1932

Abstract

If we accept that a critical condition for plate tectonics is the creation and maintenance of a global network of narrow boundaries separating multiple plates, then to argue for plate tectonics during the Archean requires more than a local record of subduction. A case is made for plate tectonics back to the early Paleoproterozoic, when a cycle of breakup and collision led to formation of the supercontinent Columbia, and bimodal metamorphism is registered globally. Before this, less preserved crust and survivorship bias become greater concerns, and the geological record may yield only a lower limit on the emergence of plate tectonics. Higher mantle temperature in the Archean precluded or limited stable subduction, requiring a transition to plate tectonics from another tectonic mode. This transition is recorded by changes in geochemical proxies and interpreted based on numerical modeling. Improved understanding of the secular evolution of temperature and water in the mantle is a key target for future research.

  • ▪   Higher mantle temperature in the Archean precluded or limited stable subduction, requiring a transition to plate tectonics from another tectonic mode.
  • ▪   Plate tectonics can be demonstrated on Earth since the early Paleoproterozoic (since c. 2.2 Ga), but before the Proterozoic Earth's tectonic mode remains ambiguous.
  • ▪   The Mesoarchean to early Paleoproterozoic (3.2–2.3 Ga) represents a period of transition from an early tectonic mode (stagnant or sluggish lid) to plate tectonics.
  • ▪   The development of a global network of narrow boundaries separating multiple plates could have been kick-started by plume-induced subduction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081619-052705
2020-05-30
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-081619-052705.html?itemId=/content/journals/10.1146/annurev-earth-081619-052705&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott D, Menke W. 1990. Length of the global plate boundary at 2.4 Ga. Geology 18:58–61
    [Google Scholar]
  2. Abbott D, Mooney WD, VanTongeren JA 2013. The character of the Moho and lower crust within Archean cratons and the tectonic implications. Tectonophysics 609:690–705
    [Google Scholar]
  3. Aulbach S, Arndt NT. 2019. Eclogites as palaeodynamic archives: evidence for warm (not hot) and depleted (but heterogeneous) Archaean ambient mantle. Earth Planet. Sci. Lett. 505:162–72
    [Google Scholar]
  4. Bédard JH. 2018. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9:19–49
    [Google Scholar]
  5. Bédard JH, Harris LB, Thurston PC 2013. The hunting of the snArc. Precambrian Res 229:20–48
    [Google Scholar]
  6. Bercovici D, Ricard Y. 2014. Plate tectonics, damage and inheritance. Nature 508:513–16
    [Google Scholar]
  7. Bercovici D, Tackley P, Ricard Y 2015. The generation of plate tectonics from mantle dynamics. In Treatise on Geophysics, Vol. 7 D Bercovici, G Schubert 271–318 New York: Elsevier
    [Google Scholar]
  8. Bindeman IN, Zakharov DO, Palandri J, Greber ND, Dauphas N et al. 2018. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557:545–48
    [Google Scholar]
  9. Bleeker W. 2003. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134
    [Google Scholar]
  10. Bleeker W, Ernst RE. 2006. Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth's paleogeographic record back to 2.6 Ga. Dyke Swarms—Time Markers of Crustal Evolution E Hanski, S Mertanen, T Rämö, J Vuollo 3–26 London: Taylor & Francis
    [Google Scholar]
  11. Bradley DC. 2008. Passive margins through Earth history. Earth-Sci. Rev. 91:1–26
    [Google Scholar]
  12. Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34:961–64
    [Google Scholar]
  13. Brown M, Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 103:181–96
    [Google Scholar]
  14. Brown M, Johnson T. 2019a. The 51st Hallimond Lecture—Time's arrow, time's cycle: granulite metamorphism and geodynamics. Mineral. Mag. 83:323–38
