1932

Abstract

The Amazon hosts one of the largest and richest rainforests in the world, but its origins remain debated. Growing evidence suggests that geodiversity and geological history played essential roles in shaping the Amazonian flora. Here we summarize the geo-climatic history of the Amazon and review paleopalynological records and time-calibrated phylogenies to evaluate the response of plants to environmental change. The Neogene fossil record suggests major sequential changes in plant composition and an overall decline in diversity. Phylogenies of eight Amazonian plant clades paint a mixed picture, with the diversification of most groups best explained by constant speciation rates through time, while others indicate clade-specific increases or decreases correlated with climatic cooling or increasing Andean elevation. Overall, the Amazon forest seems to represent a museum of diversity with a high potential for biological diversification through time. To fully understand how the Amazon got its modern biodiversity, further multidisciplinary studies conducted within a multimillion-year perspective are needed.

  • ▪  The history of the Amazon rainforest goes back to the beginning of the Cenozoic (66 Ma) and was driven by climate and geological forces.
  • ▪  In the early Neogene (23–13.8 Ma), a large wetland developed with episodic estuarine conditions and vegetation ranging from mangroves to terra firme forest.
  • ▪  In the late Neogene (13.8–2.6 Ma), the Amazon changed into a fluvial landscape with a less diverse and more open forest, although the details of this transition remain to be resolved.
  • ▪  These geo-climatic changes have left imprints on the modern Amazonian diversity that can be recovered with dated phylogenetic trees.
  • ▪  Amazonian plant groups show distinct responses to environmental changes, suggesting that Amazonia is both a refuge and a cradle of biodiversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081522-090454
2023-05-31
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-081522-090454.html?itemId=/content/journals/10.1146/annurev-earth-081522-090454&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilera O, Guimarães JTF, Moraes-Santos H. 2013.. Neogene Eastern Amazon carbonate platform and the palaeoenvironmental interpretation. . Swiss J. Palaeontol. 132::99118Erratum. 2014.. Swiss J. Palaeontol. 133::99118
    [Google Scholar]
  2. Albert JS, Val P, Hoorn C. 2018.. The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. . Neotrop. Ichthyol. 16::e180033
    [Google Scholar]
  3. Anderson VJ, Horton BK, Saylor JE, Mora A, Tesón E, et al. 2016.. Andean topographic growth and basement uplift in southern Colombia: implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. . Geosphere 12::123556
    [Google Scholar]
  4. Anderson VJ, Saylor JE, Shanahan TM, Horton BK. 2015.. Paleoelevation records from lipid biomarkers: application to the tropical Andes. . GSA Bull. 127::160416
    [Google Scholar]
  5. Antoine PO, Abello MA, Adnet S, Sierra AJA, Baby P, et al. 2016.. A 60-million-year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. . Gondwana Res. 31::3059
    [Google Scholar]
  6. Antonelli A, Nylander JA, Persson C, Sanmartín I. 2009.. Tracing the impact of the Andean uplift on Neotropical plant evolution. . PNAS 106::974954
    [Google Scholar]
  7. Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, et al. 2018.. Amazonia is the primary source of Neotropical biodiversity. . PNAS 115::603439
    [Google Scholar]
  8. Armijo R, Lacassin R, Coudurier-Curveur A, Carrizo D. 2015.. Coupled tectonic evolution of Andean orogeny and global climate. . Earth-Sci. Rev. 143::135
    [Google Scholar]
  9. Bermúdez MA, Hoorn C, Bernet M, Carrillo E, Van Der Beek PA, et al. 2017.. The detrital record of late-Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas foreland basins. . Basin Res. 29::37095
    [Google Scholar]
  10. Bernal R, Bacon CD, Balslev H, Hoorn C, Bourlat SJ, et al. 2019.. Could coastal plants in western Amazonia be relicts of past marine incursions?. J. Biogeogr. 46::174959
    [Google Scholar]
  11. Bicudo TC, Sacek V, de Almeida RP, Bates JM, Ribas CC. 2019.. Andean tectonics and mantle dynamics as a pervasive influence on Amazonian ecosystem. . Sci. Rep. 9::16879
    [Google Scholar]
  12. Bloch JI, Woodruff ED, Wood AR, Rincon AF, Harrington AR, et al. 2016.. First North American fossil monkey and early Miocene tropical biotic interchange. . Nature 533::24346
