1932

Abstract

Higher boreal summer insolation in the early to middle Holocene drove thousands of years of summer warming across the Arctic. Modern-day warming has distinctly different causes, but geologic data from this past warm period hold lessons for the future. We compile Holocene temperature reconstructions from ice, lake, and marine cores around Greenland, where summer temperatures are globally important due to their influence on ice sheet mass balance, ocean circulation, and sea ice. Highlighting and accounting for some key issues with proxy interpretation, we find that much of Greenland experienced summers 3 to 5°C warmer than the mid-twentieth century in the early Holocene—earlier and stronger warming than often presumed. Warmth had dramatic consequences: Many glaciers disappeared, perennial sea ice retreated, plants and animals migrated northward, the Greenland Ice Sheet shrank rapidly, and increased meltwater discharge led to strong marine water stratification and enhanced winter sea ice in some areas.

  • ▪   Summer air temperatures and open ocean temperatures around much of Greenland peaked in the early Holocene in response to elevated summer insolation.
  • ▪   Peak summer air temperatures ranged from 3 to 5°C warmer than the mid-twentieth century in northwest and central Greenland to perhaps 1 to 2°C warmer in south Greenland.
  • ▪   Many differences between records can be explained by proxy seasonality, ice sheet elevation changes, vegetation analogs and lags, and the nearshore effects of ice sheet meltwater.
  • ▪   Early Holocene warmth dramatically affected glaciers and the Greenland Ice Sheet; meltwater discharge, nearshore ocean salinity, and sea ice; and diverse flora and fauna.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081420-063858
2021-05-30
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-081420-063858.html?itemId=/content/journals/10.1146/annurev-earth-081420-063858&mimeType=html&fmt=ahah

Literature Cited

  1. Aebly FA, Fritz SC. 2009. Palaeohydrology of Kangerlussuaq (Søndre Strømfjord), West Greenland during the last ∼8000 years. Holocene 19:91–104
    [Google Scholar]
  2. Allan E, de Vernal A, Knudsen MF, Hillaire-Marcel C, Moros M et al. 2018. Late Holocene sea surface instabilities in the Disko Bugt area, West Greenland, in phase with δ18O oscillations at Camp Century. Paleoceanogr. Paleoclimatol. 33:227–43
    [Google Scholar]
  3. Alley RB, Anandakrishnan S. 1995. Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland. Ann. Glaciol. 21:64–70
    [Google Scholar]
  4. Anderson NJ, Leng MJ. 2004. Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quat. Sci. Rev. 23:841–49
    [Google Scholar]
  5. Andersson C, Pausata FSR, Jansen E, Risebrobakken B, Telford RJ. 2010. Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean. Clim. Past 6:179–93
    [Google Scholar]
  6. Andresen CS, McCarthy DJ, Valdemar Dylmer C, Seidenkrantz M-S, Kuijpers A, Lloyd JM 2010. Interaction between subsurface ocean waters and calving of the Jakobshavn Isbræ during the late Holocene. Holocene 21:211–24
    [Google Scholar]
  7. Axford Y, Lasher GE, Kelly MA, Osterberg EC, Landis J et al. 2019. Holocene temperature history of northwest Greenland—with new ice cap constraints and chironomid assemblages from Deltasø. Quat. Sci. Rev. 215:160–72
    [Google Scholar]
  8. Axford Y, Levy LB, Kelly MA, Francis DR, Hall BL et al. 2017. Timing and magnitude of early to middle Holocene warming in East Greenland inferred from chironomids. Boreas 46:4678–87
    [Google Scholar]
  9. Axford Y, Losee S, Briner JP, Francis DR, Langdon PG, Walker IR. 2013. Holocene temperature history at the western Greenland Ice Sheet margin reconstructed from lake sediments. Quat. Sci. Rev. 59:87–100
    [Google Scholar]
  10. Badgeley JA, Steig EJ, Hakim GJ, Fudge TJ. 2020. Greenland temperature and precipitation over the last 20000 years using data assimilation. Clim. Past 16:1325–46
    [Google Scholar]
  11. Balascio NL, D'Andrea WJ, Bradley RS. 2015. Glacier response to North Atlantic climate variability during the Holocene. Clim. Past 11:1587–98
    [Google Scholar]
