1932

Abstract

Volcanic eruptions impact climate, subtly and profoundly. The size of an eruption is only loosely correlated with the severity of its climate effects, which can include changes in surface temperature, ozone levels, stratospheric dynamics, precipitation, and ocean circulation. We review the processes—in magma chambers, eruption columns, and the oceans, biosphere, and atmosphere—that mediate the climate response to an eruption. A complex relationship between eruption size, style, duration, and the subsequent severity of the climate response emerges. We advocate for a new, consistent metric, the Volcano-Climate Index, to categorize climate response to eruptions independent of eruption properties and spanning the full range of volcanic activity, from brief explosive eruptions to long-lasting flood basalts. A consistent metric for categorizing the climate response to eruptions that differ in size, style, and duration is critical for establishing the relationshipbetween the severity and the frequency of such responses aiding hazard assessments, and furthering understanding of volcanic impacts on climate on timescales of years to millions of years.

  • ▪  We review the processes driving the rocky relationship between eruption size and climate response and propose a Volcano-Climate Index.
  • ▪  Volcanic eruptions perturb Earth's climate on a range of timescales, with key open questions regarding how processes in the magmatic system, eruption column, and atmosphere shape the climate response to volcanism.
  • ▪  A Volcano-Climate Index will provide information on the volcano-climate severity-frequency distribution, analogous to earthquake hazards.
  • ▪  Understanding of the frequency of specific levels of volcanic climate effects will aid hazard assessments, planning, and mitigation of societal impacts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080921-052816
2022-05-31
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-080921-052816.html?itemId=/content/journals/10.1146/annurev-earth-080921-052816&mimeType=html&fmt=ahah

Literature Cited

  1. Aiuppa A. 2009. Degassing of halogens from basaltic volcanism: insights from volcanic gas observations. Chem. Geol. 263:99–109
    [Google Scholar]
  2. Aiuppa A, Casetta F, Coltorti M, Stagno V, Tamburello G. 2021. Carbon concentration increases with depth of melting in Earth's upper mantle. Nat. Geosci. 14:9697–703
    [Google Scholar]
  3. Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S et al. 2007. Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–18
    [Google Scholar]
  4. Allard P, Aiuppa A, Loyer H, Carrot F, Gaudry A et al. 2000. Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 27:1207–10
    [Google Scholar]
  5. Anchukaitis KJ, Wilson R, Briffa KR, Büntgen U, Cook ER et al. 2017. Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat. Sci. Rev. 163:1–22
    [Google Scholar]
  6. Andersson SM, Martinsson BG, Friberg J, Brenninkmeijer CAM, Rauthe-Schöch A et al. 2013. Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations. Atmos. Chem. Phys. 13:1781–96
    [Google Scholar]
  7. Armstrong-McKay DI, Tyrrell T, Wilson PA, Foster GL. 2014. Estimating the impact of the cryptic degassing of Large Igneous Provinces: a mid-Miocene case-study. Earth Planet. Sci. Lett. 403:254–62
    [Google Scholar]
  8. Aubry TJ, Engwell S, Bonadonna C, Carazzo G, Scollo S et al. 2021a. The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): a new observational database to support explosive eruptive column model validation and development. J. Volcanol. Geotherm. Res. 417:107295
    [Google Scholar]
  9. Aubry TJ, Jellinek AM, Degruyter W, Bonadonna C, Radić V et al. 2016. Impact of global warming on the rise of volcanic plumes and implications for future volcanic aerosol forcing. J. Geophys. Res. Atmos. 121:13326–51
    [Google Scholar]
  10. Aubry TJ, Staunton-Sykes J, Marshall LR, Haywood J, Abraham NL, Schmidt A 2021b. Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions. Nat. Commun. 12: 4708.
    [Google Scholar]
  11. Aubry TJ, Toohey M, Marshall L, Schmidt A, Jellinek AM. 2020. A new volcanic stratospheric sulfate aerosol forcing emulator (EVA_H): comparison with interactive stratospheric aerosol models. J. Geophys. Res. Atmos. 125:e2019JD031303
    [Google Scholar]
  12. Ayris PM, Lee AF, Wilson K, Kueppers U, Dingwell DB, Delmelle P. 2013. SO2 sequestration in large volcanic eruptions: high-temperature scavenging by tephra. Geochim. Cosmochim. Acta 110:58–69
    [Google Scholar]
  13. Barnet JS, Littler K, Kroon D, Leng MJ, Westerhold T 2018. A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism. Geology 46:(2)147–50
    [Google Scholar]
  14. Beerling DJ, Harfoot M, Lomax B, Pyle JA. 2007. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philos. Trans. R. Soc. A 365:1843–66
    [Google Scholar]