    [Google Scholar]
  13. Bogotá-Angel G, Huang H, Jardine PE, Chazot N, Salamanca S, et al. 2021.. Climate and geological change as drivers of Mauritiinae palm biogeography. . J. Biogeogr. 48::100122
    [Google Scholar]
  14. Boonstra M, Ramos MI, Lammertsma EI, Antoine PO, Hoorn C. 2015.. Marine connections of Amazonia: evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). . Palaeogeogr. Palaeoclimatol. Palaeoecol. 417::17694
    [Google Scholar]
  15. Boschman LM. 2021.. Andean mountain building since the Late Cretaceous: a paleoelevation reconstruction. . Earth-Sci. Rev. 220::103640
    [Google Scholar]
  16. Boschman LM, Cassemiro FA, Carraro L, de Vries J, Altermatt F, et al. 2021.. South American freshwater fish diversity shaped by Andean uplift since the Late Cretaceous. . bioRxiv 2021.05.14.444133. https://doi.org/10.1101/2021.05.14.444133
  17. Boschman LM, Condamine FL. 2022.. Mountain radiations are not only rapid and recent: ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations. . Glob. Planet. Change 208::103704
    [Google Scholar]
  18. Burin G, Alencar LR, Chang J, Alfaro ME, Quental TB. 2019.. How well can we estimate diversity dynamics for clades in diversity decline?. Syst. Biol. 68::4762
    [Google Scholar]
  19. Burnham RJ, Johnson KR. 2004.. South American palaeobotany and the origins of neotropical rainforests. . Philos. Trans. R. Soc. B 359::1595610
    [Google Scholar]
  20. Cabral FN, Trad RJ, Amorim BS, Maciel JR, do Amaral MD, Stevens P. 2021.. Phylogeny, divergence times, and diversification in Calophyllaceae: linking key characters and habitat changes to the evolution of Neotropical Calophylleae. . Mol. Phylogenet. Evol. 157::107041
    [Google Scholar]
  21. Calió MF, Thode VA, Bacon CD, Silvestro D, Antonelli A, Lohmann LG. 2022.. Spatio-temporal evolution of the catuaba clade in the Neotropics: Morphological shifts correlate with habitat transitions. . J. Biogeogr. 49::108698
    [Google Scholar]
  22. Carvalho MR, Jaramillo C, de la Parra F, Caballero-Rodríguez D, Herrera F, et al. 2021.. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. . Science 372::6368
    [Google Scholar]
  23. Cássia-Silva C, Oliveira RS, Sales LP, Freitas CG, Jardim L, et al. 2022.. Acaulescence promotes speciation and shapes the distribution patterns of palms in Neotropical seasonally dry habitats. . Ecography 3::e06072
    [Google Scholar]
  24. Chave J, Sothers C, Iribar A, Suescun U, Chase MW, Prance GT. 2020.. Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics. . Bot. J. Linn. Soc. 194::27189
    [Google Scholar]
  25. Colwyn DA, Brandon MT, Hren MT, Hourigan J, Pacini A, et al. 2019.. Growth and steady state of the Patagonian Andes. . Am. J. Sci. 319::43172
    [Google Scholar]
  26. Condamine FL, Rolland J, Morlon H. 2013.. Macroevolutionary perspectives to environmental change. . Ecol. Lett. 16::7285
    [Google Scholar]
  27. Condamine FL, Rolland J, Morlon H. 2019.. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. . Ecol. Lett. 22::190012
    [Google Scholar]
  28. Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. 2020.. The rise of angiosperms pushed conifers to decline during global cooling. . PNAS 117::2886775
    [Google Scholar]
  29. D'Apolito C. 2016.. Landscape evolution in Western Amazonia: palynostratigraphy, palaeoenvironments and diversity of the Miocene Solimões formation, Brazil. PhD Diss. Univ. Birmingham, UK:
    [Google Scholar]
  30. D'Apolito C, Da Silva-Caminha SA, Jaramillo C, Dino R, Soares EA. 2018.. The Pliocene–Pleistocene palynology of the Negro River, Brazil. . Palynology 43::22343
    [Google Scholar]
  31. D'Apolito C, Jaramillo C, Harrington G. 2021.. Miocene palynology of the Solimões Formation (well 1-AS-105-AM), western Brazilian Amazonia. . Smithson. Contrib. Paleobiol. 105::134
    [Google Scholar]
  32. Da Silva-Caminha SA, D'Apolito C, Jaramillo C, Espinosa BS, Rueda M. 2020.. Palynostratigraphy of the Ramon and Solimões formations in the Acre Basin, Brazil. . J. S. Am. Earth Sci. 103::102720
    [Google Scholar]
  33. Da Silva-Caminha SA, Jaramillo CA, Absy ML. 2010.. Neogene palynology of the Solimões basin, Brazilian Amazonia. . Palaeontographica Palaeontogr. Abt. B 284::1379
    [Google Scholar]
  34. Da Silveira RR, de Souza PA. 2015.. Palinologia (grãos de pólen de angiospermas) das formaçōes Solimōes e Iça (bacia do Solimōes), nas regioes de Coari e Alto Solimões, Amazonas. . Rev. Bras. Paleontol. 18::45574