    [Google Scholar]
  15. Brown M, Johnson T. 2019b. Global age, temperature and pressure data for secular change in metamorphism. EarthChem Libr 2019. https://doi.org/10.1594/IEDA/111316
    [Crossref] [Google Scholar]
  16. Brown M, Johnson T. 2019c. MSA Presidential Address: metamorphism and the evolution of subduction on Earth. Am. Mineral. 104:1065–82
    [Google Scholar]
  17. Capitanio FA, Nebel O, Cawood PA, Weinberg RF, Clos F 2019. Lithosphere differentiation in the early Earth controls Archean tectonics. Earth Planet. Sci. Lett. 525:115755
    [Google Scholar]
  18. Carlson RW, Garnero E, Harrison TM, Li J, Manga M et al. 2014. How did early Earth become our modern world. ? Annu. Rev. Earth Planet. Sci. 42:151–78
    [Google Scholar]
  19. Cawood PA, Hawkesworth CJ, Pisarevsky SA, Dhuime B, Capitanio FA, Nebel O 2018. Geological archive of the onset of plate tectonics. Philos. Trans. R. Soc. A 376:20170405
    [Google Scholar]
  20. Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF 2009. Accretionary orogens through Earth history. Geol. Soc. Lond. Spec. Publ. 318:1–36
    [Google Scholar]
  21. Cawood PA, Kröner A, Pisarevsky S 2006. Precambrian plate tectonics: criteria and evidence. GSA Today 16:4–11
    [Google Scholar]
  22. Chen K, Rudnick RL, Wang Z, Tang M, Gaschnig RM et al. 2019. How mafic was the Archean upper continental crust? Insights from Cu and Ag in ancient glacial diamictites. Geochim. Cosmochim. Acta. In press. https://doi.org/10.1016/j.gca.2019.08.002
    [Crossref] [Google Scholar]
  23. Chowdhury P, Gerya T, Chakraborty S 2017. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nat. Geosci. 10:698–703
    [Google Scholar]
  24. Condie KC. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104:1–37
    [Google Scholar]
  25. Condie KC. 2005. TTGs and adakites: Are they both slab melts. ? Lithos 80:33–44
    [Google Scholar]
  26. Condie KC. 2018. A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga?. Geosci. Front. 9:51–60
    [Google Scholar]
  27. Condie KC, Aster RC, van Hunen J 2016. A great thermal divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites. Geosci. Front. 7:543–53
    [Google Scholar]
  28. Condie KC, Puetz SJ, Davaille A 2018. Episodic crustal production before 2.7 Ga. Precambrian Res 312:16–22
    [Google Scholar]
  29. Crameri F, Tackley PJ. 2016. Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Prog. Earth Planet. Sci. 3:30
    [Google Scholar]
  30. Davaille A, Smrekar SE, Tomlinson S 2017. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10:349–55
    [Google Scholar]
  31. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–36
    [Google Scholar]
  32. Dhuime B, Hawkesworth CJ, Delavault H, Cawood PA 2018. Rates of generation and destruction of the continental crust: implications for continental growth. Philos. Trans. R. Soc. A 376:20170403
    [Google Scholar]
  33. Dhuime B, Wuestefeld A, Hawkesworth CJ 2015. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8:552–55
    [Google Scholar]
  34. Djomani YH, O'Reilly SY, Griffin WL, Morgan P 2001. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184:605–21
    [Google Scholar]
  35. Dziggel A, Diener JFA, Kolb J, Kokfelt TF 2014. Metamorphic record of accretionary processes during the Neoarchaean: the Nuuk region, southern West Greenland. Precambrian Res 242:22–38
    [Google Scholar]
  36. Ernst RE, Bleeker W, Söderlund U, Kerr AC 2013. Large igneous provinces and supercontinents: toward completing the plate tectonic revolution. Lithos 174:1–14
    [Google Scholar]
  37. Fischer R, Gerya T. 2016a. Early Earth plume-lid tectonics: a high-resolution 3D numerical modelling approach. J. Geodyn. 100:198–214
    [Google Scholar]
  38. Fischer R, Gerya T. 2016b. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling. Gondwana Res 37:53–70
    [Google Scholar]