  12. Bauch HA, Erlenkeuser H, Spielhagen R, Struck U, Matthiessen J et al. 2001. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quat. Sci. Rev. 20:659–78
    [Google Scholar]
  13. Belt ST, Müller J. 2013. The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat. Sci. Rev. 79:9–25
    [Google Scholar]
  14. Bendle J, Rosell-Melé A, Ziveri P. 2005. Variability of unusual distributions of alkenones in the surface waters of the Nordic seas. Paleoceanography 20:PA2001
    [Google Scholar]
  15. Bennike O, Anderson NJ, McGowan S. 2010. Holocene palaeoecology of southwest Greenland inferred from macrofossils in sediments of an oligosaline lake. J. Paleolimnol. 43:787–98
    [Google Scholar]
  16. Bennike O, Wagner B. 2012. Holocene range of Mytilus edulis in central East Greenland. Polar Rec 49:291–96
    [Google Scholar]
  17. Berger A, Loutre M-F. 1991. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10:297–317
    [Google Scholar]
  18. Berner KS, Koç N, Godtliebsen F, Divine D. 2011. Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing. Paleoceanography 26:PA2220
    [Google Scholar]
  19. Briner JP, Cuzzone JK, Badgeley JA, Young NE, Steig EJ et al. 2020. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586:70–74
    [Google Scholar]
  20. Briner JP, McKay NP, Axford Y, Bennike O, Bradley RS et al. 2016. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147:340–64
    [Google Scholar]
  21. Brodersen KP, Anderson NJ. 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshw. Biol. 47:1137–57
    [Google Scholar]
  22. Bronselaer B, Winton M, Griffies SM, Hurlin WJ, Rodgers KB et al. 2018. Change in future climate due to Antarctic meltwater. Nature 564:53–58
    [Google Scholar]
  23. Buizert C, Keisling BA, Box JE, He F, Carlson AE et al. 2018. Greenland-wide seasonal temperatures during the last deglaciation. Geophys. Res. Lett. 45:1905–14
    [Google Scholar]
  24. Calvo E, Grimalt JO, Jansen E. 2002. High resolution U37K sea surface temperature reconstruction in the Norwegian Sea during the Holocene. Quat. Sci. Rev. 21:1385–94
    [Google Scholar]
  25. Came RE, Oppo DW, McManus JF. 2007. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. Geology 35:315–18
    [Google Scholar]
  26. Carlson AE, Winsor K, Ullman DJ, Brook EJ, Rood DH et al. 2014. Earliest Holocene south Greenland ice sheet retreat within its late Holocene extent. Geophys. Res. Lett. 41:5514–21
    [Google Scholar]
  27. Caron M, Rochon A, Montero-Serrano J-C, St-Onge G. 2019. Evolution of sea-surface conditions on the northwestern Greenland margin during the Holocene. J. Quat. Sci. 34:569–80
    [Google Scholar]
  28. Clark PU, Shakun JD, Marcott SA, Mix AC, Eby M et al. 2016. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6:360–69
    [Google Scholar]
  29. Condron A, Winsor P 2012. Meltwater routing and the Younger Dryas. PNAS 109:19928–33
    [Google Scholar]
  30. Crump SE, Miller GH, Power M, Sepulveda J, Dildar N et al. 2019. Arctic shrub colonization lagged peak postglacial warmth: molecular evidence in lake sediment from Arctic Canada. Glob. Change Biol. 25:4244–56
    [Google Scholar]
  31. Cuffey KM, Clow GD. 1997. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res. 102:C1226383–96
    [Google Scholar]
  32. D'Andrea WJ, Huang Y, Fritz SC, Anderson NJ 2011. Abrupt Holocene climate change as an important factor for human migration in West Greenland. PNAS 108:9765–69
    [Google Scholar]
  33. Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N. 1998. Past temperatures directly from the Greenland Ice Sheet. Science 282:268–71
    [Google Scholar]
  34. Dalton AS, Margold M, Stokes CR, Tarasov L, Dyke AS et al. 2020. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234:106223
    [Google Scholar]
  35. Dansgaard W. 1961. The Isotopic Composition of Natural Waters with Special Reference to the Greenland Ice Cap. Copenhagen, Den.: C.A. Reitzel
    [Google Scholar]
  36. de Vernal A, Hillaire-Marcel C. 2006. Provincialism in trends and high frequency changes in the northwest North Atlantic during the Holocene. Glob. Planet. Change 54:263–90
    [Google Scholar]
  37. de Vernal A, Hillaire-Marcel C, Rochon A, Fréchette B, Henry M et al. 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quat. Sci. Rev. 79:111–21