    [Google Scholar]
  35. De Assis RL, Wittmann F, Luize BG, Haugaasen T. 2017.. Patterns of floristic diversity and composition in floodplain forests across four Southern Amazon river tributaries, Brazil. . Flora 229::12440
    [Google Scholar]
  36. De La Parra F, Pinzon D, Mantilla-Duran F, Rodriguez G, Caballero V. 2021.. Marine-lacustrine systems during the Eocene in northern South America—palynological evidence from Colombia. . J. S. Am. Earth Sci. 108::10388
    [Google Scholar]
  37. De Medeiros MC, Lohmann LG. 2015.. Phylogeny and biogeography of Tynanthus Miers (Bignonieae, Bignoniaceae). . Mol. Phylogenet. Evol. 85::3240
    [Google Scholar]
  38. Dexter KG, Lavin M, Torke BM, Twyford AD, Kursar TA, et al. 2017.. Dispersal assembly of rain forest tree communities across the Amazon basin. . PNAS 114::264550
    [Google Scholar]
  39. Dino R, Soares EA, Antonioli L, Riccomini C, Nogueira AC. 2012.. Palynostratigraphy and sedimentary facies of Middle Miocene fluvial deposits of the Amazonas Basin, Brazil. . J. S. Am. Earth Sci. 34::6180
    [Google Scholar]
  40. Dobson DM, Dickens GR, Rea DK. 2001.. Terrigenous sediment on Ceara Rise: a Cenozoic record of South American orogeny and erosion. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 165::21529
    [Google Scholar]
  41. Edwards LE. 1989.. Supplemented graphic correlation: a powerful tool for paleontologists and nonpaleontologists. . PALAIOS 4::12743
    [Google Scholar]
  42. Espinosa BS, D'Apolito C, Da Silva-Caminha SA. 2021.. Marine influence in western Amazonia during the late Miocene. . Glob. Planet. Change 205::103600
    [Google Scholar]
  43. Espinosa BS, D'Apolito C, Silva-Caminha SA, Ferreira MG, Absy ML. 2020.. Neogene paleoecology and biogeography of a Malvoid pollen in northwestern South America. . Rev. Palaeobot. Palynol. 273::104131
    [Google Scholar]
  44. Farjon A, Filer D. 2013.. An Atlas of the World's Conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status. Boston:: Brill
    [Google Scholar]
  45. Figueiredo JJ, Hoorn C, Van der Ven P, Soares E. 2009.. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. . Geology 37::61922
    [Google Scholar]
  46. Figueiredo JJ, Hoorn C, Van der Ven P, Soares E. 2010.. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin: reply. . Geology 38::e213
    [Google Scholar]
  47. Fine PV, Zapata F, Daly DC. 2014.. Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). . Evolution 68::19882004
    [Google Scholar]
  48. Fiorella RP, Poulsen CJ, Zolá RS, Jeffery ML, Ehlers TA. 2015.. Modern and long-term evaporation of central Andes surface waters suggests paleo archives underestimate Neogene elevations. . Earth Planet. Sci. Lett. 432::5972
    [Google Scholar]
  49. Garreaud RD, Vuille M, Compagnucci R, Marengo J. 2009.. Present-day South American climate. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 281::18095
    [Google Scholar]
  50. Garzione CN, Auerbach DJ, Smith JJ, Rosario JJ, Passey BH, et al. 2014.. Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes. . Earth Planet. Sci. Lett. 393::17381
    [Google Scholar]
  51. Gautheron C, Sawakuchi AO, dos Santos Albuquerque MF, Cabriolu C, Parra M, et al. 2022.. Cenozoic weathering of fluvial terraces and emergence of biogeographic boundaries in Central Amazonia. . Glob. Planet. Change 212::103815
    [Google Scholar]
  52. Gentry AH. 1982.. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny?. Ann. Mo. Bot. Gard. 69::55793
    [Google Scholar]
  53. Germeraad JH, Hopping CA, Muller J. 1968.. Palynology of Tertiary sediments from tropical areas. . Rev. Palaeobot. Palynol. 6::189348
    [Google Scholar]
  54. Gomes BT, Absy ML, D'Apolito C, Jaramillo C, Almeida R. 2021.. Compositional and diversity comparisons between the palynological records of the Neogene (Solimões Formation) and Holocene sediments of western Amazonia. . Palynology 45::314
    [Google Scholar]
  55. Granot R, Dyment J. 2015.. The Cretaceous opening of the South Atlantic Ocean. . Earth Planet. Sci. Lett. 414::15663
    [Google Scholar]
  56. Guex J. 1991.. Biochronological Correlations. New York:: Springer-Verlag
    [Google Scholar]
  57. Guimarães JTF, Nogueira ACR, da Silva Júnior JBC, Soares JL, Alves R, Kern AK. 2015.. Palynology of the Middle Miocene—Pliocene Novo Remanso Formation, Central Amazonia, Brazil. . Ameghiniana 52::10734
    [Google Scholar]