  15. Bekki S. 1995. Oxidation of volcanic SO2—a sink for stratospheric OH and H2O. Geophys. Res. Lett. 22:913–16
    [Google Scholar]
  16. Benca JP, Duijnstee IAP, Looy CV. 2018. UV-B–induced forest sterility: implications of ozone shield failure in Earth's largest extinction. Sci. Adv. 4:e1700618
    [Google Scholar]
  17. Bittner M, Schmidt H, Timmreck C, Sienz F. 2016. Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys. Res. Lett. 43:9324–32
    [Google Scholar]
  18. Black BA, Gibson SA. 2019. Deep carbon and the life cycle of large igneous provinces. Elements 15:319–24
    [Google Scholar]
  19. Black BA, Lamarque J-F, Marsh DR, Schmidt A, Bardeen CG. 2021. Global climate disruption and regional climate shelters after the Toba supereruption. PNAS 118:e2013046118
    [Google Scholar]
  20. Black BA, Lamarque J-F, Shields CA, Elkins-Tanton LT, Kiehl JT 2014. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42:67–70
    [Google Scholar]
  21. Black BA, Neely RR, Lamarque J-F, Elkins-Tanton LT, Kiehl JT et al. 2018. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11:949–54
    [Google Scholar]
  22. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV et al. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:6135941–45
    [Google Scholar]
  23. Bluth GJS, Rose WI, Sprod IE, Krueger AJ. 1997. Stratospheric loading of sulfur from explosive volcanic eruptions. J. Geol. 105:671–84
    [Google Scholar]
  24. Bobrowski N, Honninger G, Galle B, Platt U. 2003. Detection of bromine monoxide in a volcanic plume. Nature 423:273–76
    [Google Scholar]
  25. Bond DPG, Wignall PB. 2014. Large igneous provinces and mass extinctions: an update. Geol. Soc. Am. Spec. Pap. 505:29–55
    [Google Scholar]
  26. Borisova AY, Martel C, Gouy S, Pratomo I, Sumarti S et al. 2013. Highly explosive 2010 Merapi eruption: evidence for shallow-level crustal assimilation and hybrid fluid. J. Volcanol. Geotherm. Res. 261:193–208
    [Google Scholar]
  27. Boulon J, Sellegri K, Hervo M, Laj P. 2011. Observations of nucleation of new particles in a volcanic plume. PNAS 108:3012223–26
    [Google Scholar]
  28. Browning TJ, Stone K, Bouman HA, Mather TA, Pyle DM et al. 2015. Volcanic ash supply to the surface ocean—remote sensing of biological responses and their wider biogeochemical significance. Front. Mar. Sci. 2:14
    [Google Scholar]
  29. Bureau H, Keppler H, Metrich N. 2000. Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet. Sci. Lett. 183:51–60
    [Google Scholar]
  30. Burgess SD, Bowring SA. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv. 1:e1500470
    [Google Scholar]
  31. Burnett CR, Burnett EB. 1984. Observational results on the vertical column abundance of atmospheric hydroxyl: description of its seasonal behavior 1977–1982 and of the 1982 El Chichon Perturbation. J. Geophys. Res. 89:D69603–11
    [Google Scholar]
  32. Burton MR, Sawyer GM, Granieri D. 2013. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75:323–54
    [Google Scholar]
  33. Cadoux A, Scaillet B, Bekki S, Oppenheimer C, Druitt TH. 2015. Stratospheric ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece). Sci. Rep. 5:12243
    [Google Scholar]
  34. Carey S, Sigurdsson H 1989. The intensity of plinian eruptions. Bull. Volcanol 51:28–40
    [Google Scholar]
  35. Carn SA. 2016. On the detection and monitoring of effusive eruptions using satellite SO2 measurements. Geol. Soc. Lond. Spec. Publ. 426:277–92
    [Google Scholar]
  36. Carn SA, Clarisse L, Prata AJ 2016. Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res. 311:99–134
    [Google Scholar]
  37. Cassidy M, Castro JM, Helo C, Troll VR, Deegan FM et al. 2016. Volatile dilution during magma injections and implications for volcano explosivity. Geology 44:1027–30
    [Google Scholar]
  38. Cassidy M, Manga M, Cashman K, Bachmann O. 2018. Controls on explosive-effusive volcanic eruption styles. Nat. Commun. 9:2839
    [Google Scholar]
  39. Castro JM, Dingwell DB. 2009. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 461:780–83
    [Google Scholar]
  40. Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A et al. 2013. Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull. Volcanol. 75:702
    [Google Scholar]
  41. Chen J, Shen S-z, Li X-h, Xu Y-g, Joachimski MM et al. 2015. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448:26–38
    [Google Scholar]
  42. Chenet AL, Fluteau F, Courtillot V, Gerard M, Subbarao KV 2008. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113:B4B04101
    [Google Scholar]
  43. Chesner CA, Luhr JF. 2010. A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. J. Volcanol. Geotherm. Res. 197:259–78
    [Google Scholar]
  44. Christopher TE, Blundy J, Cashman K, Cole P, Edmonds M et al. 2015. Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16:2797–811
    [Google Scholar]
  45. Clapham ME, Renne PR. 2019. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47:275–303
    [Google Scholar]