    [Google Scholar]
  38. Dyke AS, Dale JE, McNeely RN. 1996a. Marine molluscs as indicators of environmental change in glaciated North America and Greenland during the last 18000 years. Géogr. Phys. Quat. 50:125–84
    [Google Scholar]
  39. Dyke AS, Hooper J, Savelle J. 1996b. A history of sea ice in the Canadian Arctic Archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic 49:235–55
    [Google Scholar]
  40. Edwards ME, Brubaker LB, Lozhkin AV, Anderson PM. 2005. Structurally novel biomes: a response to past warming in Beringia. Ecology 86:1696–703
    [Google Scholar]
  41. Evangeliou N, Kylling A, Eckhardt S, Myroniuk V, Stebel K et al. 2019. Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos. Chem. Phys. 19:1393–411
    [Google Scholar]
  42. Falardeau J, de Vernal A, Spielhagen RF. 2018. Paleoceanography of northeastern Fram Strait since the last glacial maximum: palynological evidence of large amplitude changes. Quat. Sci. Rev. 195:133–52
    [Google Scholar]
  43. Farnsworth LB, Kelly MA, Bromley GRM, Axford Y, Osterberg EC et al. 2018. Holocene history of the Greenland Ice-Sheet margin in Northern Nunatarssuaq, Northwest Greenland. Arktos 4:1–27
    [Google Scholar]
  44. Fisher D, Zheng J, Burgess D, Zdanowicz C, Kinnard C et al. 2012. Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Glob. Planet. Change 84–85:3–7
    [Google Scholar]
  45. Fréchette B, de Vernal A. 2009. Relationship between Holocene climate variations over southern Greenland and eastern Baffin Island and synoptic circulation pattern. Clim. Past 5:347–59
    [Google Scholar]
  46. Fréchette B, de Vernal A, Guiot J, Wolfe AP, Miller GH et al. 2008. Methodological basis for quantitative reconstruction of air temperature and sunshine from pollen assemblages in Arctic Canada and Greenland. Quat. Sci. Rev. 27:1197–216
    [Google Scholar]
  47. Fredskild B. 1985. The Holocene vegetational development of Tugtuligssuaq and Qeqertat, Northwest Greenland. Medd. Grønl. 14:1–20
    [Google Scholar]
  48. Funder S. 1978. Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland. Bull. Groenl. Geol. Unders. 12:1–76
    [Google Scholar]
  49. Funder S, Goosse H, Jepsen H, Kaas E, Kjær KH et al. 2011. A 10,000-year record of Arctic Ocean sea-ice variability—view from the beach. Science 333:747–50
    [Google Scholar]
  50. Gajewski K. 2015a. Impact of Holocene climate variability on Arctic vegetation. Glob. Planet. Change 133:272–87
    [Google Scholar]
  51. Gajewski K. 2015b. Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland. Glob. Planet. Change 128:14–23
    [Google Scholar]
  52. Gibb OT, Steinhauer S, Fréchette B, de Vernal A, Hillaire-Marcel C. 2015. Diachronous evolution of sea surface conditions in the Labrador Sea and Baffin Bay since the last deglaciation. Holocene 25:1882–97
    [Google Scholar]
  53. Graeter KA, Osterberg EC, Ferris DG, Hawley RL, Marshall HP et al. 2018. Ice core records of West Greenland melt and climate forcing. Geophys. Res. Lett. 45:3164–72
    [Google Scholar]
  54. Hansen KE, Giraudeau J, Wacker L, Pearce C, Seidenkrantz M-S. 2020. Reconstruction of Holocene oceanographic conditions in the Northeastern Baffin Bay. Clim. Past 16:1075–95
    [Google Scholar]
  55. Horwath Burnham J, Sletten RS 2010. Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores. Glob. Biogeochem. Cycles 24:GB3012
    [Google Scholar]
  56. Iversen J. 1952. Origin of the flora of western Greenland in the light of pollen analysis. Oikos 4:85–103
    [Google Scholar]
  57. Jennings A, Andrews J, Pearce C, Wilson L, Ólfasdótttir S 2015. Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre. Quat. Sci. Rev. 107:62–80
    [Google Scholar]
  58. Jennings A, Andrews J, Wilson L 2011. Holocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions. Quat. Sci. Rev. 30:980–98
    [Google Scholar]
  59. Jennings AE, Knudsen K, Hald M, Hansen CV, Andrews JT. 2002. A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf. Holocene 12:49–58
    [Google Scholar]
  60. Jensen KG, Kuijpers A, Koç N, Heinemeier J 2004. Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years. Holocene 14:152–64