  58. Guinoiseau D, Fekiacova Z, Allard T, Druhan JL, Balan E, Bouchez J. 2021.. Tropical weathering history recorded in the silicon isotopes of lateritic weathering profiles. . Geophys. Res. Lett. 48::e2021GL092957
    [Google Scholar]
  59. Hagen O, Skeels A, Onstein RE, Jetz W, Pellissier L. 2021.. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. . PNAS 118::e2026347118
    [Google Scholar]
  60. Hansen J, Sato M, Russell G, Kharecha P. 2001.. Climate sensitivity, sea level and atmospheric carbon dioxide. . Philos. Transact. R. Soc. A 371::20120294
    [Google Scholar]
  61. Harris SE, Mix AC. 2002.. Climate and tectonic influences on continental erosion of tropical South America, 0–13 Ma. . Geology 30::44750
    [Google Scholar]
  62. Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE, et al. 2020.. The evolution of a tropical biodiversity hotspot. . Science 370::134348
    [Google Scholar]
  63. Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, et al. 2011.. Geological control of floristic composition in Amazonian forests. . J. Biogeogr. 38::213649
    [Google Scholar]
  64. Hoorn C. 1993.. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 105::267309
    [Google Scholar]
  65. Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SG, et al. 2017.. The Amazon at sea: onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. . Glob. Planet. Change 153::5165
    [Google Scholar]
  66. Hoorn C, Boschman LM, Kukla T, Sciumbata M, Val P. 2022a.. The Miocene wetland of western Amazonia and its role in Neotropical biogeography. . Bot. J. Linn. Soc. 199::2535
    [Google Scholar]
  67. Hoorn C, Kukla T, Bogotá-Angel G, van Soelen E, González-Arango C, et al. 2022b.. Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. . Glob. Planet. Change 210::103717
    [Google Scholar]
  68. Hoorn C, van der Ham R, de la Parra F, Salamanca S, ter Steege H, et al. 2019.. Going north and south: the biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. . Rev. Palaeobot. Palynol. 264::90109
    [Google Scholar]
  69. Hoorn C, Wesselingh FP 2010.. Amazonia, Landscape and Species Evolution: A Look into the Past. Chichester, UK:: Wiley-Blackwell
    [Google Scholar]
  70. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, et al. 2010.. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. . Science 330::92731
    [Google Scholar]
  71. Horbe AM, Roddaz M, Gomes LB, Castro RT, Dantas EL, Do Carmo DA. 2019.. Provenance of the Neogene sediments from the Solimões formation (Solimões and Acre basins), Brazil. . J. S. Am. Earth Sci. 93::23241
    [Google Scholar]
  72. Horton BK. 2018.. Sedimentary record of Andean mountain building. . Earth-Sci. Rev. 178::279309
    [Google Scholar]
  73. Hubbell SP, He F, Condit R, Borda-de-Água L, Kellner J, ter Steege H. 2008.. How many tree species are there in the Amazon and how many of them will go extinct?. PNAS 105::11498504
    [Google Scholar]
  74. Hughes C, Eastwood R. 2006.. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. . PNAS 103::1033439
    [Google Scholar]
  75. Hutter CR, Lambert SM, Wiens JJ. 2017.. Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth's most biodiverse hotspot. . Am. Nat. 190::82843
    [Google Scholar]
  76. Jaramillo C, Hoorn C, Silva SA, Leite F, Herrera F, et al. 2010.. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record. . See Hoorn & Wesselingh 2010 , pp. 31734
  77. Jaramillo C, Rueda MJ, Mora G. 2006.. Cenozoic plant diversity in the Neotropics. . Science 311::189396
    [Google Scholar]
  78. Jaramillo C, Romero I, D'Apolito C, Bayona G, Duarte E, et al. 2017.. Miocene flooding events of western Amazonia. . Sci. Adv. 3::e1601693
    [Google Scholar]
  79. Jaramillo C, Sepulchre P, Cardenas D, Correa-Metrio A, Moreno JE, et al. 2020.. Drastic vegetation change in the Guajira Peninsula (Colombia) during the Neogene. . Paleoceanogr. Paleoclimatol. 35::e2020PA003933
    [Google Scholar]
  80. Jaramillo C, Zavada M, Ortiz J, Pardo A, Ochoa D. 2013.. The biogeography of the Araucarian dispersed pollen Cyclusphaera. . Int. J. Plant Sci. 174::48998
    [Google Scholar]
  81. Jaramillo CA, Rueda M, Torres V. 2011.. A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. . Palynology 35::4684
    [Google Scholar]
  82. Jorge V, D'Apolito C, Da Silva-Caminha SA. 2019.. Exploring geophysical and palynological proxies for paleoenvironmental reconstructions in the Miocene of western Amazonia (Solimões Formation, Brazil). . J. S. Am. Earth Sci. 94::102223
    [Google Scholar]