  46. Costa A, Smith V, Macedonio G, Matthews N. 2014. The magnitude and impact of the Youngest Toba Tuff super-eruption. Front. Earth Sci. 2:16
    [Google Scholar]
  47. Courtillot VE, Renne PR. 2003. On the ages of flood basalt events. C.R. Geosci. 335:113–40
    [Google Scholar]
  48. Crick L, Burke A, Hutchison W, Kohno M, Moore KA et al. 2021. New insights into the ∼74 ka Toba eruption from sulfur isotopes of polar ice cores. Clim. Past 17:2119–37
    [Google Scholar]
  49. Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI et al. 2012. Global database on large magnitude explosive volcanic eruptions (LaMEVE). J. Appl. Volcanol. 1:4
    [Google Scholar]
  50. DallaSanta K, Gerber EP, Toohey M. 2019. The circulation response to volcanic eruptions: the key roles of stratospheric warming and eddy interactions. J. Clim. 32:1101–20
    [Google Scholar]
  51. Delmelle P, Wadsworth FB, Maters EC, Ayris PM. 2018. High temperature reactions between gases and ash particles in volcanic eruption plumes. Rev. Mineral. Geochem. 84:285–308
    [Google Scholar]
  52. Deshler T, Hofmann DJ, Johnson BJ, Rozier WR. 1992. Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyoming during the summer of 1991. Geophys. Res. Lett. 19:199–202
    [Google Scholar]
  53. Dessler AE, Schoeberl MR, Wang T, Davis SM, Rosenlof KH. 2013. Stratospheric water vapor feedback. PNAS 110:18087–91
    [Google Scholar]
  54. Dixon JE, Clague DA, Stolper EM. 1991. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii. J. Geol. 99:371–94
    [Google Scholar]
  55. Donovan A, Blundy J, Oppenheimer C, Buisman I. 2017. The 2011 eruption of Nabro volcano, Eritrea: perspectives on magmatic processes from melt inclusions. Contrib. Mineral. Petrol. 173:1
    [Google Scholar]
  56. Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G. 2012. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 117:D17D17105
    [Google Scholar]
  57. Duggen S, Olgun N, Croot P, Hoffmann L, Dietze H et al. 2010. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7:827–44
    [Google Scholar]
  58. Durant AJ, Shaw RA, Rose WI, Mi Y, Ernst GGJ 2008. Ice nucleation and overseeding of ice in volcanic clouds. J. Geophys. Res. 113:D9D09206
    [Google Scholar]
  59. Ebmeier SK, Sayer AM, Grainger RG, Mather TA, Carboni E. 2014. Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties. Atmos. Chem. Phys. 14:10601–18
    [Google Scholar]
  60. Edmonds M, Mather TA, Liu EJ. 2018. A distinct metal fingerprint in arc volcanic emissions. Nat. Geosci. 11:790–94
    [Google Scholar]
  61. Edmonds M, Woods AW. 2018. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368:13–30
    [Google Scholar]
  62. Ernst RE, Dickson AJ, Bekker A, eds. 2021. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes Hoboken, NJ: Wiley
    [Google Scholar]
  63. Farnsworth A, Lunt DJ, O'Brien CL, Foster GL, Inglis GN et al. 2019. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46:9880–89
    [Google Scholar]
  64. Fasullo JT, Tomas R, Stevenson S, Otto-Bliesner B, Brady E, Wahl E 2017. The amplifying influence of increased ocean stratification on a future year without a summer. Nat. Commun. 8:1236
    [Google Scholar]
  65. Gaillard F, Scaillet B, Pichavant M, Iacono-Marziano G. 2015. The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418:217–33
    [Google Scholar]
  66. Gao C, Robock A, Ammann C. 2008. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J. Geophys. Res. 113:D23D23111
    [Google Scholar]
  67. Gassó S. 2008. Satellite observations of the impact of weak volcanic activity on marine clouds. J. Geophys. Res. 113:D14D14S9
    [Google Scholar]
  68. Gerlach T. 2011. Volcanic versus anthropogenic carbon dioxide. Eos Trans. AGU 92:201–2
    [Google Scholar]
  69. Gerlach TM, McGee KA. 1994. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980–88. Geophys. Res. Lett. 21:2833–36
    [Google Scholar]
  70. Gettelman A, Schmidt A, Kristjansson JE. 2015. Icelandic volcanic emissions and climate. Nat. Geosci. 8:243
    [Google Scholar]
  71. Gingerich PD. 2019. Temporal scaling of carbon emission and accumulation rates: modern anthropogenic emissions compared to estimates of PETM onset accumulation. Paleoceanogr. Paleoclimatol. 34:329–35
    [Google Scholar]
  72. Glaze LS, Baloga SM, Wilson L 1997. Transport of atmospheric water vapor by volcanic eruption columns. J. Geophys. Res. 102:D56099–108
    [Google Scholar]
  73. Glaze LS, Self S, Schmidt A, Hunter SJ. 2017. Assessing eruption column height in ancient flood basalt eruptions. Earth Planet. Sci. Lett. 457:263–70
    [Google Scholar]
  74. Gleckler PJ, Wigley TML, Santer BD, Gregory JM, AchutaRao K, Taylor KE. 2006. Krakatoa's signature persists in the ocean. Nature 439:675
    [Google Scholar]
  75. Glob. Volcanism Program 2021. Volcanoes of the World, v. 4.10.1, Smithsonian Inst., Washington, DC. updated June 29. https://doi.org/10.5479/si.GVP.VOTW4-2013