    [Google Scholar]
  61. Johnsen SJ, Dahl-Jensen D, Dansgaard W, Gundestrup N. 1995. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B: Chem. Phys. Meteorol. 47:624–29
    [Google Scholar]
  62. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB et al. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16:299–307
    [Google Scholar]
  63. Kaufman D. 2004. Holocene thermal maximum in the western Arctic (0–180°W). Quat. Sci. Rev. 23:529–60
    [Google Scholar]
  64. Kaufman D, McKay N, Routson C, Erb M, Davis B et al. 2020. A global database of Holocene paleotemperature records. Sci. Data 7:115
    [Google Scholar]
  65. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS et al. 2009. Recent warming reverses long-term arctic cooling. Science 325:1236–39
    [Google Scholar]
  66. Kelly MA, Lowell TV. 2009. Fluctuations of local glaciers in Greenland during latest Pleistocene and Holocene time. Quat. Sci. Rev. 28:2088–106
    [Google Scholar]
  67. Kerby JT, Post E. 2013. Advancing plant phenology and reduced herbivore production in a terrestrial system associated with sea ice decline. Nat. Commun. 4:2514
    [Google Scholar]
  68. Knudsen KL, Søndergaard MKB, Eiríksson J, Jiang H. 2008. Holocene thermal maximum off North Iceland: evidence from benthic and planktonic foraminifera in the 8600–5200 cal year BP time slice. Mar. Micropaleontol. 67:120–42
    [Google Scholar]
  69. Kobashi T, Menviel L, Jeltsch-Thommes A, Vinther BM, Box JE et al. 2017. Volcanic influence on centennial to millennial Holocene Greenland temperature change. Sci. Rep. 7:1441
    [Google Scholar]
  70. Krawczyk D, Witkowski A, Moros M, Lloyd J, Kuijpers A, Kierzek A 2010. Late-Holocene diatom-inferred reconstruction of temperature variations of the West Greenland Current from Disko Bugt, central West Greenland. Holocene 20:659–66
    [Google Scholar]
  71. Kucera M. 2007. Planktonic foraminifera as tracers of past oceanic environments. Proxies in Late Cenozoic Paleoceanography C Hillaire-Marcel, A de Vernal 213–62 Amsterdam: Elsevier
    [Google Scholar]
  72. Larocca LJ, Axford Y, Bjørk AA, Lasher GE, Brooks JP. 2020a. Local glaciers record delayed peak Holocene warmth in south Greenland. Quat. Sci. Rev. 241:106421
    [Google Scholar]
  73. Larocca LJ, Axford Y, Woodroffe SA, Lasher GE, Gawin B. 2020b. Holocene glacier and ice cap fluctuations in southwest Greenland inferred from two lake records. Quat. Sci. Rev. 246:106529
    [Google Scholar]
  74. Larsen NK, Kjær KH, Lecavalier B, Bjørk AA, Colding S et al. 2015. The response of the southern Greenland ice sheet to the Holocene thermal maximum. Geology 43:291–94
    [Google Scholar]
  75. Larsen NK, Levy LB, Strunk A, Søndergaard AS, Olsen J, Lauridsen TL. 2019. Local ice caps in Finderup Land, North Greenland, survived the Holocene Thermal Maximum. Boreas 48:551–62
    [Google Scholar]
  76. Larsen NK, Strunk A, Levy LB, Olsen J, Bjørk A et al. 2017. Strong altitudinal control on the response of local glaciers to Holocene climate change in southwest Greenland. Quat. Sci. Rev. 168:69–78
    [Google Scholar]
  77. Lasher GE, Axford Y, Masterson AL, Berman K, Larocca LJ. 2020. Holocene temperature and landscape history of southwest Greenland inferred from isotope and geochemical lake sediment proxies. Quat. Sci. Rev. 239:106358
    [Google Scholar]
  78. Lasher GE, Axford Y, McFarlin JM, Kelly MA, Osterberg EC, Berkelhammer MB. 2017. Holocene temperatures and isotopes of precipitation in Northwest Greenland recorded in lacustrine organic materials. Quat. Sci. Rev. 170:45–55
    [Google Scholar]
  79. Lecavalier BS, Fisher DA, Milne GA, Vinther BM, Tarasov L et al. 2017. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. PNAS 114:5952–57
    [Google Scholar]
  80. Lecavalier BS, Milne GA, Vinther BM, Fisher DA, Dyke AS, Simpson MJR. 2013. Revised estimates of Greenland ice sheet thinning histories based on ice-core records. Quat. Sci. Rev. 63:73–82
    [Google Scholar]
  81. Lesnek AJ, Briner JP. 2018. Response of a land-terminating sector of the western Greenland Ice Sheet to early Holocene climate change: evidence from 10Be dating in the Søndre Isortoq region. Quat. Sci. Rev. 180:145–56