  83. Kern AK, Gross M, Galeazzi CP, Pupim FN, Sawakuchi AO, et al. 2020.. Re-investigating Miocene age control and paleoenvironmental reconstructions in western Amazonia (northwestern Solimões Basin, Brazil). . Palaeogeogr. Palaeoclimatol. Palaeoecol. 545::109652
    [Google Scholar]
  84. Kirschner JA, Hoorn C. 2019.. The onset of grasses in the Amazon drainage basin, evidence from the fossil record. . Front. Biogeogr. 12::e44827
    [Google Scholar]
  85. Kubo T, Iwasa Y. 1995.. Inferring the rates of branching and extinction from molecular phylogenies. . Evolution 49::694704
    [Google Scholar]
  86. Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. 2016.. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). . New Phytol. 210::143042
    [Google Scholar]
  87. Latrubesse EM, Cozzuol M, Da Silva-Caminha SA, Rigsby CA, Absy ML, Jaramillo C. 2010.. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. . Earth-Sci. Rev. 99::99124
    [Google Scholar]
  88. Latrubesse EM, Da Silva SA, Cozzuol M, Absy ML. 2007.. Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: biotic and geological evidence. . J. S. Am. Earth Sci. 23::6180
    [Google Scholar]
  89. Leandro LM, Linhares AP, De Lira Mota MA, Fauth G, Santos A, et al. 2022.. Multi-proxy evidence of Caribbean-sourced marine incursions in the Neogene of Western Amazonia, Brazil. . Geology 50::46569
    [Google Scholar]
  90. Leandro LM, Vieira CE, Santos A, Fauth G. 2019.. Palynostratigraphy of two Neogene boreholes from the northwestern portion of the Solimões Basin, Brazil. . J. S. Am. Earth Sci. 23::6180
    [Google Scholar]
  91. Leier A, McQuarrie N, Garzione C, Eiler J. 2013.. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. . Earth Planet. Sci. Lett. 371::4958
    [Google Scholar]
  92. Leite FP, Paz J, do Carmo DA, Silva-Caminha SA. 2017.. The effects of the inception of Amazonian transcontinental drainage during the Neogene on the landscape and vegetation of the Solimões Basin, Brazil. . Palynology 41::41222
    [Google Scholar]
  93. Leite FP, Silva-Caminha SA, D'Apolito C. 2021.. New Neogene index pollen and spore taxa from the Solimões Basin (western Amazonia), Brazil. . Palynology 45::11541
    [Google Scholar]
  94. Leite FPR. 1997.. Palinofloras neógenas da Formação Pirabas e Grupo Barreiras, área litorânea nordeste do estado do Pará, Brasil. MSc Thesis, Univ. São Paulo, São Paulo, Brazil:
    [Google Scholar]
  95. Lim JY, Huang H, Farnsworth A, Lunt DJ, Baker WJ, et al. 2022.. The Cenozoic history of palms: global diversification, biogeography and the decline of megathermal forests. . Glob. Ecol. Biogeogr. 31::42539
    [Google Scholar]
  96. Linhares AP, de Souza Gaia VD, Ramos MI. 2017.. The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil. . J. S. Am. Earth Sci. 79::5766
    [Google Scholar]
  97. Linhares AP, Ramos MI, Gaia VC, Friaes YS. 2019.. Integrated biozonation based on palynology and ostracods from the Neogene of Solimões Basin, Brazil. . J. S. Am. Earth Sci. 91::5770
    [Google Scholar]
  98. Liow LH, Quental TB, Marshall CR. 2010.. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record?. Syst. Biol. 59::64659
    [Google Scholar]
  99. Lohmann LG, Bell C, Calió MF, Winkworth RC. 2013.. Patterns and timing of biogeographic history in the neotropical tribe Bignonieae (Bignoniaceae). . Bot. J. Linn. Soc. 171::15470
    [Google Scholar]
  100. Lorente MA. 1986.. Palynology and palynofacies of the Upper Tertiary in Venezuela. . PhD Thesis, Univ. Amsterdam
  101. Luebert F, Weigend M. 2014.. Phylogenetic insights into Andean plant diversification. . Front. Ecol. Evol. 19::227
    [Google Scholar]
  102. Machado AF, Rønsted N, Bruun-Lund S, Pereira RA, de Queiroz LP. 2018.. Atlantic forests to the all Americas: biogeographical history and divergence times of Neotropical Ficus (Moraceae). . Mol. Phylogenet. Evol. 122::4658
    [Google Scholar]
  103. Madriñán S, Cortés AJ, Richardson JE. 2013.. Páramo is the world's fastest evolving and coolest biodiversity hotspot. . Front. Genet. 4::192
    [Google Scholar]
  104. Maia RG, Godoy HK, Yamaguti HS, Moura PA, Costa FS, et al. 1977.. Projeto carvão no Alto Solimões: Relatório final. Rio de Janeiro , Brazil:: CPRM
    [Google Scholar]
  105. Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, Funk VA. 2019.. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. . PNAS 116::1408388
    [Google Scholar]
  106. Meseguer AS, Condamine FL. 2020.. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient. . Evolution 74::196687
