1932

Abstract

I describe my career journey from a young girl in Cameroon, West Africa, to a trailblazing geophysicist to my current role as dean. I chronicle my time as a student, the transition to being an early career faculty, launching my research career, and ultimately finding my way to administration. Along the way I helped pioneer biogeophysics as a subdiscipline in geophysics while simultaneously maintaining an international research program in continental rift tectonics. I also describe the many intersectionalities in my life including being the first Black woman in many spaces, being a champion for student success, developing a diverse talent pipeline by enhancing diversity in the geosciences, and navigating academic job searches as part of a dual-career couple. Finally, I acknowledge all those who helped shape my career including the many students I had the opportunity to mentor.

  • ▪  Many underrepresented minority geoscientists lack the social capital and professional networks critical for their success.
  • ▪  Geoscience departments must be intentional and deliberate in promoting and ensuring more inclusive workplace environments.
  • ▪  Dual-career couples remain a major challenge, impacting retention and recruitment of top talent; universities should provide resources to alleviate this challenge.
  • ▪  Biogeophysics has untapped potential for advancing understanding of subsurface biogeochemical processes and the search for life in extreme environments.
  • ▪  To date, considerable speculation remains regarding the fundamental geodynamic processes that initiate and sustain the evolution of magma-deficient rifts.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080322-082343
2023-05-31
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-080322-082343.html?itemId=/content/journals/10.1146/annurev-earth-080322-082343&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel Aal GZ, Atekwana EA, Slater LD 2004. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophys. Res. Lett. 31:L12505
    [Google Scholar]
  2. Abdel Aal GZ, Slater LD, Atekwana EA 2006. Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 71:2H13–24
    [Google Scholar]
  3. Accardo NJ, Gaherty JB, Shillington DJ, Hopper E, Nyblade AA et al. 2020. Thermochemical modification of the upper mantle beneath the northern Malawi Rift constrained from shear velocity imaging. Geochem. Geophys. Geosyst. 21:e2019GC008843
    [Google Scholar]
  4. Allen JP, Atekwana EA, Atekwana EA, Duris JW, Werkema DD, Rossbach S. 2007. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl. Environ. Microbiol. 73:92860–70
    [Google Scholar]
  5. Atekwana EA, Atekwana EA. 2010. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv. Geophys. 31:2247–83
    [Google Scholar]
  6. Atekwana EA, Atekwana EA, Legall FD, Krishnamurthy RV. 2005. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J. Contam. Hydrol. 80:149–67
    [Google Scholar]
  7. Atekwana EA, Atekwana EA, Rowe RS, Werkema DD, Legall FD. 2004a. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J. Appl. Geophys. 56:281–94
    [Google Scholar]
  8. Atekwana EA, Atekwana EA, Werkema DD, Allen JP, Smart LA et al. 2004b. Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophys. Res. Lett. 31:L23501
    [Google Scholar]
  9. Atekwana EA, Atekwana EA, Werkema DD, Duris JW, Rossbach S et al. 2004c. In-situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site. Geophysics 69:156–63
    [Google Scholar]
  10. Atekwana EA, Mewafy FM, Abdel Aal G, Werkema DD, Revil A, Slater LD 2014. High-resolution magnetic susceptibility measurements for investigating magnetic mineral formation during microbial mediated iron reduction. J. Geophys. Res. Biogeosci. 119:80–94
    [Google Scholar]
  11. Atekwana EA, Salisbury MH, Verhoef J, Culshaw N. 1994. Ramp-flat geometry underneath the central Kapuskasing uplift? Evidence from potential field modeling. Can. J. Earth Sci. 31:1027–41
    [Google Scholar]
