1932

Abstract

Surface exposure dating using cosmic-ray-produced nuclides has been applied to determine the age of thousands of landforms produced by alpine glaciers in mountain areas worldwide. These data are potentially an extensive, easily accessible, and globally distributed paleoclimate record. In particular, exposure-dated glacier chronologies are commonly applied to study the dynamics of massive, abrupt climate changes characteristic of the transition between the Last Glacial Maximum and the present interglacial climate. This article reviews developments in exposure dating from the perspective of whether this goal is achievable and concludes that () individual exposure-dated landforms cannot, in general, be associated with millennial-scale climate events at high confidence, but () dating uncertainties appear to be geographically and temporally unbiased, so the data set as a whole can be used to gain valuable insight into regional and global paleoclimate dynamics. Future applications of exposure-age chronologies of glacier change should move away from reliance on individual dated landforms and toward synoptic analysis of the global data set.

  • ▪   Mountain glaciers worldwide leave a geologic record of their past advances and retreats, which reflect past climate changes.
  • ▪   Geochemical dating methods based on cosmic-ray-produced nuclides have been used to date these deposits at thousands of sites worldwide.
  • ▪   This data set is potentially an extensive, accessible, and globally distributed paleoclimate record.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081619-052609
2020-05-30
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-081619-052609.html?itemId=/content/journals/10.1146/annurev-earth-081619-052609&mimeType=html&fmt=ahah

Literature Cited

  1. Alley RB. 2000. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 19:213–26
    [Google Scholar]
  2. Applegate P, Urban N, Keller K, Lowell T, Laabs B, et al. 2012. Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quat. Res. 77:293–304
    [Google Scholar]
  3. Applegate P, Urban N, Laabs B, Keller K, Alley R. 2010. Modeling the statistical distributions of cosmogenic exposure dates from moraines. Geosci. Model Dev. 3:293–307
    [Google Scholar]
  4. Argento DC, Reedy RC, Stone JO. 2013. Modeling the earth's cosmic radiation. Nucl. Instrum. Methods Phys. Res. B 294:464–69
    [Google Scholar]
  5. Argento DC, Stone JO, Reedy RC, O'Brien K. 2015a. Physics-based modeling of cosmogenic nuclides part I—radiation transport methods and new insights. Quat. Geochronol. 26:29–43
    [Google Scholar]
  6. Argento DC, Stone JO, Reedy RC, O'Brien K. 2015b. Physics-based modeling of cosmogenic nuclides part II—key aspects of in-situ cosmogenic nuclide production. Quat. Geochronol. 26:44–55
    [Google Scholar]
  7. Arnold M, Merchel S, Bourlès DL, Braucher R, Benedetti L, et al. 2010. The French accelerator mass spectrometry facility ASTER: improved performance and developments. Nucl. Instrum. Methods Phys. Res. B 268:1954–59
    [Google Scholar]
  8. Balco G. 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 30:3–27
    [Google Scholar]
  9. Balco G. 2017. Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data. Quat. Geochronol. 39:150–73
    [Google Scholar]
  10. Balco G, Blard PH, Shuster DL, Stone JO, Zimmermann L. 2019a. Cosmogenic and nucleogenic 21Ne in quartz in a 28-meter sandstone core from the McMurdo Dry Valleys, Antarctica. Quat. Geochronol. 52:63–76
    [Google Scholar]
  11. Balco G, Stone JO, Lifton N, Dunai T. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3:174–95
    [Google Scholar]
  12. Balco G, Stone JO, Porter SC, Caffee MW. 2002. Cosmogenic-nuclide ages for New England coastal moraines, Martha's Vineyard and Cape Cod, Massachusetts, USA. Quat. Sci. Rev. 21:2127–35
