1932

Abstract

I describe my career journey from a young girl in Cameroon, West Africa, to a trailblazing geophysicist to my current role as dean. I chronicle my time as a student, the transition to being an early career faculty, launching my research career, and ultimately finding my way to administration. Along the way I helped pioneer biogeophysics as a subdiscipline in geophysics while simultaneously maintaining an international research program in continental rift tectonics. I also describe the many intersectionalities in my life including being the first Black woman in many spaces, being a champion for student success, developing a diverse talent pipeline by enhancing diversity in the geosciences, and navigating academic job searches as part of a dual-career couple. Finally, I acknowledge all those who helped shape my career including the many students I had the opportunity to mentor.

  • ▪  Many underrepresented minority geoscientists lack the social capital and professional networks critical for their success.
  • ▪  Geoscience departments must be intentional and deliberate in promoting and ensuring more inclusive workplace environments.
  • ▪  Dual-career couples remain a major challenge, impacting retention and recruitment of top talent; universities should provide resources to alleviate this challenge.
  • ▪  Biogeophysics has untapped potential for advancing understanding of subsurface biogeochemical processes and the search for life in extreme environments.
  • ▪  To date, considerable speculation remains regarding the fundamental geodynamic processes that initiate and sustain the evolution of magma-deficient rifts.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080322-082343
2023-05-31
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-080322-082343.html?itemId=/content/journals/10.1146/annurev-earth-080322-082343&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel Aal GZ, Atekwana EA, Slater LD. 2004.. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. . Geophys. Res. Lett. 31::L12505
    [Google Scholar]
  2. Abdel Aal GZ, Slater LD, Atekwana EA. 2006.. Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. . Geophysics 71:(2):H1324
    [Google Scholar]
  3. Accardo NJ, Gaherty JB, Shillington DJ, Hopper E, Nyblade AA, et al. 2020.. Thermochemical modification of the upper mantle beneath the northern Malawi Rift constrained from shear velocity imaging. . Geochem. Geophys. Geosyst. 21::e2019GC008843
    [Google Scholar]
  4. Allen JP, Atekwana EA, Atekwana EA, Duris JW, Werkema DD, Rossbach S. 2007.. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. . Appl. Environ. Microbiol. 73:(9):286070
    [Google Scholar]
  5. Atekwana EA, Atekwana EA. 2010.. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. . Surv. Geophys. 31:(2):24783
    [Google Scholar]
  6. Atekwana EA, Atekwana EA, Legall FD, Krishnamurthy RV. 2005.. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. . J. Contam. Hydrol. 80::14967
    [Google Scholar]
  7. Atekwana EA, Atekwana EA, Rowe RS, Werkema DD, Legall FD. 2004a.. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. . J. Appl. Geophys. 56::28194
    [Google Scholar]
  8. Atekwana EA, Atekwana EA, Werkema DD, Allen JP, Smart LA, et al. 2004b.. Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. . Geophys. Res. Lett. 31::L23501
    [Google Scholar]
  9. Atekwana EA, Atekwana EA, Werkema DD, Duris JW, Rossbach S, et al. 2004c.. In-situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site. . Geophysics 69:(1):5663
    [Google Scholar]
  10. Atekwana EA, Mewafy FM, Abdel Aal G, Werkema DD, Revil A, Slater LD. 2014.. High-resolution magnetic susceptibility measurements for investigating magnetic mineral formation during microbial mediated iron reduction. . J. Geophys. Res. Biogeosci. 119::8094
    [Google Scholar]
  11. Atekwana EA, Salisbury MH, Verhoef J, Culshaw N. 1994.. Ramp-flat geometry underneath the central Kapuskasing uplift? Evidence from potential field modeling. . Can. J. Earth Sci. 31::102741
    [Google Scholar]