    [Crossref]
  76. Gonnermann HM, Manga M. 2007. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39:321–56
    [Google Scholar]
  77. Gonnermann HM, Manga M 2013. Dynamics of magma ascent in the volcanic conduit. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism RMC Lopes, SA Fagents, TKP Gregg 55–84 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  78. Graf H-F, Feichter J, Langmann B. 1997. Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res. 102:D9727–38
    [Google Scholar]
  79. Gregory JM. 2010. Long-term effect of volcanic forcing on ocean heat content. Geophys. Res. Lett. 37:L22701
    [Google Scholar]
  80. Gutiérrez X, Schiavi F, Keppler H. 2016. The adsorption of HCl on volcanic ash. Earth Planet. Sci. Lett. 438:66–74
    [Google Scholar]
  81. Hartley ME, Maclennan J, Edmonds M, Thordarson T. 2014. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet. Sci. Lett. 393:120–31
    [Google Scholar]
  82. Haywood JM, Jones A, Bellouin N, Stephenson D. 2013. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3:660–65
    [Google Scholar]
  83. Hegerl GC, Crowley TJ, Baum SK, Kim K-Y, Hyde WT. 2003. Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of Northern Hemispheric temperature. Geophys. Res. Lett. 30:1242
    [Google Scholar]
  84. Hernandez Nava A, Black B, Gibson S, Bodnar R, Renne R, Vanderkluysen L. 2021. Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate. PNAS 118:14e2007797118
    [Google Scholar]
  85. Hitchman MH, McKay M, Trepte CR. 1994. A climatology of stratospheric aerosol. J. Geophys. Res. 99:D1020689–700
    [Google Scholar]
  86. Hopcroft PO, Kandlbauer J, Valdes PJ, Sparks RSJ. 2018. Reduced cooling following future volcanic eruptions. Clim. Dyn. 51:1449–63
    [Google Scholar]
  87. Hull PM, Bornemann A, Penman DE, Henehan MJ, Norris RD et al. 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367:266–72
    [Google Scholar]
  88. Humphreys MCS, Edmonds M, Christopher T, Hards V. 2009. Chlorine variations in the magma of Soufrière Hills Volcano, Montserrat: insights from Cl in hornblende and melt inclusions. Geochim. Cosmochim. Acta 73:5693–708
    [Google Scholar]
  89. Humphreys WJ. 1913. Volcanic dust and other factors in the production of climatic changes, and their possible relation to ice ages. J. Franklin Inst. B 176:131–60
    [Google Scholar]
  90. Iacovino K. 2015. Linking subsurface to surface degassing at active volcanoes: a thermodynamic model with applications to Erebus volcano. Earth Planet. Sci. Lett. 431:59–74
    [Google Scholar]
  91. Iacovino K, Ju-Song K, Sisson T, Lowenstern J, Kuk-Hun R et al. 2016. Quantifying gas emissions from the “Millennium eruption” of Paektu volcano, Democratic People's Republic of Korea/China. Sci. Adv. 2:e1600913
    [Google Scholar]
  92. Iles CE, Hegerl GC, Schurer AP, Zhang X. 2013. The effect of volcanic eruptions on global precipitation. J. Geophys. Res. Atmos. 118:8770–86
    [Google Scholar]
  93. Ilyinskaya E, Schmidt A, Mather TA, Pope FD, Witham C et al. 2017. Understanding the environmental impacts of large fissure eruptions: aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland). Earth Planet. Sci. Lett. 472:309–22
    [Google Scholar]
  94. Isono K, Komabayasi M, Ono A. 1959. Volcanoes as a source of atmospheric ice nuclei. Nature 183:317–18
    [Google Scholar]
  95. Jones AC, Haywood JM, Jones A, Aquila V. 2016a. Sensitivity of volcanic aerosol dispersion to meteorological conditions: a Pinatubo case study. J. Geophys. Res. Atmos. 121:6892–908
    [Google Scholar]
  96. Jones CD, Cox PM. 2001. Modeling the volcanic signal in the atmospheric CO2 record. Glob. Biogeochem. Cycles 15:453–65
    [Google Scholar]
  97. Jones MT 2015. The environmental and climatic impacts of volcanic ash deposition. Volcanism and Global Environmental Change A Schmidt, K Fristad, L Elkins-Tanton 260–74 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  98. Jones MT, Jerram DA, Svensen HH, Grove C 2016b. The effects of large igneous provinces on the global carbon and sulphur cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441:Part 14–21
    [Google Scholar]
  99. Jones MT, Sparks R, Valdes P. 2007. The climatic impact of supervolcanic ash blankets. Clim. Dyn. 29:553–64
    [Google Scholar]
  100. Joshi MM, Jones GS. 2009. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos. Chem. Phys. 9:6109–18
    [Google Scholar]
  101. Joshi MM, Shine KP. 2003. A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Clim. 16:3525–34
    [Google Scholar]
  102. Jugo PJ. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–18
    [Google Scholar]
  103. Kasbohm J, Schoene B. 2018. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Sci. Adv. 4:eaat8223
    [Google Scholar]
  104. Kasting JF, Catling D. 2003. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41:429–63
    [Google Scholar]