    [Google Scholar]
  13. Balco G, Todd C, Goehring BM, Moening-Swanson I, Nichols K. 2019b. Glacial geology and cosmogenic-nuclide exposure ages from the Tucker Glacier–Whitehall Glacier confluence, northern Victoria Land, Antarctica. Am. J. Sci. 319:255–86
    [Google Scholar]
  14. Binnie S, Dewald A, Heinze S, Voronina E, Hein A, et al. 2019. Preliminary results of CoQtz-N: a quartz reference material for terrestrial in-situ cosmogenic 10Be and 26Al measurements. Nucl. Instrum. Methods Phys. Res. B 456:203–12
    [Google Scholar]
  15. Blard PH, Balco G, Burnard P, Farley K, Fenton C, et al. 2015. An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard. Quat. Geochronol. 26:11–19
    [Google Scholar]
  16. Borchers B, Marrero S, Balco G, Caffee M, Goehring B, et al. 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 31:188–98
    [Google Scholar]
  17. Braucher R, Bourlès D, Merchel S, Romani JV, Fernadez-Mosquera D, et al. 2013. Determination of muon attenuation lengths in depth profiles from in situ produced cosmogenic nuclides. Nucl. Instrum. Methods Phys. Res. B 294:484–90
    [Google Scholar]
  18. Braucher R, Merchel S, Borgomano J, Bourlès D. 2011. Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet. Sci. Lett. 309:1–9
    [Google Scholar]
  19. Chmeleff J, von Blanckenburg F, Kossert K, Jakob D 2009. Determination of the 10Be half-life by multi-collector ICP mass spectrometry and liquid scintillation counting. Geochim. Cosmochim. Acta73(Suppl. 1):A221
    [Google Scholar]
  20. Corbett LB, Bierman PR, Rood DH. 2016. An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat. Geochronol. 33:24–34
    [Google Scholar]
  21. Delunel R, Blard PH, Martin LC, Nomade S, Schlunegger F. 2016. Long term low latitude and high elevation cosmogenic 3He production rate inferred from a 107 ka-old lava flow in northern Chile; 22S-3400 m a.s.l. Geochim. Cosmochim. Acta 184:71–87
    [Google Scholar]
  22. Denton GH, Anderson RF, Toggweiler J, Edwards R, Schaefer J, Putnam A. 2010. The last glacial termination. Science 328:1652–56
    [Google Scholar]
  23. Denton GH, Porter SC. 1970. Neoglaciation. Sci. Am. 222:100–11
    [Google Scholar]
  24. Desilets D, Zreda M, Prabu T. 2006. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth Planet. Sci. Lett. 246:265–76
    [Google Scholar]
  25. DiBiase RA, Whipple KX 2011. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. J. Geophys. Res.116(F4):F04036
    [Google Scholar]
  26. Dunai T. 2001. Influence of secular variation of the magnetic field on production rates of in situ produced cosmogenic nuclides. Earth Planet. Sci. Lett. 193:197–212
    [Google Scholar]
  27. Dunai T. 2010. Cosmogenic Nuclides: Principles, Concepts, and Applications in the Earth Surface Sciences Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  28. Glasser NF, Harrison S, Schnabel C, Fabel D, Jansson KN. 2012. Younger Dryas and early Holocene age glacier advances in Patagonia. Quat. Sci. Rev. 58:7–17
    [Google Scholar]
  29. Goehring BM, Balco G, Todd C, Moening-Swanson I, Nichols K. 2019. Late-glacial grounding line retreat in the northern Ross Sea, Antarctica. Geology 47:291–94
    [Google Scholar]
  30. Goehring BM, Kurz MD, Balco G, Schaefer JM, Licciardi J, Lifton N. 2010. A reevaluation of in situ cosmogenic 3He production rates. Quat. Geochronol. 5:410–18
    [Google Scholar]
  31. Goehring BM, Muzikar P, Lifton NA. 2018. Establishing a Bayesian approach to determining cosmogenic nuclide reference production rates using He-3. Earth Planet. Sci. Lett. 481:91–100
    [Google Scholar]
  32. Gosse JC, Evenson E, Klein J, Lawn B, Middleton R. 1995. Precise cosmogenic 10Be measurements in western North America: support for a global Younger Dryas cooling event. Geology 23:877–80