    [Google Scholar]
  107. Meseguer AS, Michel A, Fabre PH, Pérez-Escobar OA, Chomicki G, et al. 2022.. Diversification dynamics in the Neotropics through time, clades and biogeographic regions. . eLife 11::e74503
    [Google Scholar]
  108. Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD. 2020.. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. . Sci. Adv. 6::eaaz1346
    [Google Scholar]
  109. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, et al. 2015.. Middle Miocene closure of the Central American seaway. . Science 348:(6231):226229
    [Google Scholar]
  110. Montes C, Rodriguez-Corcho AF, Bayona G, Hoyos N, Zapata S, Cardona A. 2019.. Continental margin response to multiple arc-continent collisions: the northern Andes-Caribbean margin. . Earth-Sci. Rev. 198::102903
    [Google Scholar]
  111. Morlon H. 2014.. Phylogenetic approaches for studying diversification. . Ecol. Lett. 17::50825
    [Google Scholar]
  112. Morlon H, Parsons TL, Plotkin JB. 2011.. Reconciling molecular phylogenies with the fossil record. . PNAS 108::1632732
    [Google Scholar]
  113. Morrone JJ. 2014.. Biogeographical regionalisation of the Neotropical region. . Zootaxa 3782:(1):1110
    [Google Scholar]
  114. Muller J, de Di Giacomo E, Van Erve AW. 1987.. A palynological zonation for the Cretaceous, Tertiary, and Quaternary of northern South America. . AASP 19::776
    [Google Scholar]
  115. Nee S. 2006.. Birth-death models in macroevolution. . Annu. Rev. Ecol. Evol. Syst. 37::117
    [Google Scholar]
  116. Nogueira AC, Silveira R, Guimarães JT. 2013.. Neogene–Quaternary sedimentary and paleovegetation history of the eastern Solimões Basin, central Amazon region. . J. S. Am. Earth Sci. 46::8999
    [Google Scholar]
  117. Oberdorff T, Dias MS, Jézéquel C, Albert JS, Arantes CC, et al. 2019.. Unexpected fish diversity gradients in the Amazon basin. . Sci. Adv. 5::eaav8681
    [Google Scholar]
  118. Ochoa D, Hoorn C, Jaramillo C, Bayona G, Parra M, De la Parra F. 2012.. The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: evidence from three palynological records. . J. S. Am. Earth Sci. 39::15769
    [Google Scholar]
  119. Parra FJ, Navarrete RE, di Pasquo MM, Roddaz M, Calderón Y, Baby P. 2020.. Neogene palynostratigraphic zonation of the Marañon Basin, western Amazonia, Peru. . Palynology 44::67595
    [Google Scholar]
  120. Pepper M, Gehrels G, Pullen A, Ibanez-Mejia M, Ward KM, Kapp P. 2016.. Magmatic history and crustal genesis of western South America: constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. . Geosphere 12::153255
    [Google Scholar]
  121. Peralta-Medina E, Falcon-Lang HJ. 2012.. Cretaceous forest composition and productivity inferred from a global fossil wood database. . Geology 40::21922
    [Google Scholar]
  122. Pérez-Escobar OA, Chomicki G, Condamine FL, Karremans AP, Bogarín D, et al. 2017.. Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot. . New Phytol. 215::891905
    [Google Scholar]
  123. Pérez-Escobar OA, Zizka A, Bermúdez MA, Meseguer AS, Condamine FL, et al. 2022.. The Andes through time: evolution and distribution of Andean floras. . Trends Plant Sci. 27::36478
    [Google Scholar]
  124. Pindell JL, Kennan L. 2009.. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. . Geol. Soc. Lond. Spec. Publ. 328::155
    [Google Scholar]
  125. Pocknall DT. 2020.. Biostratigraphic evaluation of Miocene to Pleistocene strata in Trinidad using palynology and micropaleontology. . AASP Contr. 49::192
    [Google Scholar]
  126. Pocknall DT, Jarzen DM. 2012.. Grimsdalea magnaclavata Germeraad, Hopping & Muller: an enigmatic pollen type from the Neogene of northern South America. . Palynology 36::13443
    [Google Scholar]
  127. Pons D, de Franceschi DA. 2007.. Neogene woods from western Peruvian Amazon and palaeoenvironmental interpretation. . Bull. Geosci. 82::34354
    [Google Scholar]
  128. Quade J, Dettinger MP, Carrapa B, DeCelles P, Murray KE, et al. 2015.. The growth of the central Andes, 22 S–26 S. . GSA Mem. 212::277308
    [Google Scholar]
  129. Quental TB, Marshall CR. 2010.. Diversity dynamics: molecular phylogenies need the fossil record. . Trends Ecol. Evol. 25::43441
    [Google Scholar]
  130. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, et al. 2012.. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. . Biogeosciences 9::220346
    [Google Scholar]
  131. Rabosky DL. 2010.. Extinction rates should not be estimated from molecular phylogenies. . Evolution 64::181624