    [Google Scholar]
  82. Lesnek AJ, Briner JP, NE Young, Cuzzone JK. 2020. Maximum southwest Greenland ice sheet recession in the early Holocene. Geophys. Res. Lett. 47:e2019GL083164
    [Google Scholar]
  83. Levac E, Vernal AD, Blake W Jr. 2001. Sea-surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence. J. Quat. Sci. 16:353–63
    [Google Scholar]
  84. Levy LB, Kelly MA, Applegate PA, Howley JA, Virginia RA. 2018. Middle to late Holocene chronology of the western margin of the Greenland Ice Sheet: a comparison with Holocene temperature and precipitation records. Arct. Antarct. Alp. Res. 50:S100004
    [Google Scholar]
  85. Levy LB, Kelly MA, Lowell TV, Hall BL, Hempel LA et al. 2014. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. Quat. Sci. Rev. 92:357–68
    [Google Scholar]
  86. Levy LB, Larsen NK, Knudsen MF, Egholm DL, Bjørk AA et al. 2020. Multi-phased deglaciation of south and southeast Greenland controlled by climate and topographic setting. Quat. Sci. Rev. 242:106454
    [Google Scholar]
  87. Liu Y, Hallberg R, Sergienko O, Samuels BL, Harrison M, Oppenheimer M. 2017. Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations. Clim. Dyn. 51:1733–51
    [Google Scholar]
  88. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R et al. 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325:310–14
    [Google Scholar]
  89. Lloyd JM, Kuijpers A, Long A, Moros M, Park LA. 2007. Foraminiferal reconstruction of mid- to late-Holocene ocean circulation and climate variability in Disko Bugt, West Greenland. Holocene 17:1079–91
    [Google Scholar]
  90. Lloyd JM, Park LA, Kuijpers A, Moros M. 2005. Early Holocene palaeoceanography and deglacial chronology of Disko Bugt, West Greenland. Quat. Sci. Rev. 24:1741–55
    [Google Scholar]
  91. Long AJ, Woodroffe SA, Roberts DH, Dawson S 2011. Isolation basins, sea-level changes and the Holocene history of the Greenland Ice Sheet. Quat. Sci. Rev. 30:3748–68
    [Google Scholar]
  92. Lowell TV, Hall BL, Kelly MA, Bennike O, Lusas AR et al. 2013. Late Holocene expansion of Istorvet ice cap, Liverpool Land, east Greenland. Quat. Sci. Rev. 63:128–40
    [Google Scholar]
  93. Marchal O, Cacho I, Stocker TF, Grimalt JO, Calvo E et al. 2002. Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat. Sci. Rev. 21:455–83
    [Google Scholar]
  94. Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–201
    [Google Scholar]
  95. Marsicek J, Shuman BN, Bartlein PJ, Shafer SL, Brewer S. 2018. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554:92–96
    [Google Scholar]
  96. Masson-Delmotte V, Landais A, Stievenard M, Cattani O, Falourd S et al. 2005. Holocene climatic changes in Greenland: different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. J. Geophys. Res. 110:D14D14102
    [Google Scholar]
  97. McCartney MS, Talley LD. 1982. The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr. 12:1169–88
    [Google Scholar]
  98. McFarlin JM, Axford Y, Osburn MR, Kelly MA, Osterberg EC, Farnsworth LB 2018. Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial. PNAS 155:6357–62
    [Google Scholar]
  99. McGrath D, Colgan W, Bayou N, Muto A, Steffen K. 2013. Recent warming at Summit, Greenland: global context and implications. Geophys. Res. Lett. 40:2091–96
    [Google Scholar]
  100. Meese D, Gow A, Grootes P, Ram M, Stuiver M et al. 1994. The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Science 266:1680–82
    [Google Scholar]
  101. Meire L, Mortensen J, Meire P, Juul-Pedersen T, Sejr MK et al. 2017. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23:5344–57
    [Google Scholar]
  102. Meier WN, Hovelsrud GK, van Oort BEH, Key JR, Kovacs KM et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52:185–217
    [Google Scholar]
  103. Melling H, Gratton Y, Ingram G. 2010. Ocean circulation within the North Water Polynya of Baffin Bay. Atmosphere-Ocean 39:301–25
    [Google Scholar]
  104. Minor K, Agneman G, Davidsen N, Kleemann N, Markussen U et al. 2019. Greenlandic perspectives on climate change 20182019: results from a national survey Rep., Univ. Greenl., Univ. Cph., Kraks Fond Inst. Urban Res., Copenhagen, Den.