  39. Flament N, Coltice N, Rey PF 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275:326–36
    [Google Scholar]
  40. Foley BJ. 2018. The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. Philos. Trans. R. Soc. A 376:20170409
    [Google Scholar]
  41. Friend CRL, Nutman AP. 2019. Tectono-stratigraphic terranes in Archaean gneiss complexes as evidence for plate tectonics: the Nuuk region, southern West Greenland. Gondwana Res 72:213–37
    [Google Scholar]
  42. Ganne J, Feng X. 2017. Primary magmas and mantle temperatures through time. Geochem. Geophys. Geosyst. 18:872–88
    [Google Scholar]
  43. Gapais D, Cagnard F, Gueydan F, Barbey P, Ballèvre M 2009. Mountain building and exhumation processes through time: inferences from nature and models. Terra Nova 21:188–94
    [Google Scholar]
  44. Gardiner NJ, Hickman AH, Kirkland CL, Lu YJ, Johnson TE, Zhao JX 2017. Processes of crust formation in the early Earth imaged through Hf isotopes from the East Pilbara Terrane. Precambrian Res 297:56–76
    [Google Scholar]
  45. Gardiner NJ, Johnson TE, Kirkland CL, Szilas K 2019a. Modelling the hafnium-neodymium evolution of early Earth: a study from West Greenland. J. Petrol. 60:117–97
    [Google Scholar]
  46. Gardiner NJ, Kirkland CL, Hollis J, Szilas K, Steenfelt A et al. 2019b. Building Mesoarchaean crust upon Eoarchaean roots: the Akia Terrane, West Greenland. Contrib. Mineral. Petrol. 174:20
    [Google Scholar]
  47. Gardiner NJ, Wacey D, Kirkland CL, Johnson TE, Jeon H 2019c. Zircon U-Pb, Lu-Hf and O isotopes from the 3414 Ma Strelley Pool Formation, East Pilbara Terrane, and the Palaeoarchaean emergence of a cryptic cratonic core. Precambrian Res 321:64–84
    [Google Scholar]
  48. Gerya TV. 2014. Precambrian geodynamics: concepts and models. Gondwana Res 25:442–63
    [Google Scholar]
  49. Gerya TV. 2019. Geodynamics of the early Earth: quest for the missing paradigm. Geology 47:1006–7
    [Google Scholar]
  50. Gerya TV, Stern RJ, Baes M, Sobolev SV, Whattam SA 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527:221–25
    [Google Scholar]
  51. Giles D, Betts PG, Lister GS 2004. 1.8–1.5-Ga links between the north and south Australian cratons and the early-middle Proterozoic configuration of Australia. Tectonophysics 380:27–41
    [Google Scholar]
  52. Greber ND, Dauphas N. 2019. The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust. Geochim. Cosmochim. Acta 255:247–64
    [Google Scholar]
  53. Greber ND, Dauphas N, Bekker A, Ptàcek MP, Bindeman IN, Hofmann A 2017. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357:1271–74
    [Google Scholar]
  54. Griffin WL, O'Reilly SY. 2019. The earliest subcontinental lithospheric mantle. Earth's Oldest Rocks MJ Van Kranendonk, V Bennett, E Hoffmann pp. 81–102 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  55. Griffin WL, O'Reilly SY, Afonso JC, Begg GC 2008. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50:1185–204
    [Google Scholar]
  56. GSWA (Geol. Surv. West. Aust) 2019. GeoChem Extract Geochemistry Database, Department of Mines and Petroleum, East Perth Western Australia: http://geochem.dmp.wa.gov.au/geochem/
    [Google Scholar]
  57. Hall R. 2019. The subduction initiation stage of the Wilson cycle. Geol. Soc. Lond. Spec. Publ. 470:415–37
    [Google Scholar]
  58. Harrison TM. 2009. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37:479–505
    [Google Scholar]
  59. Hawkesworth CJ, Brown M. 2018. Earth dynamics and the development of plate tectonics. Philos. Trans. R. Soc. A 376:20180228
    [Google Scholar]
  60. Hawkesworth CJ, Cawood PA, Dhuime B 2016. Tectonics and crustal evolution. GSA Today 26:4–11
    [Google Scholar]
  61. Hawkesworth CJ, Cawood PA, Dhuime B 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10:165–173
    [Google Scholar]
  62. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp AI 2017. Earth's continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45:169–98