    [Google Scholar]
  132. Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, et al. 2019.. Building mountain biodiversity: geological and evolutionary processes. . Science 365::111419
    [Google Scholar]
  133. Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins CN, Ulloa Ulloa C. 2020.. The distribution of biodiversity richness in the tropics. . Sci. Adv. 6::eabc6228
    [Google Scholar]
  134. Regali MD. 1971.. Palinologia dos sedimentos Cenozoicos da Foz do Rio Amazonas. PhD Thesis, Univ. São Paulo, Brazil:
    [Google Scholar]
  135. Roddaz M, Hermoza W, Mora A, Baby P, Parra M, et al. 2010.. Cenozoic sedimentary evolution of the Amazonian foreland basin system. . See Hoorn & Wesselingh 2010 , pp. 6188
  136. Roddaz M, Viers J, Brusset S, Baby P, Hérail G. 2005.. Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. . Earth Planet. Sci. Lett. 239::5778
    [Google Scholar]
  137. Rodríguez-Zorro PA, Ledru MP, Favier C, Bard E, Bicudo DC, . 2022.. Alternate phases of Atlantic forest and climate during the early Pleistocene 41 ka cycles. . Quat. Sci. Rev. 286::107560
    [Google Scholar]
  138. Rozefelds AC, Dettmann ME, Clifford HT, Carpenter RJ. 2017.. Lygodium (Schizaeaceae) in southern high latitudes during the Cenozoic—a new species and new insights into character evolution in the genus. . Rev. Palaeobot. Palynol. 247::4052
    [Google Scholar]
  139. Rull V. 2002.. High-impact palynology in petroleum geology: applications from Venezuela (northern South America). . AAPG Bull. 86::279300
    [Google Scholar]
  140. NDP, Carvalho MDA, da Cunha correia G. 2020.. Miocene paleoenvironmental changes in the Solimões Basin, western Amazon, Brazil: a reconstruction based on palynofacies analysis. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 537::109450
    [Google Scholar]
  141. Salamanca Villegas S, van Soelen EE, Teunissen-van Manen ML, Flantua SG, Santos RV, et al. 2016.. Amazon forest dynamics under changing abiotic conditions in the early Miocene (Colombian Amazonia). . J. Biogeogr. 43::242437
    [Google Scholar]
  142. Salazar-Jaramillo S, Śliwiński MG, Hertwig AT, Garzón CC, Gómez CF, et al. 2022.. Changes in rainfall seasonality inferred from weathering and pedogenic trends in mid-Miocene paleosols of La Tatacoa, Colombia. . Glob. Planet. Change 208::103711
    [Google Scholar]
  143. Sarmiento-Rojas LF. 2019.. Cretaceous stratigraphy and paleo-facies maps of northwestern South America. . In Geology and Tectonics of Northwestern South America, ed. F Cediel, RP Shaw , pp. 673747 Cham, Switz:.: Springer
    [Google Scholar]
  144. Schley RJ, de la Estrella M, Pérez-Escobar OA, Bruneau A, Barraclough T, et al. 2018.. Is Amazonia a ‘museum’ for Neotropical trees? The evolution of the Brownea clade (Detarioideae, Leguminosae). . Mol. Phylogenet. Evol. 126::27992
    [Google Scholar]
  145. Sciumbata M, Weedon JT, Bogotá-Angel G, Hoorn C. 2021.. Linking modern-day relicts to a Miocene mangrove community of western Amazonia. . Paleobiodivers. Paleoenviron. 101::12340
    [Google Scholar]
  146. Sepulchre P, Sloan LC, Fluteau F. 2010.. Modelling the response of Amazonian climate to the uplift of the Andean mountain range. . See Hoorn & Wesselingh 2010 , pp. 21122
  147. Shaw AB. 1964.. Time in Stratigraphy. New York:: McGraw Hill
    [Google Scholar]
  148. Shephard GE, Müller RD, Liu L, Gurnis M. 2010.. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. . Nat. Geosci. 3::87075
    [Google Scholar]
  149. Silva SM, Peterson AT, Carneiro L, Burlamaqui TC, Ribas CC, et al. 2019.. A dynamic continental moisture gradient drove Amazonian bird diversification. . Sci. Adv. 5::eaat5752
    [Google Scholar]
  150. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009.. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. . PNAS 106::2035964
    [Google Scholar]
  151. Soares EA, D'Apolito C, Jaramillo C, Harrington G, Caputo MV, et al. 2017.. Sedimentology and palynostratigraphy of a Pliocene-Pleistocene (Piacenzian to Gelasian) deposit in the lower Negro River: implications for the establishment of large rivers in Central Amazonia. . J. S. Am. Earth Sci. 79::21529
    [Google Scholar]
  152. Soares EA, Dino R, Soares DP, Antonioli L, Silva MA. 2015.. New sedimentological and palynological data from surface Miocene strata in the central Amazonas Basin area. . Braz. J. Geol. 45::33757
    [Google Scholar]