    [Google Scholar]
  33. Granger DE, Gibbon RJ, Kuman K, Clarke RJ, Bruxelles L, Caffee MW. 2015. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature 522:85–88
    [Google Scholar]
  34. Hallet B, Putkonen J. 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265:937–40
    [Google Scholar]
  35. Heyman J, Applegate PJ, Blomdin R, Gribenski N, Harbor JM, Stroeven AP. 2016. Boulder height–exposure age relationships from a global glacial 10Be compilation. Quat. Geochronol. 34:1–11
    [Google Scholar]
  36. Johnson JS, Nichols KA, Goehring BM, Balco G, Schaefer JM. 2019. Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica. Earth Planet. Sci. Lett. 518:127–35
    [Google Scholar]
  37. Jomelli V, Favier V, Vuille M, Braucher R, Martin L, et al. 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513:224–28
    [Google Scholar]
  38. Jomelli V, Martin L, Blard P, Favier V, Vuillé M, Ceballos J. 2017. Revisiting the Andean tropical glacier behavior during the Antarctic cold reversal. Cuad. Invest. Geogr. 43:629–48
    [Google Scholar]
  39. Jones R, Whitehouse P, Bentley M, Small D, Dalton A. 2019. Impact of glacial isostatic adjustment on cosmogenic surface-exposure dating. Quat. Sci. Rev. 212:206–12
    [Google Scholar]
  40. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, et al. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–96
    [Google Scholar]
  41. Jull AT, Scott EM, Bierman P. 2015. The CRONUS-Earth inter-comparison for cosmogenic isotope analysis. Quat. Geochronol. 26:3–10
    [Google Scholar]
  42. Kaplan MR, Schaefer JM, Denton GH, Barrell DJ, Chinn TJ, et al. 2010. Glacier retreat in New Zealand during the Younger Dryas stadial. Nature 467:194–97
    [Google Scholar]
  43. Kelly MA, Lowell TV, Applegate PJ, Phillips FM, Schaefer JM, et al. 2015. A locally calibrated, late glacial 10Be production rate from a low-latitude, high-altitude site in the Peruvian Andes. Quat. Geochronol. 26:70–85
    [Google Scholar]
  44. Korschinek G, Bergmaier A, Dillmann I, Faestermann T, Gerstmann U 2009. Determination of the 10Be half-life by HI-ERD and liquid scintillation counting. Geochim. Cosmochim. Acta73(Suppl. 1):A685
    [Google Scholar]
  45. Kubik PW, Christl M. 2010. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nucl. Instrum. Methods Phys. Res. B 268:880–83
    [Google Scholar]
  46. Lal D, Peters B 1967. Cosmic ray produced radioactivity on the Earth. Handbuch der Physik K Sitte551–612. Berlin:: Springer
    [Google Scholar]
  47. Larsen IJ, Montgomery DR, Greenberg HM. 2014. The contribution of mountains to global denudation. Geology 42:527–30
    [Google Scholar]
  48. Leydet DJ, Carlson AE, Teller JT, Breckenridge A, Barth AM, et al. 2018. Opening of glacial Lake Agassiz's eastern outlets by the start of the Younger Dryas cold period. Geology 46:155–58
    [Google Scholar]
  49. Lifton N. 2016. Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling. Earth Planet. Sci. Lett. 433:257–68
    [Google Scholar]
  50. Lifton N, Caffee M, Finkel R, Marrero S, Nishiizumi K, et al. 2015. In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features. Quat. Geochronol. 26:56–69
    [Google Scholar]
  51. Lifton N, Sato T, Dunai TJ. 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386:149–60
    [Google Scholar]
  52. Lifton N, Smart D, Shea M. 2008. Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model. Earth Planet. Sci. Lett. 268:190–201
    [Google Scholar]
  53. Lowell TV, Hayward R, Denton G 1999. Role of climate oscillations in determining ice-margin position: hypothesis, examples, and implications. Glacial Processes Past and Present D Mickelson, J Attig193–203. Geol. Soc. Am. Spec. Pap. 337. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  54. Lowell TV, Kelly MA. 2008. Was the Younger Dryas global?. Science 321:348–49