    [Google Scholar]
  63. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM et al. 2007. Temperatures in ambient mantle and plumes: constraints from basalts, picrites and komatiites. Geochem. Geophys. Geosyst. 8:Q02006
    [Google Scholar]
  64. Herzberg C, Condie K, Korenaga J 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292:79–88
    [Google Scholar]
  65. Hickman AH. 2004. Two contrasting granite–greenstone terranes in the Pilbara Craton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma. Precambrian Res 131:153–72
    [Google Scholar]
  66. Hoffmann JE, Münker C, Polat A, König S, Mezger K, Rosing MT 2010. Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochim. Cosmochim. Acta 74:7236–60
    [Google Scholar]
  67. Hoffmann JE, Münker C, Polat A, Rosing MT, Schulz T 2011. The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochim. Cosmochim. Acta 75:6610–28
    [Google Scholar]
  68. Hoffmann JE, Nagel TJ, Münker C, Næraa T, Rosing MT 2014. Constraining the process of Eoarchean TTG formation in the Itsaq Gneiss Complex, southern West Greenland. Earth Planet. Sci. Lett. 388:374–86
    [Google Scholar]
  69. Hoffmann JE, Zhang C, Moyen J-F, Nagel TJ 2019. The formation of tonalites-trondhjemite-granodiorites in early continental crust. Earth's Oldest Rocks MJ Van Kranendonk, V Bennett, E Hoffmann pp. 133–68 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  70. Hoink T, Lenardic A, Jellinek AM 2013. Earth's thermal evolution with multiple convection modes: a Monte-Carlo approach. Phys. Earth Planet. Int. 221:22–26
    [Google Scholar]
  71. Holder RM, Viete DR, Brown M, Johnson TE 2019. Metamorphism and the evolution of plate tectonics. Nature 572:378–81
    [Google Scholar]
  72. Jenner FE, Bennett VC, Nutman AP, Friend CRL, Norman M, Yaxley G 2009. Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt. Chem. Geol. 261:83–98
    [Google Scholar]
  73. Johnson TE, Brown M, Gardiner NJ, Kirkland CL, Smithies RH 2017. Earth's first stable continents did not form by subduction. Nature 543:239–42
    [Google Scholar]
  74. Johnson TE, Brown M, Goodenough KM, Clark C, Kinny PD, White RW 2016. Subduction or sagduction? Ambiguity in constraining the origin of ultramafic-mafic bodies in the Archean crust of NW Scotland. Precambrian Res 283:89–105
    [Google Scholar]
  75. Johnson TE, Brown M, Kaus B, VanTongeren JA 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7:47–52
    [Google Scholar]
  76. Johnson TE, Gardiner NJ, Miljković K, Spencer CJ, Kirkland CL et al. 2018. An impact melt origin for Earth's oldest known evolved rocks. Nat. Geosci. 11:795–99
    [Google Scholar]
  77. Johnson TE, Kirkland CL, Gardiner NJ, Brown M, Smithies RH, Santosh M 2019. Secular change in TTG compositions: implications for the evolution of Archaean geodynamics. Earth Planet. Sci. Lett. 505:65–75
    [Google Scholar]
  78. Kamber BS, Tomlinson EL. 2019. Petrological, mineralogical and geochemical peculiarities of Archaean cratons. Chem. Geol. 511:123–51
    [Google Scholar]
  79. Kamo SL, Davis DW. 1994. Reassessment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U-Pb dating. Tectonics 13:167–92
    [Google Scholar]
  80. Karlstrom KE, Åhäll K-I, Harlan SS, Williams ML, McLelland J, Geissman JW 2001. Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Res 111:5–30
    [Google Scholar]
  81. Keller B, Schoene B. 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 481:290–304
    [Google Scholar]
  82. Kemp AIS, Whitehouse MJ, Vervoort JD 2019. Deciphering the zircon Hf isotope systematics of Eoarchean gneisses from Greenland: implications for ancient crust-mantle differentiation and Pb isotope controversies. Geochim. Cosmochim. Acta 250:76–97
    [Google Scholar]
  83. Kisters AFM, Belcher RW, Poujol M, Dziggel A 2010. Continental growth and convergence-related arc plutonism in the Mesoarchaean: evidence from the Barberton granitoid-greenstone terrain, South Africa. Precambrian Res 178:15–26