  153. Steinthorsdottir M, Coxall HK, De Boer AM, Huber M, Barbolini N, et al. 2021.. The Miocene: the future of the past. . Paleoceanogr. Paleoclimatol. 36::e2020PA004037
    [Google Scholar]
  154. Sundell KE, Saylor JE, Lapen TJ, Horton BK. 2019.. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. . Sci. Rep. 9::4877
    [Google Scholar]
  155. ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, et al. 2013.. Hyperdominance in the Amazonian tree flora. . Science 342::1243092
    [Google Scholar]
  156. Thode VA, Sanmartín I, Lohmann LG. 2019.. Contrasting patterns of diversification between Amazonian and Atlantic forest clades of Neotropical lianas (Amphilophium, Bignonieae) inferred from plastid genomic data. . Mol. Phylogenet. Evol. 133::92106
    [Google Scholar]
  157. Torrado L, Carvajal-Arenas LC, Mann P, Bhattacharya J. 2020.. Integrated seismic and well-log analysis for the exploration of stratigraphic traps in the Carbonera Formation, Llanos foreland basin of Colombia. . J. S. Am. Earth Sci. 104::102607
    [Google Scholar]
  158. Ulloa Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, et al. 2017.. An integrated assessment of the vascular plant species of the Americas. . Science 358::161417
    [Google Scholar]
  159. Val P, Figueiredo J, de Melo G, Flantua SG, Quesada CA, et al. 2021.. Geological history and geodiversity of the Amazon. . In Amazon Assessment Report 2021, Part 1, ed. C Nobre, A Encalada, E Anderson, FH Roca-Alcazar, M Bustamante , et al., pp. 141 New York:: United Nations Sustain. Dev. Solut. Netw.
    [Google Scholar]
  160. Van der Hammen T, Wymstra TA. 1964.. A palynological study on the Tertiary and Upper Cretaceous of British Guiana. . Leidse Geol. Meded. 30::183241
    [Google Scholar]
  161. Vargas OM, Dick CW. 2020.. Diversification history of Neotropical Lecythidaceae, an ecologically dominant tree family of Amazon rain forest. . In Neotropical Diversification: Patterns and Processes, ed. V Rull, A Carnaval , pp. 791809 Cham, Switz:.: Springer
    [Google Scholar]
  162. Vonhof HB, Kaandorp RJ. 2010.. Climate variation in Amazonia during the Neogene and the Quaternary. . See Hoorn & Wesselingh 2010 , pp. 20110
  163. Wanderley-Filho JR, Eiras JF, Cunha PRC, Van der Ven PH. 2010.. The Paleozoic Solimões and Amazonas basins and the Acre foreland basin of Brazil. . See Hoorn & Wesselingh 2010 , pp. 2937
  164. Watts AB, Rodger M, Peirce C, Greenroyd CJ, Hobbs RW. 2009.. Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil. . J. Geophys. Res. 114:(B7):B07103
    [Google Scholar]
  165. Wesselingh F. 2006.. Miocene long-lived lake Pebas as a stage of mollusc radiations, with implications for landscape evolution in western Amazonia. . Scr. Geol. 133::117
    [Google Scholar]
  166. Wesselingh F, Guerrero J, Räsänen ME, Romero Pittmann L, Vonhof HB. 2006.. Landscape evolution and depositional processes in the Miocene Amazonian Pebas lake/wetland system: evidence from exploratory boreholes in northeastern Peru. . Scr. Geol. 133::32363
    [Google Scholar]
  167. Wesselingh F, Salo JA. 2006.. A Miocene perspective on the evolution of the Amazonian biota. . Scr. Geol. 133::43958
    [Google Scholar]
  168. Wesselingh FP, Hoorn C. 2011.. Geological development of Amazon and Orinoco basins. . In Historical Biogeography of Neotropical Freshwater Fishes, ed. J Albert , pp. 5968 Berkeley:: Univ. Calif. Press
    [Google Scholar]
  169. Wesselingh FP, Räsänen ME, Irion G, Vonhof HB, Kaandorp R, et al. 2001.. Lake Pebas: a palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. . Cainozoic Res. 1::3568
    [Google Scholar]
  170. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, et al. 2020.. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. . Science 369::138387
    [Google Scholar]
  171. Wijmstra TA. 1968.. The identity of Psilatricolporites and Pelliciera. . Acta Bot. Neerl. 17::11416
    [Google Scholar]
  172. Wijmstra TA. 1971.. The palynology of the Guiana Coastal Basin. PhD Thesis, Univ. Amsterdam
    [Google Scholar]
  173. Wilkinson MJ, Marshall LG, Lundberg JG, Kreslavsky MH. 2010.. Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. . See Hoorn & Wesselingh 2010 , pp. 16284
  174. Xue B, Guo X, Landis JB, Sun M, Tang CC, et al. 2020.. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. . Mol. Phylogenet. Evol. 142::106659
    [Google Scholar]
/content/journals/10.1146/annurev-earth-081522-090454
Loading
/content/journals/10.1146/annurev-earth-081522-090454
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error