  105. Khodri M, Izumo T, Vialard J, Janicot S, Cassou C et al. 2017. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun. 8:778
    [Google Scholar]
  106. Kinne S, Toon OB, Prather MJ. 1992. Buffering of stratospheric circulation by changing amounts of tropical ozone a Pinatubo case study. Geophys. Res. Lett. 19:1927–30
    [Google Scholar]
  107. Kremser S, Thomason LW, von Hobe M, Hermann M, Deshler T et al. 2016. Stratospheric aerosol—observations, processes, and impact on climate. Rev. Geophys. 54:278–335
    [Google Scholar]
  108. Kroll CA, Dacie S, Azoulay A, Schmidt H, Timmreck C. 2021. The impact of volcanic eruptions of different magnitude on stratospheric water vapor in the tropics. Atmos. Chem. Phys. 21:6565–91
    [Google Scholar]
  109. Kutterolf S, Hansteen TH, Appel K, Freundt A, Krüger K et al. 2013. Combined bromine and chlorine release from large explosive volcanic eruptions: a threat to stratospheric ozone?. Geology 41:707–10
    [Google Scholar]
  110. Labitzke K. 1994. Stratospheric temperature changes after the Pinatubo eruption. J. Atmos. Terr. Phys. 56:1027–34
    [Google Scholar]
  111. Labitzke K, McCormick MP. 1992. Stratospheric temperature increases due to Pinatubo aerosols. Geophys. Res. Lett. 19:207–10
    [Google Scholar]
  112. Lamb HH. 1970. Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Philos. Trans. R. Soc. Lond. A 266:425–533
    [Google Scholar]
  113. Landwehrs JP, Feulner G, Hofmann M, Petri S. 2020. Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism. Earth Planet. Sci. Lett. 537:116174
    [Google Scholar]
  114. Langmann B. 2014. On the role of climate forcing by volcanic sulphate and volcanic ash. Adv. Meteorol. 2014.340123
    [Google Scholar]
  115. LeGrande AN, Tsigaridis K, Bauer SE. 2016. Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nat. Geosci. 9:652–55
    [Google Scholar]
  116. Lehner F, Schurer AP, Hegerl GC, Deser C, Frölicher TL. 2016. The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett. 43:2851–58
    [Google Scholar]
  117. Liu EJ, Wood K, Aiuppa A, Giudice G, Bitetto M et al. 2020. Volcanic activity and gas emissions along the South Sandwich Arc. Bull. Volcanol. 83:3
    [Google Scholar]
  118. Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P et al. 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–89
    [Google Scholar]
  119. Malavelle FF, Haywood JM, Jones A, Gettelman A, Clarisse L et al. 2017. Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature 546:485–91
    [Google Scholar]
  120. Mangan M, Sisson T. 2000. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett. 183:441–55
    [Google Scholar]
  121. Mankin WG, Coffey MT. 1984. Increased stratospheric hydrogen chloride in the El Chichón cloud. Science 226:170–72
    [Google Scholar]
  122. Mankin WG, Coffey MT, Goldman A. 1992. Airborne observations of SO2, HCl, and O3 in the stratospheric plume of the Pinatubo Volcano in July 1991. Geophys. Res. Lett. 19:179–82
    [Google Scholar]
  123. Marshall L, Johnson JS, Mann GW, Lee L, Dhomse SS et al. 2019. Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation. J. Geophys. Res. Atmos. 124:964–85
    [Google Scholar]
  124. Marshall LR, Schmidt A, Johnson JS, Mann GW, Lee LA et al. 2021. Unknown eruption source parameters cause large uncertainty in historical volcanic radiative forcing reconstructions. J. Geophys. Res. Atmos. 126:e2020JD033578
    [Google Scholar]
  125. Mason BG, Pyle DM, Oppenheimer C 2004. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol 66:735–48
    [Google Scholar]
  126. Mastin LG. 2014. Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate. J. Geophys. Res. Atmos. 119:2474–95
    [Google Scholar]
  127. Maters EC, Delmelle P, Rossi MJ, Ayris PM. 2017. Reactive uptake of sulfur dioxide and ozone on volcanic glass and ash at ambient temperature. J. Geophys. Res. Atmos. 122:10077–88
    [Google Scholar]
  128. Mather TA, Pyle DM, Oppenheimer C 2003. Tropospheric volcanic aerosol. Volcanism and the Earth's Atmosphere A Robock 189–212 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  129. McCormick MP, Thomason LW, Trepte CR. 1995. Atmospheric effects of the Mt Pinatubo eruption. Nature 373:399–404
    [Google Scholar]
  130. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C et al. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014
    [Google Scholar]
  131. Miles GM, Grainger RG, Highwood EJ. 2004. The significance of volcanic eruption strength and frequency for climate. Q. J. R. Meteorol. Soc. 130:2361–76
    [Google Scholar]
  132. Murcray DG, Murcray FJ, Barker DB, Mastenbrook HJ. 1981. Changes in stratospheric water vapor associated with the Mount St. Helens eruption. Science 211:823–24
    [Google Scholar]
  133. Muser LO, Hoshyaripour GA, Bruckert J, Horváth Á, Malinina E et al. 2020. Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: evidence from the Raikoke 2019 eruption. Atmos. Chem. Phys. 20:15015–36