    [Google Scholar]
  84. Koeberl C. 2006. Impact processes on the early Earth. Elements 2:211–16
    [Google Scholar]
  85. Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41:117–51
    [Google Scholar]
  86. Korenaga J. 2017. Pitfalls in modeling mantle convection with internal heat production. J. Geophys. Res. Solid Earth 122:4064–85
    [Google Scholar]
  87. Korenaga J. 2018. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376:20170408
    [Google Scholar]
  88. Kreemer C, Blewitt G, Klein EC 2014. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 15:3849–89
    [Google Scholar]
  89. Kusky TM, Windley BF, Polat A 2018. Geological evidence for the operation of plate tectonics throughout the Archean: records from Archean paleo-plate boundaries. J. Earth Sci. 29:1291–303
    [Google Scholar]
  90. Labrosse S, Jaupart C. 2007. Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260:465–81
    [Google Scholar]
  91. Large RR, Mukherjee I, Zhukova I, Corkrey R, Stepanov A, Danyushevsky LV 2018. Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system. Earth Planet. Sci. Lett. 487:44–53
    [Google Scholar]
  92. Lee C-TA. 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res. Solid Earth 108:B92441
    [Google Scholar]
  93. Lee C-TA, Luffi P, Chin EJ 2011. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39:59–90
    [Google Scholar]
  94. Lenardic A. 2017. A supercontinental boost. Nat. Geosci. 10:4–5
    [Google Scholar]
  95. Lenardic A. 2018. The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. R. Soc. A 376:20170416
    [Google Scholar]
  96. Lenardic A, Weller M, Höink T, Seales J 2019. Toward a boot strap hypothesis of plate tectonics: feedbacks between plates, the asthenosphere, and the wavelength of mantle convection. Phys. Earth Planet. Int. 296:106299
    [Google Scholar]
  97. Li ZX, Evans DAD, Murphy JB 2016. Supercontinent Cycles Through Earth History Geol. Soc. Lond. Spec Publ. 424 Bath, UK: Geol. Soc.
    [Google Scholar]
  98. Liou P, Guo J. 2019. Generation of Archaean TTG gneisses through amphibole‐dominated fractionation. J. Geophys. Res. Solid Earth 124:3605–19
    [Google Scholar]
  99. Mallard C, Coltice N, Seton M, Müller D, Tackley PJ 2016. Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature 535:140–43
    [Google Scholar]
  100. Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K et al. 2014. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511:578–82
    [Google Scholar]
  101. Martin H, Moyen JF, Guitreau M, Blichert-Toft J, Le Pennec JL 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198:1–13
    [Google Scholar]
  102. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24
    [Google Scholar]
  103. McCoy-West AJ, Chowdhury P, Burton KW, Sossi P, Nowell GM et al. 2019. Extensive crustal extraction in Earth's early history inferred from molybdenum isotopes. Nat. Geosci. 12:946–51
    [Google Scholar]
  104. McKenzie D, Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29:625–79
    [Google Scholar]
  105. Meert JG, Santosh M. 2017. The Columbia supercontinent revisited. Gondwana Res 50:67–83
    [Google Scholar]
  106. Mitchell RN, Bleeker W, van Breemen O, Lecheminant TN, Peng P et al. 2014. Plate tectonics before 2.0 Ga: evidence from paleomagnetism of cratons within supercontinent Nuna. Am. J. Sci. 314:878–94
    [Google Scholar]
  107. Moyen J-F. 2011. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36
    [Google Scholar]
  108. Moyen J-F, Laurent O. 2018. Archaean tectonic systems: a view from igneous rocks. Lithos 302–303:99–125
    [Google Scholar]