  12. Atekwana EA, Sauck WA, Werkema DD. 2000.. Investigations of geoelectrical signatures at a hydrocarbon contaminated site. . J. Appl. Geophys. 44:(2–3):16780
    [Google Scholar]
  13. Atekwana EA, Slater LD. 2009.. Biogeophysics: a new frontier in Earth science research. . Rev. Geophys. 47:(4):RG4004
    [Google Scholar]
  14. Beaver CL, Atekwana EA, Bekins BA, Ntarlagiannis D, Slater LD, Rossbach S. 2021.. Methanogens and their syntrophic partners dominate zones of enhanced magnetic susceptibility at a petroleum contaminated site. . Front. Earth Sci. 9::598172
    [Google Scholar]
  15. Beaver CL, Williams AE, Atekwana EA, Mewafy FM, Abdel Aal G, et al. 2015.. Microbial communities associated with zones of elevated magnetic susceptibility in hydrocarbon-contaminated sediments. . Geomicrobiol. J. 33:(5):44152
    [Google Scholar]
  16. Boland AV, Ellis RM, Northey DJ, West GF, Green AG, et al. 1988.. Seismic delineation of upthrust Archaean crust in Kapuskasing, Northern Ontario. . Nature 335::71113
    [Google Scholar]
  17. Buck WR. 2006.. The role of magma in the development of Afro-Arabian Rift System. . J. Geol. Soc. Lond. 259::4354
    [Google Scholar]
  18. Campbell DL, Lucius JE, Ellefsen KJ, Deszcz-Pan M. 1996.. Monitoring of a controlled LNAPL spill using ground penetrating radar. . In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems: April 28–May 2, 1996, Keystone, Colorado, pp. 51117. Wheat Ridge, CO:: EEGS
    [Google Scholar]
  19. Carlut J, Horen H, Janots D. 2007.. Impact of micro-organisms activity on the natural remanent magnetization of the young oceanic crust. . Earth Planet. Sci. Lett. 253::497506
    [Google Scholar]
  20. Cassidy DP, Werkema DD, Sauck WA, Atekwana EA, Rossbach S, Duris JW. 2001.. The effects of LNAPL biodegradation products on electrical conductivity measurements. . J. Environ. Eng. Geophys. 6::4753
    [Google Scholar]
  21. Davis CA, Atekwana E, Slater LD, Rossbach S, Mormile MR. 2006.. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. . Geophys. Res. Lett. 33::L18403
    [Google Scholar]
  22. Davis CA, Pyrak-Nolte LJ, Atekwana EA, Werkema DD, Haugen ME. 2009.. Microbial-induced heterogeneity in the acoustic properties of porous media. . Geophys. Res. Lett. 36::L21405
    [Google Scholar]
  23. Davis CA, Pyrak-Nolte LJ, Atekwana EA, Werkema DD, Haugen ME. 2010.. Acoustic and electrical property changes due to microbial growth and biofilm formation in porous media. . J. Geophys. Res. 115:(G3):G00G06
    [Google Scholar]
  24. Dawson SM, Laó-Dávila DA, Atekwana EA, Abdelsalam MG. 2018.. The influence of the Precambrian Mughese Shear Zone structures on strain accommodation in the northern Malawi Rift. . Tectonophysics 722::5368
    [Google Scholar]
  25. DeRyck SM, Redman JD, Annan AP. 1993.. Geophysical monitoring of a controlled kerosene spill. . In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems: April 18–22, 1993, San Diego, California, pp. 519. Englewood, CO:: EEGS
    [Google Scholar]
  26. Fadel I, Paulssen H, van der Meijde M, Kwadiba M, Ntibinyane O, et al. 2020.. Crustal and upper mantle shear wave velocity structure of Botswana: The 3 April 2017 central Botswana earthquake linked to the East African Rift System. . Geophys. Res. Lett. 47:(4):e2019GL085598
    [Google Scholar]
  27. Fletcher AW, Abdelsalam MG, Emishaw L, Atekwana EA, Laó-Dávila DA, Ismail A. 2018.. Lithospheric controls on the rifting of the Tanzanian craton at the Eyasi basin, eastern branch of the East African Rift System. . Tectonics 37:(9):281832
    [Google Scholar]
  28. Heenan JW, Ntarlagiannis D, Slater LD, Beaver CL, Rossbach S, et al. 2017.. Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill. . J. Geophys. Res. Biogeosci. 122::91829
    [Google Scholar]
  29. Jaiswal P, Al-Hadrami F, Atekwana EA, Atekwana EA. 2014.. Mechanistic models of biofilm growth in porous media. . J. Geophys. Res. Biogeosci. 119::41831
    [Google Scholar]
  30. Katumwehe A, Abdelsalam NG, Atekwana EA. 2015.. The role of pre-existing Precambrian structures in rift evolution in the Albertine and Rhino grabens, Uganda. . Tectonophysics 646::11729