    [Google Scholar]
  134. Natl. Acad. Sci. Eng. Med 2017. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing Washington, DC: Natl. Acad. Press
    [Google Scholar]
  135. Newhall CG, Self S. 1982. The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87:C21231–38
    [Google Scholar]
  136. Nicholls N. 1988. Low latitude volcanic eruptions and the El Niño-Southern Oscillation. J. Climatol. 8:91–95
    [Google Scholar]
  137. Niemeier U, Riede F, Timmreck C. 2020. Simulation of ash clouds after a Laacher See-type eruption. Clim. Past 17:633–652
    [Google Scholar]
  138. Niemeier U, Timmreck C, Graf HF, Kinne S, Rast S, Self S. 2009. Initial fate of fine ash and sulfur from large volcanic eruptions. Atmos. Chem. Phys. 9:9043–57
    [Google Scholar]
  139. Oman L, Robock A, Stenchikov GL, Thordarson T. 2006b. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys. Res. Lett. 33:L18711
    [Google Scholar]
  140. Oppenheimer C. 2002. Limited global change due to the largest known Quaternary eruption, Toba ≈74 kyr BP?. Quat. Sci. Rev. 21:1593–609
    [Google Scholar]
  141. Oppenheimer C, Tsanev VI, Braban CF, Cox RA, Adams JW et al. 2006. BrO formation in volcanic plumes. Geochim. Cosmochim. Acta 70:2935–41
    [Google Scholar]
  142. Pallister JS, Trusdell FA, Brownfield IK, Siems DF, Budahn JR, Sutley SF. 2005. The 2003 phreatomagmatic eruptions of Anatahan volcano—textural and petrologic features of deposits at an emergent island volcano. J. Volcanol. Geotherm. Res. 146:208–25
    [Google Scholar]
  143. Papale P, Marzocchi W. 2019. Volcanic threats to global society. Science 363:64331275–76
    [Google Scholar]
  144. Pinto JP, Turco RP, Toon OB. 1989. Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94:D811165–74
    [Google Scholar]
  145. Pistone M, Caricchi L, Ulmer P 2021. CO2 favours the accumulation of excess fluids in felsic magmas. Terra Nova 33:120–28
    [Google Scholar]
  146. Polvani LM, Banerjee A, Schmidt A. 2019. Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations. Atmos. Chem. Phys. 19:6351–66
    [Google Scholar]
  147. Pyle DM 2015. Sizes of volcanic eruptions. The Encyclopedia of Volcanoes H Sigurdsson 257–64 Amsterdam: Academic. , 2nd ed..
    [Google Scholar]
  148. Pyle DM, Beattie PD, Bluth GJS. 1996. Sulphur emissions to the stratosphere from explosive volcanic eruptions. Bull. Volcanol. 57:663–71
    [Google Scholar]
  149. Rampino MR, Self S. 1982. Historic eruptions of Tambora (1815), Krakatau (1883), and Agung 1963, their stratospheric aerosols, and climatic impact. Quat. Res. 18:127–43
    [Google Scholar]
  150. Rampino MR, Self S. 1984a. The atmospheric effects of El Chichón. Sci. Am. 250:48–57
    [Google Scholar]
  151. Rampino MR, Self S. 1984b. Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310:677–79
    [Google Scholar]
  152. Read WG, Froidevaux L, Waters JW. 1993. Microwave limb sounder measurement of stratospheric SO2 from the Mt. Pinatubo Volcano. Geophys. Res. Lett. 20:1299–302
    [Google Scholar]
  153. Ridley DA, Solomon S, Barnes JE, Burlakov VD, Deshler T et al. 2014. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 41:7763–69
    [Google Scholar]
  154. Rix M, Valks P, Hao N, Loyola D, Schlager H et al. 2012. Volcanic SO2, BrO and plume height estimations using GOME-2 satellite measurements during the eruption of Eyjafjallajökull in May 2010. J. Geophys. Res. 117:D20D00U19
    [Google Scholar]
  155. Robock A. 2000. Volcanic eruptions and climate. Rev. Geophys. 38:191–219
    [Google Scholar]
  156. Robock A, Free MP. 1995. Ice cores as an index of global volcanism from 1850 to the present. J. Geophys. Res. 100:D611549–67
    [Google Scholar]
  157. Robock A, Mao J. 1995. The volcanic signal in surface temperature observations. J. Clim. 8:1086–103
    [Google Scholar]
  158. Rose WI Jr. 1977. Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology 5:621–24
    [Google Scholar]
  159. Rybin A, Chibisova M, Webley P, Steensen T, Izbekov P et al. 2011. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles. Bull. Volcanol. 73:1377–92
    [Google Scholar]
  160. Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C et al. 2014. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7:185–89
    [Google Scholar]
  161. Santer BD, Solomon S, Bonfils C, Zelinka MD, Painter JF et al. 2015. Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys. Res. Lett. 42:500–9
    [Google Scholar]
  162. Scaillet B, Clémente B, Evans BW, Pichavant M. 1998. Redox control of sulfur degassing in silicic magmas. J. Geophys. Res. 103:B1023937–49
    [Google Scholar]
  163. Schaller MF, Wright JD, Kent DV. 2011. Atmospheric PCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–9
    [Google Scholar]
  164. Schmidt A, Carslaw KS, Mann GW, Rap A, Pringle KJ et al. 2012. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos. Chem. Phys. 12:7321–39
    [Google Scholar]
