. Acta 69:143683–94
    [Google Scholar]
  42. Coogan LA, Kasemann SA, Chakraborty S 2005b. Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet. Sci. Lett. 240:415–24
    [Google Scholar]
  43. Cooper KM. 2015. Timescales of crustal magma reservoir processes: insights from U-series crystal ages. Geol. Soc. Lond. Spec. Publ. 422:1141–74
    [Google Scholar]
  44. Cooper KM. 2019. Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics. Philos. Trans. R. Soc. A 377:213920180009
    [Google Scholar]
  45. Cooper KM, Kent AJR. 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:7489480–83
    [Google Scholar]
  46. Cooper KM, Reid MR. 2008. Uranium-series crystal ages. Rev. Mineral. Geochem. 69:1479–544
    [Google Scholar]
  47. Cooper KM, Till CB, Kent AJR, Costa F, Rubin AE et al. 2017. Response to Comment on “Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. .” Science 358:2016–18
    [Google Scholar]
  48. Costa F. 2008. Chapter 1 residence times of silicic magmas associated with calderas. Dev. Volcanol. 10:1–55
    [Google Scholar]
  49. Costa F, Dohmen R, Chakraborty S 2008. Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 69:1545–94
    [Google Scholar]
  50. Costa F, Dungan M. 2005. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:10837–40
    [Google Scholar]
  51. Costa F, Morgan D. 2010. Time constraints from chemical equilibration in magmatic crystals. See Dosseto et al. 2010 125–59
  52. Costa F, Shea T, Ubide T 2020. Diffusion chronometry and the timescales of magmatic processes. Nat. Rev. Earth Environ. 1:4201–14
    [Google Scholar]
  53. Crank J. 1975. The Mathematics of Diffusion Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  54. Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM 2007. Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu. Rev. Earth Planet. Sci. 35:273–311
    [Google Scholar]
  55. de Maisonneuve CB, Costa F, Huber C, Vonlanthen P, Bachmann O, Dungan MA 2016. How do olivines record magmatic events? Insights from major and trace element zoning. Contrib. Mineral. Petrol. 171:656
    [Google Scholar]
  56. Demouchy S, Mackwell S. 2006. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys. Chem. Miner. 33:5347–55
    [Google Scholar]
  57. Di Stefano F, Mollo S, Ubide T, Petrone CM, Caulfield J et al. 2020. Mush cannibalism and disruption recorded by clinopyroxene phenocrysts at Stromboli volcano: new insights from recent 2003–2017 activity. Lithos360–361 105440
    [Google Scholar]
  58. Dodson MH. 1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40:3259–74
    [Google Scholar]
  59. Dohmen R, Chakraborty S. 2007. Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys. Chem. Miner. 34:6409–30
    [Google Scholar]
  60. Dohmen R, Kasemann SA, Coogan L, Chakraborty S 2010. Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim. Cosmochim. Acta 74:1274–92
    [Google Scholar]
  61. Dohmen R, Ter Heege JH, Becker HW, Chakraborty S 2016. Fe-Mg interdiffusion in orthopyroxene. Am. Mineral. 101:102210–21
    [Google Scholar]
  62. Dosseto A, Turner SP, Van Orman JA 2010. Timescales of Magmatic Processes: From Core to Atmosphere Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  63. Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B 2012. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:738377–80
    [Google Scholar]
  64. Fabbro GN, Druitt TH, Costa F 2017. Storage and eruption of silicic magma across the transition from dominantly effusive to caldera-forming states at an arc volcano (Santorini, Greece). J. Petrol. 58:122429–64
    [Google Scholar]
  65. Flaherty T, Druitt TH, Tuffen H, Higgins MD, Costa F, Cadoux A 2018. Multiple timescale constraints for high-flux magma chamber assembly prior to the Late Bronze Age eruption of Santorini (Greece). Contrib. Mineral. Petrol. 173:975
    [Google Scholar]
  66. Foland KA. 1994. Argon diffusion in feldspars. Feldspars and Their Reactions I Parsons 415–47 Dordrecht, Neth: Kluwer