    [Google Scholar]
  55. Mackintosh AN, Anderson BM, Pierrehumbert RT. 2017. Reconstructing climate from glaciers. Annu. Rev. Earth Planet. Sci. 45:649–80
    [Google Scholar]
  56. Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–201
    [Google Scholar]
  57. Marrero SM, Phillips FM, Borchers B, Lifton N, Aumer R, Balco G. 2016. Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol. 31:160–87
    [Google Scholar]
  58. Martin L, Blard PH, Balco G, Lavé J, Delunel R, et al. 2017. The CREp program and the ICE-D production rate calibration database: a fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat. Geochronol. 38:25–49
    [Google Scholar]
  59. Merchel S, Bremser W, Akhmadaliev S, Arnold M, Aumaître G, et al. 2012. Quality assurance in accelerator mass spectrometry: results from an international round-robin exercise for 10Be. Nucl. Instrum. Methods Phys. Res. B 289:68–73
    [Google Scholar]
  60. Monnin E, Steig EJ, Siegenthaler U, Kawamura K, Schwander J, et al. 2004. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 224:45–54
    [Google Scholar]
  61. Moreno P, Kaplan M, François J, Villa-Martínez R, Moy C, et al. 2009. Renewed glacial activity during the Antarctic cold reversal and persistence of cold conditions until 11.5 ka in southwestern Patagonia. Geology 37:375–78
    [Google Scholar]
  62. Newnham RM, Vandergoes MJ, Sikes E, Carter L, Wilmshurst JM, et al. 2012. Does the bipolar seesaw extend to the terrestrial southern mid-latitudes?. Quat Sci. Rev. 36:214–22
    [Google Scholar]
  63. Nishiizumi K. 2004. Preparation of 26Al AMS standards. Nucl. Instrum. Methods Phys. Res. B 223–224:388–92
    [Google Scholar]
  64. Nishiizumi K, Finkel R, Klein J, Kohl C. 1996. Cosmogenic production of 7Be and 10Be in water targets. J. Geophys. Res. 101:22225–32
    [Google Scholar]
  65. Nishiizumi K, Imamura M, Caffee M, Southon J, Finkel R, McAnich J. 2007. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys. Res. B 258:403–13
    [Google Scholar]
  66. Nvlt D, Braucher R, Engel Z, Mlčoch B, ASTER Team. 2014. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial–interglacial transition. Quat. Res. 82:441–49
    [Google Scholar]
  67. Pedro JB, Bostock HC, Bitz CM, He F, Vandergoes MJ, et al. 2016. The spatial extent and dynamics of the Antarctic Cold Reversal. Nat. Geosci. 9:51–55
    [Google Scholar]
  68. Phillips F, Zreda M, Smith S, Elmore D, Kubik P, Sharma P. 1990. Cosmogenic chlorine-36 chronology for glacial deposits at Bloody Canyon, eastern Sierra Nevada. Science 248:1529–32
    [Google Scholar]
  69. Portenga EW, Bierman PR. 2011. Understanding Earth's eroding surface with 10Be. GSA Today 21:4–10
    [Google Scholar]
  70. Putkonen J, O'Neal M. 2006. Degradation of unconsolidated Quaternary landforms in the western North America. Geomorphology 75:408–19
    [Google Scholar]
  71. Putkonen J, Swanson T. 2003. Accuracy of cosmogenic ages for moraines. Quat. Res. 59:255–61
    [Google Scholar]
  72. Putnam AE, Bromley GR, Rademaker K, Schaefer JM. 2019. In situ10Be production-rate calibration from a 14C-dated late-glacial moraine belt in Rannoch Moor, central Scottish Highlands. Quat. Geochronol. 50:109–25
    [Google Scholar]
  73. Putnam AE, Denton GH, Schaefer JM, Barrell DJ, Andersen BG, et al. 2010a. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nat. Geosci. 3:700–4
    [Google Scholar]
  74. Putnam AE, Schaefer J, Barrell D, Vandergoes M, Denton G, et al. 2010b. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quat. Geochronol. 5:392–409
    [Google Scholar]
  75. Reedy R. 2013. Cosmogenic-nuclide production rates: reaction cross section update. Nucl. Instrum. Methods Phys. Res. B 294:470–74