  12. Atekwana EA, Sauck WA, Werkema DD. 2000. Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J. Appl. Geophys. 44:2–3167–80
    [Google Scholar]
  13. Atekwana EA, Slater LD. 2009. Biogeophysics: a new frontier in Earth science research. Rev. Geophys. 47:4RG4004
    [Google Scholar]
  14. Beaver CL, Atekwana EA, Bekins BA, Ntarlagiannis D, Slater LD, Rossbach S. 2021. Methanogens and their syntrophic partners dominate zones of enhanced magnetic susceptibility at a petroleum contaminated site. Front. Earth Sci. 9:598172
    [Google Scholar]
  15. Beaver CL, Williams AE, Atekwana EA, Mewafy FM, Abdel Aal G et al. 2015. Microbial communities associated with zones of elevated magnetic susceptibility in hydrocarbon-contaminated sediments. Geomicrobiol. J. 33:5441–52
    [Google Scholar]
  16. Boland AV, Ellis RM, Northey DJ, West GF, Green AG et al. 1988. Seismic delineation of upthrust Archaean crust in Kapuskasing, Northern Ontario. Nature 335:711–13
    [Google Scholar]
  17. Buck WR. 2006. The role of magma in the development of Afro-Arabian Rift System. J. Geol. Soc. Lond. 259:43–54
    [Google Scholar]
  18. Campbell DL, Lucius JE, Ellefsen KJ, Deszcz-Pan M. 1996. Monitoring of a controlled LNAPL spill using ground penetrating radar. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems: April 28–May 2, 1996, Keystone, Colorado511–17 Wheat Ridge, CO: EEGS
    [Google Scholar]
  19. Carlut J, Horen H, Janots D. 2007. Impact of micro-organisms activity on the natural remanent magnetization of the young oceanic crust. Earth Planet. Sci. Lett. 253:497–506
    [Google Scholar]
  20. Cassidy DP, Werkema DD, Sauck WA, Atekwana EA, Rossbach S, Duris JW. 2001. The effects of LNAPL biodegradation products on electrical conductivity measurements. J. Environ. Eng. Geophys. 6:47–53
    [Google Scholar]
  21. Davis CA, Atekwana E, Slater LD, Rossbach S, Mormile MR. 2006. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys. Res. Lett. 33:L18403
    [Google Scholar]
  22. Davis CA, Pyrak-Nolte LJ, Atekwana EA, Werkema DD, Haugen ME. 2009. Microbial-induced heterogeneity in the acoustic properties of porous media. Geophys. Res. Lett. 36:L21405
    [Google Scholar]
  23. Davis CA, Pyrak-Nolte LJ, Atekwana EA, Werkema DD, Haugen ME. 2010. Acoustic and electrical property changes due to microbial growth and biofilm formation in porous media. J. Geophys. Res. 115:G3G00G06
    [Google Scholar]
  24. Dawson SM, Laó-Dávila DA, Atekwana EA, Abdelsalam MG. 2018. The influence of the Precambrian Mughese Shear Zone structures on strain accommodation in the northern Malawi Rift. Tectonophysics 722:53–68
    [Google Scholar]
  25. DeRyck SM, Redman JD, Annan AP. 1993. Geophysical monitoring of a controlled kerosene spill. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems: April 18–22, 1993, San Diego, California5–19 Englewood, CO: EEGS
    [Google Scholar]
  26. Fadel I, Paulssen H, van der Meijde M, Kwadiba M, Ntibinyane O et al. 2020. Crustal and upper mantle shear wave velocity structure of Botswana: The 3 April 2017 central Botswana earthquake linked to the East African Rift System. Geophys. Res. Lett. 47:4e2019GL085598
    [Google Scholar]
  27. Fletcher AW, Abdelsalam MG, Emishaw L, Atekwana EA, Laó-Dávila DA, Ismail A 2018. Lithospheric controls on the rifting of the Tanzanian craton at the Eyasi basin, eastern branch of the East African Rift System. Tectonics 37:92818–32
    [Google Scholar]
  28. Heenan JW, Ntarlagiannis D, Slater LD, Beaver CL, Rossbach S et al. 2017. Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill. J. Geophys. Res. Biogeosci. 122:918–29
    [Google Scholar]
  29. Jaiswal P, Al-Hadrami F, Atekwana EA, Atekwana EA. 2014. Mechanistic models of biofilm growth in porous media. J. Geophys. Res. Biogeosci. 119:418–31
    [Google Scholar]
  30. Katumwehe A, Abdelsalam NG, Atekwana EA. 2015. The role of pre-existing Precambrian structures in rift evolution in the Albertine and Rhino grabens, Uganda. Tectonophysics 646:117–29