  109. Moyen J-F, Stevens G. 2006. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. Archean Geodynamics and Environments K Benn, J-C Mareschal, KC Condie 149–75 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  110. Moyen J-F, Stevens G, Kisters AFM, Belcher RW, Lemirre B 2019. TTG plutons of the barberton granitoid-greenstone terrain, South Africa. Earth's Oldest Rocks MJ Van Kranendonk, VC Bennett, JE Hoffmann 615–54 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  111. Moyen J-F, van Hunen J 2012. Short-term episodicity of Archaean plate tectonics. Geology 40:451–54
    [Google Scholar]
  112. Næraa T, Scherstén A, Kemp AIS, Rosing TM, Hoffmann JEet al. 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Ga ago. Nature 485:627–30
    [Google Scholar]
  113. Nance RD, Murphy JB, Santosh M 2014. The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29
    [Google Scholar]
  114. Nebel O, Capitanio FA, Moyen J-F, Weinberg RF, Clos F et al. 2018. When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Philos. Trans. R. Soc. A 376:20180103
    [Google Scholar]
  115. Nebel-Jacobsen Y, Nebel O, Wille M, Cawood PA 2018. A non-zircon Hf isotope record in Archean black shales from the Pilbara Craton confirms changing crustal dynamics ca. 3 Ga ago. Sci. Rep. 8:922
    [Google Scholar]
  116. Nutman AP, Bennett VC. 2019. The 3.9–3.6 Ga Itsaq gneiss complex of Greenland: quasi-uniformitarian geodynamics towards the end of Earth's first billion years. Earth's Oldest Rocks MJ Van Kranendonk, VC Bennett, JE Hoffmann 375–400 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  117. Nutman AP, Bennett VC, Friend CRL, Hidaka H, Yi K et al. 2013. The Itsaq gneiss complex of Greenland: episodic 3900 to 3660 Ma juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian orogeny. Am. J. Sci. 313:877–911
    [Google Scholar]
  118. O'Neill C, Lenardic A, Weller M, Moresi L, Quenette S, Zhang S 2016. A window for plate tectonics in terrestrial planet evolution. ? Phys. Earth Planet. Int. 255:80–92
    [Google Scholar]
  119. O'Neill C, Marchi S, Bottke W, Fu R 2019. The role of impacts on Archaean tectonics. Geology 48:174–78
    [Google Scholar]
  120. O'Neill C, Marchi S, Zhang S, Bottke W 2017. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10:793–97
    [Google Scholar]
  121. O'Neill C, Turner S, Rushmer T 2018. The inception of plate tectonics: a record of failure. Philos. Trans. R. Soc. A 376:20170414
    [Google Scholar]
  122. Oreskes N. 2002. Plate Tectonics: An Insider's History of the Modern Theory of the Earth Boulder, CO: Westview
    [Google Scholar]
  123. Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48
    [Google Scholar]
  124. Pearce JA. 2014. Geochemical fingerprinting of the Earth's oldest rocks. Geology 42:175–76
    [Google Scholar]
  125. Pearce JA, Reagan MK. 2019. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics. Geosphere 15:1008–37
    [Google Scholar]
  126. Pearson DG, Wittig N. 2008. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. Lond. 165:895–914
    [Google Scholar]
  127. Pearson DG, Wittig N. 2014. The formation and evolution of cratonic mantle lithosphere—evidence from mantle xenoliths. Treatise on Geochemistry KK Turekian, HD Holland 255–92 San Diego, CA: Elsevier. , 2nd ed..
    [Google Scholar]
  128. Pehrsson SJ, Berman RG, Eglington B, Rainbird R 2013. Two Neoarchean supercontinents revisited: the case for a Rae family of cratons. Precambrian Res 232:27–43
    [Google Scholar]
  129. Pehrsson SJ, Eglington B, Evans DAD, Huston D, Reddy SM 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geol. Soc. Lond. Spec. Publ. 424:83–94
    [Google Scholar]
  130. Perchuk AL, Zakharov VS, Gerya TV, Brown M 2019. Hotter mantle but colder subduction in the Precambrian: What are the implications?. Precambrian Res 330:20–34
    [Google Scholar]
  131. Percival JA, Skulski T, Sanborn-Barrie M, Stott GM, Leclair AD et al. 2012. Geology and tectonic evolution of the Superior Province, Canada. Tectonic Styles in Canada: The Lithoprobe Perspective JA Percival, FA Cook, RM Clowes 321–78 St. Johns, Newfoundland, Ca: Geol. Assoc. Can.