    [Google Scholar]
  76. Roe GH. 2011. What do glaciers tell us about climate variability and climate change?. J. Glaciol. 57:567–78
    [Google Scholar]
  77. Rood DH, Brown TA, Finkel RC, Guilderson TP. 2013. Poisson and non-Poisson uncertainty estimations of 10Be/9Be measurements at LLNL–CAMS. Nucl. Instrum. Methods Phys. Res. B 294:426–29
    [Google Scholar]
  78. Rood DH, Hall S, Guilderson TP, Finkel RC, Brown TA. 2010. Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nucl. Instrum. Methods Phys. Res. B 268:730–32
    [Google Scholar]
  79. Rossi B. 1964. Cosmic Rays New York: McGraw-Hill
    [Google Scholar]
  80. Rupper S, Roe G. 2008. Glacier changes and regional climate: a mass and energy balance approach. J. Clim. 21:5384–401
    [Google Scholar]
  81. Rupper S, Roe G, Gillespie A. 2009. Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quat. Res. 72:337–46
    [Google Scholar]
  82. Sánchez JS, Mosquera DF, Romaní JRV. 2009. Assessing the age-weathering correspondence of cosmogenic 21Ne dated Pleistocene surfaces by the Schmidt Hammer. Earth Surf. Process. Landf. 34:1121–25
    [Google Scholar]
  83. Sato T, Yasuda H, Niita K, Endo A, Sihver L. 2008. Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat. Res. 170:244–59
    [Google Scholar]
  84. Schaefer J, Denton G, Barrell D, Ivy-Ochs S, Kubik P, et al. 2006. Near-synchronous interhemispheric termination of the Last Glacial Maximum at mid-latitudes. Science 312:1510–13
    [Google Scholar]
  85. Schenk F, Väliranta M, Muschitiello F, Tarasov L, Heikkilä M, et al. 2018. Warm summers during the Younger Dryas cold reversal. Nat. Commun. 9:1634
    [Google Scholar]
  86. Shen G, Gao X, Granger D. 2009. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating. Nature 458:198–200
    [Google Scholar]
  87. Staiger J, Gosse J, Toracinta R, Oglesby B, Fastook J, Johnson J. 2007. Atmospheric scaling of cosmogenic nuclide production: climate effect. J. Geophys. Res. 112:B02205
    [Google Scholar]
  88. Stuiver M, Grootes PM. 2000. GISP2 oxygen isotope ratios. Quat. Res. 53:277–84
    [Google Scholar]
  89. Swanger KM, Marchant DR, Schaefer JM, Winckler G, Head JW III 2011. Elevated East Antarctic outlet glaciers during warmer-than-present climates in southern Victoria Land. Glob. Planet. Change 79:61–72
    [Google Scholar]
  90. Tschudi S, Schäfer JM, Zhao Z, Wu X, Ivy-Ochs S, et al. 2003. Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne. J. Asian Earth Sci. 22:301–6
    [Google Scholar]
  91. Vermeesch P, Baur H, Heber V, Kober F, Oberholzer P, et al. 2009. Cosmogenic 3He and 21Ne measured in quartz targets after one year of exposure in the Swiss Alps. Earth Planet. Sci. Lett. 284:417–25
    [Google Scholar]
  92. Wilcken K, Fujioka T, Fink D, Fülöp R, Codilean A, et al. 2019. SIRIUS performance: 10Be, 26Al and 36Cl measurements at ANSTO. Nucl. Instrum. Methods Phys. Res. B 455:300–4
    [Google Scholar]
  93. Winkler S. 2009. First attempt to combine terrestrial cosmogenic nuclide 10Be and Schmidt hammer relative-age dating: Strauchon Glacier, Southern Alps, New Zealand. Cent. Eur. J. Geosci. 1:274–90
    [Google Scholar]
  94. Young NE, Briner JP, Schaefer J, Zimmerman S, Finkel RC. 2019. Early Younger Dryas glacier culmination in southern Alaska: implications for North Atlantic climate change during the last deglaciation. Geology 47:550–54
    [Google Scholar]
  95. Young NE, Schaefer JM, Briner JP, Goehring BM. 2013. A 10Be production-rate calibration for the Arctic. J. Quat. Sci. 28:515–26
    [Google Scholar]
/content/journals/10.1146/annurev-earth-081619-052609
Loading
/content/journals/10.1146/annurev-earth-081619-052609
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error