  165. Schmidt A, Carslaw KS, Mann GW, Wilson M, Breider TJ et al. 2010. The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei. Atmos. Chem. Phys. 10:6025–41
    [Google Scholar]
  166. Schmidt A, Mills MJ, Ghan S, Gregory JM, Allan RP et al. 2018. Volcanic radiative forcing from 1979 to 2015. J. Geophys. Res. Atmos. 123:12491–508
    [Google Scholar]
  167. Schmidt A, Skeffington RA, Thordarson T, Self S, Forster PM et al. 2016. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9:77–82
    [Google Scholar]
  168. Schnetzler CC, Bluth GJS, Krueger AJ, Walter LS. 1997. A proposed volcanic sulfur dioxide index (VSI). J. Geophys. Res. 102:B920087–91
    [Google Scholar]
  169. Schurer AP, Hegerl GC, Mann ME, Tett SFB, Phipps SJ. 2013. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26:6954–73
    [Google Scholar]
  170. Seifert P, Ansmann A, Groß S, Freudenthaler V, Heinold B et al. 2011. Ice formation in ash-influenced clouds after the eruption of the Eyjafjallajökull volcano in April 2010. J. Geophys. Res. 116:D20D00U04
    [Google Scholar]
  171. Self S. 2006. The effects and consequences of very large explosive volcanic eruptions. Philos. Trans. R. Soc. A 364:2073–97
    [Google Scholar]
  172. Self S, Rampino MR, Barbera JJ. 1981. The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. J. Volcanol. Geotherm. Res. 11:41–60
    [Google Scholar]
  173. Self S, Zhao J, Holasek R, Torres R, King A. 1993. The atmospheric impact of the 1991 Mount Pinatubo eruption. Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines CG Newhall, RS Punongbayan 1089–115 Seattle: Univ. Wash. Press
    [Google Scholar]
  174. Shinohara H. 2008. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys. 46:RG4005
    [Google Scholar]
  175. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G et al. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523:543–49
    [Google Scholar]
  176. Sioris CE, Malo A, McLinden CA, D'Amours R. 2016a. Direct injection of water vapor into the stratosphere by volcanic eruptions. Geophys. Res. Lett. 43:7694–700
    [Google Scholar]
  177. Sioris CE, Zou J, McElroy CT, Boone CD, Sheese PE, Bernath PF. 2016b. Water vapour variability in the high-latitude upper troposphere—Part 2: impact of volcanic eruptions. Atmos. Chem. Phys. 16:2207–19
    [Google Scholar]
  178. Smith CJ, Forster PM, Allen M, Leach N, Millar RJ et al. 2018. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11:2273–97
    [Google Scholar]
  179. Soden BJ, Wetherald RT, Stenchikov GL, Robock A. 2002. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296:727–30
    [Google Scholar]
  180. Solomon S. 1999. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37:275–316
    [Google Scholar]
  181. Solomon S, Daniel JS, Neely RR, Vernier J-P, Dutton EG, Thomason LW. 2011. The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333:866–70
    [Google Scholar]
  182. Sparks S, Self S, Pyle D, Oppenheimer C, Rymer H, Grattan J. 2005. Super-Eruptions: Global Effects and Future Threats. London: Geol. Soc.
    [Google Scholar]
  183. Sparks RSJ, Bursik MI, Carey SN, Gilbert J, Glaze LS et al. 1997. Volcanic Plumes Chichester, UK: Wiley
    [Google Scholar]
  184. Sprain CJ, Renne PR, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363:866–70
    [Google Scholar]
  185. Staunton-Sykes J, Aubry TJ, Shin YM, Weber J, Marshall LR et al. 2021. Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing. Atmos. Chem. Phys. 21:9009–29
    [Google Scholar]
  186. Stevenson DS, Johnson CE, Collins WJ, Derwent RG. 2003. The tropospheric sulphur cycle and the role of volcanic SO2. Volcan. Degassing 6:295–305
    [Google Scholar]
  187. Stocker M, Ladstädter F, Wilhelmsen H, Steiner AK. 2019. Quantifying stratospheric temperature signals and climate imprints from post-2000 volcanic eruptions. Geophys. Res. Lett. 46:12486–94
    [Google Scholar]
  188. Stone KA, Solomon S, Kinnison DE, Pitts MC, Poole LR et al. 2017. Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015. J. Geophys. Res. Atmos. 122:11862–79
    [Google Scholar]
  189. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F et al. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277:490–500
    [Google Scholar]
  190. Tabazadeh A, Turco RP. 1993. Stratospheric chlorine injection by volcanic eruptions: HCI scavenging and implications for ozone. Science 260:1082–86
    [Google Scholar]
  191. Textor C, Graf H-F, Herzog M, Oberhuber JM. 2003. Injection of gases into the stratosphere by explosive volcanic eruptions. J. Geophys. Res. 108:D194606
    [Google Scholar]
  192. Theys N, Van Roozendael M, Errera Q, Hendrick F, Daerden F et al. 2009. A global stratospheric bromine monoxide climatology based on the BASCOE chemical transport model. Atmos. Chem. Phys. 9:831–48
    [Google Scholar]
  193. Thomason LW, Peter T, eds. 2006. Assessment of Stratospheric Aerosol Properties (ASAP) Geneva, Switz: World Meteorol. Organ.