    [Google Scholar]
  132. Polat A, Hofmann AW. 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res 126:197–218
    [Google Scholar]
  133. Polat A, Hofmann AW, Rosing MT 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 184:231–54
    [Google Scholar]
  134. Polat A, Wang L, Appel PWU 2015. A review of structural patterns and melting processes in the Archean craton of West Greenland: evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics 662:67–94
    [Google Scholar]
  135. Putirka K. 2016. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. Am. Mineral. 101:819–40
    [Google Scholar]
  136. Ravindran A, Mezger K, Balakrishnan S, Kooijman E, Schmitt M, Berndt J 2020. Initial 87Sr/86Sr as a sensitive tracer of Archaean crust-mantle evolution: constraints from igneous and sedimentary rocks in the western Dharwar Craton, India. Precambrian Res 337:105523
    [Google Scholar]
  137. Reimink JR, Chacko T, Stern RA, Heaman LM 2016. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta gneiss complex. Precambrian Res 281:453–72
    [Google Scholar]
  138. Rey PF, Coltice N. 2008. Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36:635–38
    [Google Scholar]
  139. Rey PF, Coltice N, Flament N 2014. Spreading continents kick-started plate tectonics. Nature 513:405–8
    [Google Scholar]
  140. Roberts NMW, Slagstad T. 2015. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia. Int. Geol. Rev. 57:1582–606
    [Google Scholar]
  141. Roberts NMW, Spencer CJ. 2015. The zircon archive of continent formation through time. Geol. Soc. Lond. Spec. Pub. 389:197–225
    [Google Scholar]
  142. Roman A, Arndt N. 2019. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis. Geochim. Cosmochim. Acta. In press. https://doi.org/10.1016/j.gca.2019.07.009
    [Crossref] [Google Scholar]
  143. Rozel AB, Golabek GJ, Jain C, Tackley PJ, Gerya T 2017. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545:332–35
    [Google Scholar]
  144. Rudnick RL. 1995. Making continental crust. Nature 378:571–78
    [Google Scholar]
  145. Rudnick RL, Gao S. 2014. Composition of the continental crust. Treatise on Geochemistry KK Turekian, HD Holland 1–51 San Diego, CA: Elsevier. , 2nd ed..
    [Google Scholar]
  146. Schneider KP, Hoffmann JE, Münker C, Patyniak M, Sprung P et al. 2019. Petrogenetic evolution of metabasalts and metakomatiites of the lower Onverwacht Group, Barberton Greenstone Belt (South Africa). Chem. Geol. 511:152–77
    [Google Scholar]
  147. Shirey SB, Richardson SH. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–36
    [Google Scholar]
  148. Silver PG, Behn MD. 2008. Intermittent plate tectonics. ? Science 319:85–88
    [Google Scholar]
  149. Sizova E, Gerya T, Brown M 2014. Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res 25:522–45
    [Google Scholar]
  150. Sizova E, Gerya T, Brown M, Perchuk LL 2010. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116:209–29
    [Google Scholar]
  151. Sizova E, Gerya T, Stüwe K, Brown M 2015. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res 27:198–224
    [Google Scholar]
  152. Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth. Planet. Sci. Lett. 182:115–25
    [Google Scholar]
  153. Smithies RH, Champion DC, Cassidy KF 2003. Formation of Earth's early Archaean continental crust. Precambrian Res 127:89–101
    [Google Scholar]
  154. Smithies RH, Champion DC, Sun SS 2004. The case for Archaean boninites. Contrib. Mineral. Petrol. 147:705–21
    [Google Scholar]
  155. Smithies RH, Champion DC, Van Kranendonk MJ 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett. 281:298–306
    [Google Scholar]
  156. Smithies RH, Champion DC, Van Kranendonk MJ, Howard HM, Hickman AH 2005a. Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet. Sci. Lett. 231:221–37
    [Google Scholar]
  157. Smithies RH, Ivanic TJ, Lowrey JR, Morris PA, Barnes SJ et al. 2018. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett. 487:106–16