    [Google Scholar]
  31. Kinabo BD, Hogan JP, Atekwana EA, Abdelsalam MG, Modisi MP. 2008. Fault growth and propagation during incipient continental rifting: insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana. Tectonics 27:TC3013
    [Google Scholar]
  32. Kolawole F, Atekwana EA, Laó-Dávila DA, Abdelsalam MG, Chindandali PR et al. 2018a. Active deformation of Malawi Rift's North Basin hinge zone modulated by reactivation of preexisting Precambrian shear zone fabric. Tectonics 37:3683–704
    [Google Scholar]
  33. Kolawole F, Atekwana EA, Laó-Dávila DA, Abdelsalam MG, Chindandali PR et al. 2018b. High resolution electrical resistivity and aeromagnetic imaging reveal the causative fault of the 2009 Mw 6.0 Karonga, Malawi earthquake. Geophys. J. Int. 213:21412–25
    [Google Scholar]
  34. Kolawole F, Atekwana EA, Malloy S, Stamps DS, Grandin R et al. 2017. Aeromagnetic, gravity, and Differential Interferometric Synthetic Aperture Radar analyses reveal the causative fault of the 3 April 2017 Mw 6.5 Moiyabana, Botswana, earthquake. Geophys. Res. Lett. 44:8837–46
    [Google Scholar]
  35. Kolawole F, Firkins MC, Al Wahaibi TS, Atekwana EA, Soreghan MJ 2021. Rift interaction zones and the stages of rift linkage in active segmented continental rift systems. Basin Res. 33:62984–3020
    [Google Scholar]
  36. Laó-Dávila DA, Al-Salmi HS, Abdelsalam MG, Atekwana EA. 2015. Hierarchical segmentation of the Malawi Rift: the influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts. Tectonics 34:122399–417
    [Google Scholar]
  37. Leseane K, Atekwana EA, Mickus KL, Abdelsalam MG, Shemang EM, Atekwana EA. 2015. Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana. J. Geophys. Res. Solid Earth 120:1210–28
    [Google Scholar]
  38. Lund AL, Slater LD, Atekwana EA, Ntarlagiannis D, Cozzarelli I et al. 2017. Evidence of coupled carbon and iron cycling at a hydrocarbon-contaminated site from time lapse magnetic susceptibility. Environ. Sci. Technol. 51:1911244–49
    [Google Scholar]
  39. Matende K, Atekwana EA, Mickus K, Abdelsalam MG, Atekwana EA et al. 2021. Crustal and thermal structure of the Permian–Jurassic Luangwa–Lukusashi–Luano Rift, Zambia: implications for strain localization in magma–poor continental rifts. J. Afr. Earth Sci. 175:104090
    [Google Scholar]
  40. McNutt MK. 2022. Civilization-saving science for the twenty-first century. Annu. Rev. Earth Planet. Sci. 50:1–12
    [Google Scholar]
  41. Mellage A, Smeaton CM, Furman A, Atekwana EA, Rezanezhad F, Van Cappellen P. 2019. Bacterial Stern layer diffusion: experimental determination with spectral induced polarization (SIP) and sensitivity to nitrite toxicity. Near Surf. Geophys. 17:6623–35
    [Google Scholar]
  42. Mewafy FM, Atekwana EA, Werkema DD, Slater LD, Ntarlagiannis D et al. 2011. Magnetic susceptibility as a proxy for investigating microbially mediated iron reduction. Geophys. Res. Lett. 38:21L21402
    [Google Scholar]
  43. Modisi MP, Atekwana EA, Kampunzu AB, Ngwisanyi TH. 2000. Rift kinematics during the incipient stages of continental extension: evidence from the nascent Okavango rift basin, northwest Botswana. Geology 28:10939–42
    [Google Scholar]
  44. Mulibo GD, Nyblade AA. 2013. The P and S wave velocity structure of the mantle beneath eastern Africa and the African superplume anomaly. Geochem. Geophys. Geosyst. 14:82696–715
    [Google Scholar]
  45. Naudet V, Revil A, Bottero JY, Begassat P. 2003. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys. Res. Lett. 30:2091
    [Google Scholar]
  46. Njinju EA, Atekwana EA, Stamps DS, Abdelsalam MG, Atekwana EA, Mickus KL. 2019a. Lithospheric structure of the Malawi Rift: implications for magma-poor rifting processes. Tectonics 38:113835–53
    [Google Scholar]
  47. Njinju EA, Kolawole F, Atekwana EA, Stamps DS, Atekwana EA et al. 2019b. Terrestrial heat flow in the Malawi Rifted Zone, East Africa: implications for tectono-thermal inheritance in continental rift basins. J. Volcanol. Geotherm. Res. 387:106656