    [Google Scholar]
  105. Monnin E, Steig EJ, Siegenthaler U, Kawamura K, Schwander J et al. 2004. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 224:45–54
    [Google Scholar]
  106. Morales Maqueda MA. 2004. Polynya dynamics: a review of observations and modeling. Rev. Geophys. 42:RG1004
    [Google Scholar]
  107. Moros M, Andrews JT, Eberl DD, Jansen E. 2006. Holocene history of drift ice in the northern North Atlantic: evidence for different spatial and temporal modes. Paleoceanography 21:PA201
    [Google Scholar]
  108. Moros M, Lloyd JM, Perner K, Krawczyk D, Blanz T et al. 2016. Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland. Quat. Sci. Rev. 132:146–60
    [Google Scholar]
  109. Mouginot J, Rignot E, Bjork AA, van den Broeke M, Millan R et al. 2019. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. PNAS 116:9239–44
    [Google Scholar]
  110. Müller J, Massé G, Stein R, Belt ST. 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat. Geosci. 2:772–76
    [Google Scholar]
  111. Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E. 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat. Sci. Rev. 47:1–14
    [Google Scholar]
  112. Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE et al. 2020. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10:106–17
    [Google Scholar]
  113. Natl. Snow Ice Data Cent 2020. Data and image archive Sea ice index, updated daily. https://nsidc.org/data/seaice_index/archives
    [Google Scholar]
  114. NCEI (Natl. Cent. Environ. Inf.) 2009. Objective analyses and statistics World Ocean Atlas 2009, updated Apr. 25, 2015. https://www.nodc.noaa.gov/OC5/WOA09/woa09data.html
    [Google Scholar]
  115. Nghiem SV, Hall DK, Mote TL, Tedesco M, Albert MR et al. 2012. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39:L20502
    [Google Scholar]
  116. Nørgaard-Pedersen N, Mikkelsen N. 2009. 8000 year marine record of climate variability and fjord dynamics from Southern Greenland. Mar. Geol. 264:177–89
    [Google Scholar]
  117. Ohmura A. 1987. New temperature distribution maps for Greenland. Z. Gletsch. Glazialgeol. 23:1–45
    [Google Scholar]
  118. Osburn CL, Anderson NJ, Leng MJ, Barry CD, Whiteford EJ. 2019. Stable isotopes reveal independent carbon pools across an Arctic hydro-climatic gradient: implications for the fate of carbon in warmer and drier conditions. Limnol. Oceanogr. Lett. 4:205–13
    [Google Scholar]
  119. Ouellet-Bernier M-M, de Vernal A, Hillaire-Marcel C, Moros M 2014. Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene. Holocene 24:1573–83
    [Google Scholar]
  120. Perner K, Jennings AE, Moros M, Andrews JT, Wacker L. 2016. Interaction between warm Atlantic-sourced waters and the East Greenland Current in northern Denmark Strait (68°N) during the last 10600 cal a BP. J. Quat. Sci. 31:472–83
    [Google Scholar]
  121. Perner K, Moros M, Jennings A, Lloyd JM, Knudsen KL 2012. Holocene palaeoceanographic evolution off West Greenland. Holocene 23:374–87
    [Google Scholar]
  122. Perner K, Moros M, Lloyd JM, Jansen E, Stein R. 2015. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quat. Sci. Rev. 129:296–307
    [Google Scholar]
  123. Perner K, Moros M, Snowball I, Lloyd JM, Kuijpers A, Richter T. 2013. Establishment of modern circulation pattern at c. 6000 cal a BP in Disko Bugt, central West Greenland: opening of the Vaigat Strait. J. Quat. Sci. 28:480–89
    [Google Scholar]
  124. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A et al. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:475–80
    [Google Scholar]
  125. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM et al. 2006. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111:D6D06102