    [Google Scholar]
  194. Thompson DWJ, Wallace JM, Jones PD, Kennedy JJ. 2009. Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights. J. Clim. 22:6120–41
    [Google Scholar]
  195. Thordarson T, Self S. 1998. The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes?. J. Geophys. Res. 103:B1127411–45
    [Google Scholar]
  196. Thordarson T, Self S. 2003. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J. Geophys. Res. 108:D14011
    [Google Scholar]
  197. Timmreck C, Graf H-F, Lorenz SJ, Niemeier U, Zanchettin D et al. 2010. Aerosol size confines climate response to volcanic super-eruptions. Geophys. Res. Lett. 37:L24705
    [Google Scholar]
  198. Timmreck C, Graf H-F, Zanchettin D, Hagemann S, Kleinen T, Krüger K. 2012. Climate response to the Toba super-eruption: regional changes. Quat. Int. 258:30–44
    [Google Scholar]
  199. Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ et al. 2009. Limited temperature response to the very large AD 1258 volcanic eruption. Geophys. Res. Lett. 36:L21708
    [Google Scholar]
  200. Toll V, Christensen M, Gassó S, Bellouin N. 2017. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model. Geophys. Res. Lett. 44:12492–500
    [Google Scholar]
  201. Toohey M, Krüger K, Bittner M, Timmreck C, Schmidt H. 2014. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmos. Chem. Phys. 14:13063–79
    [Google Scholar]
  202. Toohey M, Krüger K, Niemeier U, Timmreck C. 2011. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos. Chem. Phys. 11:12351–67
    [Google Scholar]
  203. Toohey M, Krüger K, Schmidt H, Timmreck C, Sigl M et al. 2019. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nat. Geosci. 12:100–7
    [Google Scholar]
  204. Toohey M, Krüger K, Sigl M, Stordal F, Svensen H. 2016a. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Clim. Change 136:401–12
    [Google Scholar]
  205. Toohey M, Sigl M. 2017. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data 9:809–31
    [Google Scholar]
  206. Toohey M, Stevens B, Schmidt H, Timmreck C. 2016b. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations. Geosci. Model Dev. 9:4049–70
    [Google Scholar]
  207. Turco RP, Toon OB, Whitten RC, Hamill P, Keesee RG. 1983. The 1980 eruptions of Mount St. Helens: physical and chemical processes in the stratospheric clouds. J. Geophys. Res. 88:C95299–319
    [Google Scholar]
  208. Van Eaton AR, Herzog M, Wilson CJN, McGregor J. 2012. Ascent dynamics of large phreatomagmatic eruption clouds: the role of microphysics. J. Geophys. Res. 117:B3B03203
    [Google Scholar]
  209. Vernier J-P, Fairlie TD, Deshler T, Natarajan M, Knepp T et al. 2016. In situ and space-based observations of the Kelud volcanic plume: the persistence of ash in the lower stratosphere. J. Geophys. Res. Atmos. 121:11104–18
    [Google Scholar]
  210. Vernier J-P, Thomason LW, Pommereau JP, Bourassa A, Pelon J et al. 2011. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38:L12807
    [Google Scholar]
  211. Vidal CM, Métrich N, Komorowski J-C, Pratomo I, Michel A et al. 2016. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Sci. Rep. 6:34868
    [Google Scholar]
  212. Wade DC, Vidal CM, Abraham NL, Dhomse S, Griffiths PT et al. 2020. Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. PNAS 117:26651–59
    [Google Scholar]
  213. Wallace PJ. 2001. Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. J. Volcanol. Geotherm. Res. 108:85–106
    [Google Scholar]
  214. Wallace PJ, Edmonds M. 2011. The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev. Mineral. Geochem. 73:215–46
    [Google Scholar]
  215. Wallace PJ, Plank T, Bodnar RJ, Gaetani GA, Shea T. 2021. Olivine-hosted melt inclusions: a microscopic perspective on a complex magmatic world. Annu. Rev. Earth Planet. Sci. 49:465–94
    [Google Scholar]
  216. Webster JD, Kinzler RJ, Mathez EA. 1999. Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim. Cosmochim. Acta 63:729–38
    [Google Scholar]
  217. Werner C, Fischer TP, Aiuppa A, Edmonds M, Cardellini C et al. 2019. Carbon dioxide emissions from subaerial volcanic regions. Deep Carbon: Past to Present B Orcutt, I Daniel, R Dasgupta 188–236 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  218. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C et al. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369:1383–87
    [Google Scholar]
  219. Wignall PB. 2001. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53:1–33
    [Google Scholar]
  220. Wilka C, Shah K, Stone K, Solomon S, Kinnison D et al. 2018. On the role of heterogeneous chemistry in ozone depletion and recovery. Geophys. Res. Lett. 45:7835–42
    [Google Scholar]
  221. Wilson R, Anchukaitis K, Briffa KR, Büntgen U, Cook E et al. 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: the long term context. Quat. Sci. Rev. 134:1–18
    [Google Scholar]
  222. Woods AW. 1988. The fluid dynamics and thermodynamics of eruption columns. Bull. Volcanol 50:169–93
    [Google Scholar]
  223. Wullenweber N, Lange A, Rozanov A, von Savigny C 2021. On the phenomenon of the blue sun. Clim. Past 17:969–83
    [Google Scholar]
  224. Yuan T, Remer LA, Yu H. 2011. Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train. Atmos. Chem. Phys. 11:7119–32
    [Google Scholar]
  225. Zambri B, LeGrande AN, Robock A, Slawinska J. 2017. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J. Geophys. Res. Atmos. 122:7971–89
    [Google Scholar]
  226. Zambri B, Robock A, Mills MJ, Schmidt A. 2019. Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts. J. Geophys. Res. Atmos. 124:6770–90
    [Google Scholar]
  227. Zhu Y, Toon OB, Jensen EJ, Bardeen CG, Mills MJ et al. 2020. Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nat. Commun. 11:4526
    [Google Scholar]
  228. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS. 1996. A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quat. Res. 45:109–18
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080921-052816
Loading
/content/journals/10.1146/annurev-earth-080921-052816
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error