    [Google Scholar]
  67. Ganguly J. 2002. Diffusion kinetics in minerals: principles and applications to tectono-metamorphic processes. EMU Notes Mineral 4:271–309
    [Google Scholar]
  68. Ganguly J, Ito M, Zhang X 2007. Cr diffusion in orthopyroxene: experimental determination, 53Mn–53Cr thermochronology, and planetary applications. Geochim. Cosmochim. Acta 71:153915–25
    [Google Scholar]
  69. Giletti BJ, Shanahan TM. 1997. Alkali diffusion in plagioclase feldspar. Chem. Geol. 139:1–43–20
    [Google Scholar]
  70. Girona T, Costa F. 2013. DIPRA: a user-friendly program to model multi-element diffusion in olivine with applications to timescales of magmatic processes. Geochem. Geophys. Geosyst. 14:2422–31
    [Google Scholar]
  71. Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT, Sutton SR, Rivers ML 2012. Timescales of quartz crystallization and the longevity of the Bishop giant magma body. PLOS ONE 7:5e37492
    [Google Scholar]
  72. Halliday AN, Mahood GA, Holden P, Metz JM, Dempster TJ, Davidson JP 1989. Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain. Earth Planet. Sci. Lett. 94:3–4274–90
    [Google Scholar]
  73. Handley HK, Reagan M, Gertisser R, Preece K, Berlo K et al. 2018. Timescales of magma ascent and degassing and the role of crustal assimilation at Merapi volcano (2006–2010), Indonesia: constraints from uranium-series and radiogenic isotopic compositions. Geochim. Cosmochim. Acta 222:34–52
    [Google Scholar]
  74. Ingrin J, Peipei Z. 2016. Hydrogen diffusion in Zircon. Geophys. Res. Abstr. 18:EGU2016–7148
    [Google Scholar]
  75. Ito M, Ganguly J. 2006. Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochim. Cosmochim. Acta 70:3799–809
    [Google Scholar]
  76. Johnson EA, Rossman GR. 2013. The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 C: implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am. Mineral. 98:101779–87
    [Google Scholar]
  77. Jollands MC, Bloch E, Müntener O 2020. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs. Geology 48:7654–57
    [Google Scholar]
  78. Kahl M, Chakraborty S, Costa F, Pompilio M 2011. Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet. Sci. Lett. 308:1–211–22
    [Google Scholar]
  79. Kahl M, Chakraborty S, Costa F, Pompilio M, Liuzzo M, Viccaro M 2013. Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull. Volcanol. 75:2692
    [Google Scholar]
  80. Karakas O, Wotzlaw J-F, Guillong M, Ulmer P, Brack P et al. 2019. The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes. Geology 47:8719–23
    [Google Scholar]
  81. Kent AJR, Cooper KM. 2018. How well do zircons record the thermal evolution of magmatic systems. ? Geology 46:2111–14
    [Google Scholar]
  82. Kohn MJ, Penniston-Dorland SC. 2017. Diffusion: obstacles and opportunities in petrochronology. Rev. Mineral. Geochem. 83:1103–52
    [Google Scholar]
  83. Kronenberg AK, Kirby SH, Aines RD, Rossman GR 1986. Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implications for hydrolytic weakening. J. Geophys. Res. 91:B1212723–41
    [Google Scholar]
  84. MacDougall D 2008. Nature's Clocks. How Scientists Measure the Age of Almost Everything Berkeley, CA: University Calif. Press
    [Google Scholar]
  85. Mahood GA, Halliday AN. 1990. Second reply to comment of R.S.J. Sparks, H.E. Huppert and C.J.N. Wilson on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in the precaldera lavas of Glass Mountain. .” Earth Planet. Sci. Lett. 99:4395–99
    [Google Scholar]
  86. Manzini M, Bouvier AS, Baumgartner LP, Müntener O, Rose-Koga EF et al. 2017. Weekly to monthly time scale of melt inclusion entrapment prior to eruption recorded by phosphorus distribution in olivine from mid-ocean ridges. Geology 45:121059–62
    [Google Scholar]
  87. Miller CF. 2016. Eruptible magma. PNAS 113:4913941–43
    [Google Scholar]