    [Google Scholar]
  48. Njinju EA, Stamps DS, Neumiller K, Gallager J. 2021. Lithospheric control of melt generation beneath the Rungwe Volcanic Province, East Africa: implications for a plume source. J. Geophys. Res. Solid Earth 126:e2020JB020728
    [Google Scholar]
  49. Ntarlagiannis D, Yee N, Slater L 2005. On the low-frequency electrical polarization of bacterial cells in sands. Geophys. Res. Lett. 32:L24402
    [Google Scholar]
  50. Nyblade AA, Owens T, Gurrola H, Ritsema J, Langston C. 2000. Seismic evidence for a deep upper mantle thermal anomaly beneath East Africa. Geology 28:599–602
    [Google Scholar]
  51. Ohenhen LO, Feinberg JM, Slater LD, Ntarlagiannis D, Cozzarelli I et al. 2022. Microbially induced anaerobic oxidation of magnetite to maghemite in a hydrocarbon-contaminated aquifer. J. Geophys. Res. Biogeosci. 127:e2021JG006560
    [Google Scholar]
  52. Osler JC, Louden KE. 1995. Extinct spreading center in the Labrador Sea: crustal structure from a two-dimensional seismic refraction velocity model. J. Geophys. Res. 100:B22261–78
    [Google Scholar]
  53. Personna YR, Ntarlagiannis D, Slater L, Yee N, O'Brien M, Hubbard S. 2008. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. . J. Geophys. Res. 113:G2G02020
    [Google Scholar]
  54. Revil A, Atekwana E, Zhang C, Jardani A, Smith S. 2012. A new model for the spectral induced polarization signature of bacterial growth in porous media. Water Resour. Res. 48:W09545
    [Google Scholar]
  55. Revil A, Mendonça CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ. 2010. Understanding biogeobatteries: where geophysics meets microbiology. J. Geophys. Res. 115:G1G00G02
    [Google Scholar]
  56. Rosier CL, Atekwana EA, Abdel Aal GZ, Patrauchan MA 2019. Cell concentrations and metabolites enhance the SIP response to biofilm matrix components. J. Appl. Geophys. 160:183–94
    [Google Scholar]
  57. Sarafian E, Evans RL, Abdelsalam MG, Atekwana E, Elsenbeck J et al. 2018. Imaging Precambrian lithospheric structure in Zambia using electromagnetic methods. Gondwana Res. 54:38–49
    [Google Scholar]
  58. Sauck WA. 2000. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J. Appl. Geophys. 44:2–3151–65
    [Google Scholar]
  59. Sauck WA, Atekwana EA, Nash MS. 1998. High electrical conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J. Environ. Eng. Geophys. 2:203–12
    [Google Scholar]
  60. Sharma S, Jaiswal P, Raj R, Atekwana EA 2021. In-situ biofilm detection in field settings using multichannel seismic. J. Appl. Geophys. 193:104423
    [Google Scholar]
  61. Slater L, Ntarlagiannis D, Personna YR, Hubbard S. 2007. Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophys. Res. Lett. 34:21L21404
    [Google Scholar]
  62. Slater LD, Lesmes D. 2002. IP interpretation in environmental investigations. Geophysics 67:77–88
    [Google Scholar]
  63. Werkema DD, Atekwana EA, Endres AL, Sauck WA, Cassidy DP. 2003. Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. Geophys. Res. Lett. 30:121647
    [Google Scholar]
  64. Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, Banfield JF. 2005. Geophysical imaging of stimulated microbial biomineralization. Environ. Sci. Technol. 39:7592–600
    [Google Scholar]
  65. Yu Y, Gao SS, Zhao D, Liu KH. 2020. Mantle structure and flow beneath an early-stage continental rift: constraints from P wave anisotropic tomography. Tectonics 39:e2019TC005590
    [Google Scholar]
  66. Zhang C, Revil A, Fujita Y, Munakata-Marr J, Redden G. 2014. Quadrature conductivity: a quantitative indicator of bacterial abundance in porous media. Geophysics 79:D363–75
    [Google Scholar]
  67. Zhang C, Slater L, Prodan C. 2013. Complex dielectric properties of sulfate-reducing bacteria suspensions. . Geomicrobiol. J. 30:6490–96
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080322-082343
Loading
/content/journals/10.1146/annurev-earth-080322-082343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error