    [Google Scholar]
  31. Kinabo BD, Hogan JP, Atekwana EA, Abdelsalam MG, Modisi MP. 2008.. Fault growth and propagation during incipient continental rifting: insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana. . Tectonics 27::TC3013
    [Google Scholar]
  32. Kolawole F, Atekwana EA, Laó-Dávila DA, Abdelsalam MG, Chindandali PR, et al. 2018a.. Active deformation of Malawi Rift's North Basin hinge zone modulated by reactivation of preexisting Precambrian shear zone fabric. . Tectonics 37:(3):683704
    [Google Scholar]
  33. Kolawole F, Atekwana EA, Laó-Dávila DA, Abdelsalam MG, Chindandali PR, et al. 2018b.. High resolution electrical resistivity and aeromagnetic imaging reveal the causative fault of the 2009 Mw 6.0 Karonga, Malawi earthquake. . Geophys. J. Int. 213:(2):141225
    [Google Scholar]
  34. Kolawole F, Atekwana EA, Malloy S, Stamps DS, Grandin R, et al. 2017.. Aeromagnetic, gravity, and Differential Interferometric Synthetic Aperture Radar analyses reveal the causative fault of the 3 April 2017 Mw 6.5 Moiyabana, Botswana, earthquake. . Geophys. Res. Lett. 44::883746
    [Google Scholar]
  35. Kolawole F, Firkins MC, Al Wahaibi TS, Atekwana EA, Soreghan MJ. 2021.. Rift interaction zones and the stages of rift linkage in active segmented continental rift systems. . Basin Res. 33:(6):29843020
    [Google Scholar]
  36. Laó-Dávila DA, Al-Salmi HS, Abdelsalam MG, Atekwana EA. 2015.. Hierarchical segmentation of the Malawi Rift: the influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts. . Tectonics 34:(12):2399417
    [Google Scholar]
  37. Leseane K, Atekwana EA, Mickus KL, Abdelsalam MG, Shemang EM, Atekwana EA. 2015.. Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana. . J. Geophys. Res. Solid Earth 120::121028
    [Google Scholar]
  38. Lund AL, Slater LD, Atekwana EA, Ntarlagiannis D, Cozzarelli I, et al. 2017.. Evidence of coupled carbon and iron cycling at a hydrocarbon-contaminated site from time lapse magnetic susceptibility. . Environ. Sci. Technol. 51:(19):1124449
    [Google Scholar]
  39. Matende K, Atekwana EA, Mickus K, Abdelsalam MG, Atekwana EA, et al. 2021.. Crustal and thermal structure of the Permian–Jurassic Luangwa–Lukusashi–Luano Rift, Zambia: implications for strain localization in magma–poor continental rifts. . J. Afr. Earth Sci. 175::104090
    [Google Scholar]
  40. McNutt MK. 2022.. Civilization-saving science for the twenty-first century. . Annu. Rev. Earth Planet. Sci. 50::112
    [Google Scholar]
  41. Mellage A, Smeaton CM, Furman A, Atekwana EA, Rezanezhad F, Van Cappellen P. 2019.. Bacterial Stern layer diffusion: experimental determination with spectral induced polarization (SIP) and sensitivity to nitrite toxicity. . Near Surf. Geophys. 17:(6):62335
    [Google Scholar]
  42. Mewafy FM, Atekwana EA, Werkema DD, Slater LD, Ntarlagiannis D, et al. 2011.. Magnetic susceptibility as a proxy for investigating microbially mediated iron reduction. . Geophys. Res. Lett. 38:(21):L21402
    [Google Scholar]
  43. Modisi MP, Atekwana EA, Kampunzu AB, Ngwisanyi TH. 2000.. Rift kinematics during the incipient stages of continental extension: evidence from the nascent Okavango rift basin, northwest Botswana. . Geology 28:(10):93942
    [Google Scholar]
  44. Mulibo GD, Nyblade AA. 2013.. The P and S wave velocity structure of the mantle beneath eastern Africa and the African superplume anomaly. . Geochem. Geophys. Geosyst. 14:(8):2696715
    [Google Scholar]
  45. Naudet V, Revil A, Bottero JY, Begassat P. 2003.. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. . Geophys. Res. Lett. 30::2091
    [Google Scholar]
  46. Njinju EA, Atekwana EA, Stamps DS, Abdelsalam MG, Atekwana EA, Mickus KL. 2019a.. Lithospheric structure of the Malawi Rift: implications for magma-poor rifting processes. . Tectonics 38:(11):383553
    [Google Scholar]
  47. Njinju EA, Kolawole F, Atekwana EA, Stamps DS, Atekwana EA, et al. 2019b.. Terrestrial heat flow in the Malawi Rifted Zone, East Africa: implications for tectono-thermal inheritance in continental rift basins. . J. Volcanol. Geotherm. Res. 387::106656