  88. Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res. 167:1–4282–99
    [Google Scholar]
  89. Müller T, Dohmen R, Becker HW, ter Heege JH, Chakraborty S 2013. Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib. Mineral. Petrol. 166:61563–76
    [Google Scholar]
  90. Mutch EJF, Maclennan J, Holland TJB, Buisman I 2019. Millennial storage of near-Moho magma. Science 365:6450260–64
    [Google Scholar]
  91. Oeser M, Dohmen R, Horn I, Schuth S, Weyer S 2015. Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochim. Cosmochim. Acta 154:130–50
    [Google Scholar]
  92. Pankhurst MJ, Morgan DJ, Thordarson T, Loughlin SC 2018. Magmatic crystal records in time, space, and process, causatively linked with volcanic unrest. Earth Planet. Sci. Lett. 493:231–41
    [Google Scholar]
  93. Petry C, Chakraborty S, Palme H 2004. Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim. Cosmochim. Acta 68:204179–88
    [Google Scholar]
  94. Putirka KD. 2008. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69:61–120
    [Google Scholar]
  95. Rasmussen DJ, Plank TA, Roman DC, Power JA, Bodnar RJ, Hauri EH 2018. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano. Earth Planet. Sci. Lett. 486:1–14
    [Google Scholar]
  96. Reid MR. 2003. Timescales of magma transfer and storage in the crust. The Crust 3 RL Rudnick 167–93 New York: Elsevier
    [Google Scholar]
  97. Reid MR, Coath CD. 2000. In situ U-Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology 28:5443–46
    [Google Scholar]
  98. Reid MR, Coath CD, Harrison TM, McKeegan KD 1997. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th–238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150:1–227–39
    [Google Scholar]
  99. Reiners PW. 2009. Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers. Geochim. Cosmochim. Acta 73:123612–29
    [Google Scholar]
  100. Reiners PW, Carlson RW, Renne PR, Cooper KM, Granger DE et al. 2018. Geochronology and Thermochronology Hoboken, NJ: Wiley
    [Google Scholar]
  101. Richet P 1999. A Natural History of Time Chicago: Chicago Univ. Press
    [Google Scholar]
  102. Rubin AE, Cooper KM, Till CB, Kent AJR, Costa F et al. 2017. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356:63431154–56
    [Google Scholar]
  103. Ruprecht P, Plank T. 2013. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500:746068–72
    [Google Scholar]
  104. Ruth DCS, Costa F, Bouvet de Maisonneuve C, Franco L, Cortés JA, Calder ES 2018. Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat. Commun. 9:12657
    [Google Scholar]
  105. Schaltegger U, Davies JHFL. 2017. Petrochronology of zircon and baddeleyite in igneous rocks: reconstructing magmatic processes at high temporal resolution. Rev. Mineral. Geochem. 83:1297–328
    [Google Scholar]
  106. Schmitt AK. 2011. Uranium series accessory crystal dating of magmatic processes. Annu. Rev. Earth Planet. Sci. 39:321–49
    [Google Scholar]
  107. Schmitt AK, Vazquez JA. 2017. Secondary ionization mass spectrometry analysis in petrochronology. Rev. Mineral. Geochem. 83:1199–230
    [Google Scholar]
  108. Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, Günther D 2012. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett. 355–356:162–73
    [Google Scholar]
  109. Shea T, Costa F, Krimer D, Hammer JE 2015a. Accuracy of timescales retrieved from diffusion modeling in olivine: a 3D perspective. Am. Mineral. 100:102026–42
    [Google Scholar]
  110. Shea T, Lynn KJ, Garcia MO 2015b. Cracking the olivine zoning code: distinguishing between crystal growth and diffusion. Geology 43:10935–38
    [Google Scholar]
  111. Sigmarsson O. 1996. Short magma chamber residence time at an Icelandic volcano inferred from U-series disequilibria. Nature 382:440–42
    [Google Scholar]
  112. Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadóttir T, Pedersen R et al. 2010. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:7322426–32