    [Google Scholar]
  126. Ren J, Jiang H, Seidenkrantz M-S, Kuijpers A. 2009. A diatom-based reconstruction of Early Holocene hydrographic and climatic change in a southwest Greenland fjord. Mar. Micropaleontol. 70:166–76
    [Google Scholar]
  127. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T. 2009. The spatial and temporal complexity of the Holocene thermal maximum. Nat. Geosci. 2:411–14
    [Google Scholar]
  128. Risebrobakken B, Jansen E, Andersson C, Mjelde E, Hevrøy K. 2003. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18:1017
    [Google Scholar]
  129. Rosell-Melé A, McClymont EL. 2007. Biomarkers as paleoceanographic proxies. Proxies in Late Cenozoic Paleoceanography C Hillaire-Marcel, A de Vernal 441–90 Amsterdam: Elsevier
    [Google Scholar]
  130. Sachs JP. 2007. Cooling of Northwest Atlantic slope waters during the Holocene. Geophys. Res. Lett. 34:L03609
    [Google Scholar]
  131. Saini J, Stein R, Fahl K, Weiser J, Hebbeln D et al. 2020. Holocene variability in sea ice and primary productivity in the northeastern Baffin Bay. Arktos 6:5573
    [Google Scholar]
  132. Schmidt S, Wagner B, Heiri O, Klug M, Bennike OLE, Melles M. 2011. Chironomids as indicators of the Holocene climatic and environmental history of two lakes in Northeast Greenland. Boreas 40:116–30
    [Google Scholar]
  133. Schweinsberg AD, Briner JP, Licciardi JM, Bennike O, Lifton NA et al. 2019. Multiple independent records of local glacier variability on Nuussuaq, West Greenland, during the Holocene. Quat. Sci. Rev. 215:253–71
    [Google Scholar]
  134. Schweinsberg AD, Briner JP, Miller GH, Bennike O, Thomas EK. 2017. Local glaciation in West Greenland linked to North Atlantic Ocean circulation during the Holocene. Geology 45:195–98
    [Google Scholar]
  135. Schweinsberg AD, Briner JP, Miller GH, Lifton NA, Bennike O, Graham BL. 2018. Holocene mountain glacier history in the Sukkertoppen Iskappe area, southwest Greenland. Quat. Sci. Rev. 197:142–61
    [Google Scholar]
  136. Seidenkrantz M-S. 2013. Benthic foraminifera as palaeo sea-ice indicators in the subarctic realm—examples from the Labrador Sea–Baffin Bay region. Quat. Sci. Rev. 79:135–44
    [Google Scholar]
  137. Seidenkrantz M-S, Aagaard-Sorensen S, Sulsbruck H, Kuijpers A, Jensen KG, Kunzendorf H. 2007. Hydrography and climate of the last 4400 years in a SW Greenland fjord: implications for Labrador Sea palaeoceanography. Holocene 17:387–401
    [Google Scholar]
  138. Seidenkrantz M-S, Roncaglia L, Fischel A, Heilmann-Clausen C, Kuijpers A, Moros M. 2008. Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland. Mar. Micropaleontol. 68:66–83
    [Google Scholar]
  139. Sejrup HP, Seppä H, McKay NP, Kaufman DS, Geirsdóttir Á et al. 2016. North Atlantic-Fennoscandian Holocene climate trends and mechanisms. Quat. Sci. Rev. 147:365–78
    [Google Scholar]
  140. Sha L, Jiang H, Knudsen KL. 2011. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. Holocene 22:347–58
    [Google Scholar]
  141. Sha L, Jiang H, Seidenkrantz M-S, Knudsen KL, Olsen J et al. 2014. A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000 yr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 403:66–79
    [Google Scholar]
  142. Sha L, Jiang H, Seidenkrantz M-S, Li D, Andresen CS et al. 2017. A record of Holocene sea-ice variability off West Greenland and its potential forcing factors. Palaeogeogr. Palaeoclimatol. Palaeoecol. 475:115–24
    [Google Scholar]
  143. Simpson MJR, Milne GA, Huybrechts P, Long AJ. 2009. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. 28:1631–57
    [Google Scholar]