    [Google Scholar]
  48. Njinju EA, Stamps DS, Neumiller K, Gallager J. 2021.. Lithospheric control of melt generation beneath the Rungwe Volcanic Province, East Africa: implications for a plume source. . J. Geophys. Res. Solid Earth 126::e2020JB020728
    [Google Scholar]
  49. Ntarlagiannis D, Yee N, Slater L. 2005.. On the low-frequency electrical polarization of bacterial cells in sands. . Geophys. Res. Lett. 32::L24402
    [Google Scholar]
  50. Nyblade AA, Owens T, Gurrola H, Ritsema J, Langston C. 2000.. Seismic evidence for a deep upper mantle thermal anomaly beneath East Africa. . Geology 28::599602
    [Google Scholar]
  51. Ohenhen LO, Feinberg JM, Slater LD, Ntarlagiannis D, Cozzarelli I, et al. 2022.. Microbially induced anaerobic oxidation of magnetite to maghemite in a hydrocarbon-contaminated aquifer. . J. Geophys. Res. Biogeosci. 127::e2021JG006560
    [Google Scholar]
  52. Osler JC, Louden KE. 1995.. Extinct spreading center in the Labrador Sea: crustal structure from a two-dimensional seismic refraction velocity model. . J. Geophys. Res. 100:(B2):226178
    [Google Scholar]
  53. Personna YR, Ntarlagiannis D, Slater L, Yee N, O'Brien M, Hubbard S. 2008.. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. . J. Geophys. Res. 113:(G2):G02020
    [Google Scholar]
  54. Revil A, Atekwana E, Zhang C, Jardani A, Smith S. 2012.. A new model for the spectral induced polarization signature of bacterial growth in porous media. . Water Resour. Res. 48::W09545
    [Google Scholar]
  55. Revil A, Mendonça CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ. 2010.. Understanding biogeobatteries: where geophysics meets microbiology. . J. Geophys. Res. 115:(G1):G00G02
    [Google Scholar]
  56. Rosier CL, Atekwana EA, Abdel Aal GZ, Patrauchan MA. 2019.. Cell concentrations and metabolites enhance the SIP response to biofilm matrix components. . J. Appl. Geophys. 160::18394
    [Google Scholar]
  57. Sarafian E, Evans RL, Abdelsalam MG, Atekwana E, Elsenbeck J, et al. 2018.. Imaging Precambrian lithospheric structure in Zambia using electromagnetic methods. . Gondwana Res. 54::3849
    [Google Scholar]
  58. Sauck WA. 2000.. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. . J. Appl. Geophys. 44:(2–3):15165
    [Google Scholar]
  59. Sauck WA, Atekwana EA, Nash MS. 1998.. High electrical conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. . J. Environ. Eng. Geophys. 2::20312
    [Google Scholar]
  60. Sharma S, Jaiswal P, Raj R, Atekwana EA. 2021.. In-situ biofilm detection in field settings using multichannel seismic. . J. Appl. Geophys. 193::104423
    [Google Scholar]
  61. Slater L, Ntarlagiannis D, Personna YR, Hubbard S. 2007.. Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. . Geophys. Res. Lett. 34:(21):L21404
    [Google Scholar]
  62. Slater LD, Lesmes D. 2002.. IP interpretation in environmental investigations. . Geophysics 67::7788
    [Google Scholar]
  63. Werkema DD, Atekwana EA, Endres AL, Sauck WA, Cassidy DP. 2003.. Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. . Geophys. Res. Lett. 30:(12):1647
    [Google Scholar]
  64. Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, Banfield JF. 2005.. Geophysical imaging of stimulated microbial biomineralization. . Environ. Sci. Technol. 39::7592600
    [Google Scholar]
  65. Yu Y, Gao SS, Zhao D, Liu KH. 2020.. Mantle structure and flow beneath an early-stage continental rift: constraints from P wave anisotropic tomography. . Tectonics 39::e2019TC005590
    [Google Scholar]
  66. Zhang C, Revil A, Fujita Y, Munakata-Marr J, Redden G. 2014.. Quadrature conductivity: a quantitative indicator of bacterial abundance in porous media. . Geophysics 79::D36375
    [Google Scholar]
  67. Zhang C, Slater L, Prodan C. 2013.. Complex dielectric properties of sulfate-reducing bacteria suspensions. . Geomicrobiol. J. 30:(6):49096
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080322-082343
Loading
/content/journals/10.1146/annurev-earth-080322-082343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error