    [Google Scholar]
  113. Simon J, Reid M. 2005. The pace of rhyolite differentiation and storage in an ‘archetypical’ silicic magma system, Long Valley, California. Earth Planet. Sci. Lett. 235:1–2123–40
    [Google Scholar]
  114. Sims KWW, Pichat S, Reagan MK, Kyle PR, Dulaiova H et al. 2013. On the time scales of magma genesis, melt evolution, crystal growth rates and magma degassing in the Erebus volcano magmatic system using the 238U, 235U and 232Th decay series. J. Petrol. 54:2235–71
    [Google Scholar]
  115. Sliwinski JT, Kueter N, Marxer F, Ulmer P, Guillong M, Bachmann O 2018. Controls on lithium concentration and diffusion in zircon. Chem. Geol. 501:1–11
    [Google Scholar]
  116. Stalder R, Skogby H. 2003. Hydrogen diffusion in natural and synthetic orthopyroxene. Phys. Chem. Miner. 30:112–19
    [Google Scholar]
  117. Sundvall R, Skogby H, Stalder R 2009. Dehydration-hydration mechanisms in synthetic Fe-poor diopside. Eur. J. Mineral. 21:117–26
    [Google Scholar]
  118. Tailby ND, Cherniak DJ, Watson EB 2018. Al diffusion in quartz. Am. Mineral. 103:6839–47
    [Google Scholar]
  119. Tang M, Rudnick RL, McDonough WF, Bose M, Goreva Y 2017. Multi-mode Li diffusion in natural zircons: evidence for diffusion in the presence of step-function concentration boundaries. Earth Planet. Sci. Lett. 474:110–19
    [Google Scholar]
  120. Till CB, Vazquez JA, Boyce JW 2015. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology 43:8695–98
    [Google Scholar]
  121. Trail D, Cherniak DJ, Watson EB, Harrison TM, Weiss BP, Szumila I 2016. Li zoning in zircon as a potential geospeedometer and peak temperature indicator. Contrib. Mineral. Petrol. 171:325
    [Google Scholar]
  122. Turner S, Costa F. 2007. Measuring timescales of magmatic evolution. Elements 3:4267–72
    [Google Scholar]
  123. Ubide T, Caulfield J, Brandt C, Bussweiler Y, Mollo S et al. 2019. Deep magma storage revealed by multi-method elemental mapping of clinopyroxene megacrysts at Stromboli Volcano. Front. Earth Sci. 7:239
    [Google Scholar]
  124. Van Orman JA, Cherniak DJ, Kita NT 2014. Magnesium diffusion in plagioclase: dependence on composition, and implications for thermal resetting of the 26Al–26Mg early solar system chronometer. Earth Planet. Sci. Lett. 385:79–88
    [Google Scholar]
  125. Van Orman JA, Grove TL, Shimizu N 2001. Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib. Mineral. Petrol. 141:6687–703
    [Google Scholar]
  126. Verhoogen J. 1952. Ionic diffusion and electrical conductivity in quartz. Am. Mineral. 37:7–8637–55
    [Google Scholar]
  127. Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB 2007. Pre-eruption recharge of the Bishop magma system. Geology 35:3235–38
    [Google Scholar]
  128. Wartho JA, Kelley SP, Elphick SC 2013. Ar diffusion and solubility measurements in plagioclases using the ultra-violet laser depth-profiling technique. Geol. Soc. Spec. Publ. 378:1137–54
    [Google Scholar]
  129. Watson EB, Cherniak DJ, Holycross ME 2015. Diffusion of phosphorus in olivine and molten basalt. Am. Mineral. 100:102053–65
    [Google Scholar]
  130. Wilson CJN, Charlier BLA. 2009. Rapid rates of magma generation at contemporaneous magma systems, Taupo volcano, New Zealand: insights from U–Th model-age spectra in zircons. J. Petrol. 50:5875–907
    [Google Scholar]
  131. Wilson CJN, Morgan DJ, Charlier BLA, Barker SJ 2017. Comment on “Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. .” Science 358:6370eaap8429
    [Google Scholar]
  132. Zhang Y. 2008. Geochemical Kinetics Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  133. Zhang Y, Cherniak DJ. 2010. Diffusion in minerals and melts: introduction. Rev. Mineral. Geochem. 72:11–4
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080320-060708
Loading
/content/journals/10.1146/annurev-earth-080320-060708
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error