  144. Sinclair G, Carlson AE, Mix AC, Lecavalier BS, Milne G et al. 2016. Diachronous retreat of the Greenland ice sheet during the last deglaciation. Quat. Sci. Rev. 145:243–58
    [Google Scholar]
  145. Solignac S, Giraudeau J, de Vernal A. 2006. Holocene sea surface conditions in the western North Atlantic: spatial and temporal heterogeneities. Paleoceanography 21:PA2004
    [Google Scholar]
  146. Søndergaard AS, Larsen NK, Lecavalier BS, Olsen J, Fitzpatrick NP et al. 2020. Early Holocene collapse of marine-based ice in northwest Greenland triggered by atmospheric warming. Quat. Sci. Rev. 239:106360
    [Google Scholar]
  147. Stammer D. 2008. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 113:C6C06022
    [Google Scholar]
  148. Syring N, Stein R, Fahl K, Vahlenkamp M, Zehnich M et al. 2020. Holocene changes in sea-ice cover and polynya formation along the eastern North Greenland shelf: new insights from biomarker records. Quat. Sci. Rev. 231:106173
    [Google Scholar]
  149. Telford RJ, Li C, Kucera M. 2013. Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions. Clim. Past 9:859–70
    [Google Scholar]
  150. Thomas EK, Briner JP, Ryan-Henry JJ, Huang YS 2016. A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea. Geophys. Res. Lett. 43:5302–8
    [Google Scholar]
  151. Thomas EK, Castañeda IS, McKay NP, Briner JP, Salacup JM et al. 2018. A wetter Arctic coincident with hemispheric warming 8,000 years ago. Geophys. Res. Lett. 45:10637–47
    [Google Scholar]
  152. van der Bilt WGM, Rea B, Spagnolo M, Roerdink DL, Jørgensen SL, Bakke J. 2018. Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland. Glob. Planet. Change 164:52–64
    [Google Scholar]
  153. Van Nieuwenhove N, Baumann A, Matthiessen J, Bonnet S, de Vernal A. 2016. Sea surface conditions in the southern Nordic Seas during the Holocene based on dinoflagellate cyst assemblages. Holocene 26:722–35
    [Google Scholar]
  154. Vinther BM, Buchardt SL, Clausen HB, Dahl-Jensen D, Johnsen SJ et al. 2009. Holocene thinning of the Greenland ice sheet. Nature 461:385–88
    [Google Scholar]
  155. Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK et al. 2006. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res. 111:D13D13102
    [Google Scholar]
  156. von Gunten L, D'Andrea WJ, Bradley RS, Huang Y 2012. Proxy-to-proxy calibration: increasing the temporal resolution of quantitative climate reconstructions. Sci. Rep. 2:609
    [Google Scholar]
  157. Walker M, Head MJ, Berkelhammer M, Björck S, Cheng H et al. 2018. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes 41:213–23
    [Google Scholar]
  158. Weidick A, Bennike O. 2007. Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review. Geol. Surv. Den. Greenl. Bull. 14:1–78
    [Google Scholar]
  159. Wooller MJ, Francis D, Fogel ML, Miller GH, Walker IR, Wolfe AP. 2004. Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments. J. Paleolimnol. 31:67–74
    [Google Scholar]
  160. Young NE, Briner JP. 2015. Holocene evolution of the western Greenland Ice Sheet: assessing geophysical ice-sheet models with geological reconstructions of ice-margin change. Quat. Sci. Rev. 114:1–17
    [Google Scholar]
  161. Young NE, Briner JP, Axford Y, Csatho B, Babonis GS et al. 2011a. Response of a marine-terminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago. Geophys. Res. Lett. 38:L24701
    [Google Scholar]
  162. Young NE, Briner JP, Stewart HAM, Axford Y, Csatho B et al. 2011b. Response of Jakobshavn Isbrae, Greenland, to Holocene climate change. Geology 39:131–34
    [Google Scholar]
/content/journals/10.1146/annurev-earth-081420-063858
Loading
/content/journals/10.1146/annurev-earth-081420-063858
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error