    [Google Scholar]
  158. Smithies RH, Lu Y, Johnson TE, Kirkland CL, Cassidy KF et al. 2019. No evidence for deep subduction in the generation of Archean continental crust—the link between sanukitoids and ‘high-pressure’ felsic rocks. Nat. Commun. 10:5559
    [Google Scholar]
  159. Smithies RH, Van Kranendonk MJ, Champion DC 2005b. It started with a plume—early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett. 238:284–97
    [Google Scholar]
  160. Smithies RH, Van Kranendonk MJ, Champion DC 2007. The Mesoarchean emergence of modern-style subduction. Gondwana Res 11:50–68
    [Google Scholar]
  161. Smrekar SE, Davaille A, Sotin C 2018. Venus interior structure and dynamics. Space Sci. Rev. 214:88
    [Google Scholar]
  162. Sobolev SV, Brown M. 2019. Major surface erosion events were a key control on the emergence and evolution of plate tectonics on Earth. Nature 570:52–57
    [Google Scholar]
  163. Stern RJ. 2018. The evolution of plate tectonics. Philos. Trans. R. Soc. A 376:20170406
    [Google Scholar]
  164. Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42:313–45
    [Google Scholar]
  165. Tang M, Chen K, Rudnick RL 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351:372–75
    [Google Scholar]
  166. Tang M, Lee C-TA, Rudnick RL, Condie KC 2019. Rapid mantle convection drove massive crustal thickening in the late Archean. Geochim. Cosmochim. Acta. In press. https://doi.org/10.1016/j.gca.2019.03.039
    [Crossref] [Google Scholar]
  167. Taylor RJM, Johnson TE, Clark C, Harrison RJ 2020. Persistence of melt-bearing Archean lower crust for >200 m.y.—an example from the Lewisian Complex, northwest Scotland. Geology 48:221–25
    [Google Scholar]
  168. Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution Oxford, UK: Blackwell
    [Google Scholar]
  169. Turner S, Rushmer T, Reagan M, Moyen J-F 2014. Heading down early on? Start of subduction on Earth. Geology 42:139–42
    [Google Scholar]
  170. van Hunen J, Moyen J-F 2012. Archean subduction: fact or fiction. ? Annu. Rev. Earth Planet. Sci. 40:195–219
    [Google Scholar]
  171. van Hunen J, van den Berg AP 2008. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–35
    [Google Scholar]
  172. Van Kranendonk MJ, Smithies RH, Griffin WL, Huston DL, Hickman AH et al. 2015. Making it thick: a volcanic plateau origin of Paleoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. Geol. Soc. Lond. Spec. Publ. 389:83–111
    [Google Scholar]
  173. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC 2007. Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38
    [Google Scholar]
  174. Van Kranendonk MJ, Smithies RH, Hickman AH, Wingate MTD, Bodorkos S 2010. Evidence for Mesoarchean (∼3.2 Ga) rifting of the Pilbara Craton: the missing link in an early Precambrian Wilson cycle. Precambrian Res 177:145–61
    [Google Scholar]
  175. Vanderhaeghe O, Guergouz C, Fabre C, Duchêne S, Baratoux D 2019. Secular cooling and crystallization of partially molten Archaean continental crust over 1 Ga. C. R. Geosci. 351:562–73
    [Google Scholar]
  176. Wang H, van Hunen J, Pearson DG 2018. Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model. Tectonophysics 746:562–571
    [Google Scholar]
  177. Webb A, Müller T, Zuo J, Haproff P, Ramírez-Salazar A 2020. A non-plate tectonic model for the Eoarchean Isua supracrustal belt. Lithosphere 12:166–79
    [Google Scholar]
  178. Weller OM, Copley A, Miller WGR, Palin RM, Dyck B 2019. The relationship between mantle potential temperature and oceanic lithosphere buoyancy. Earth Planet. Sci. Lett. 518:86–99
    [Google Scholar]
  179. Weller OM, St-Onge MR. 2017. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nat. Geosci. 10:305–11
    [Google Scholar]
  180. Windley BF, Garde AA. 2009. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth-Sci. Rev. 93:1–30
    [Google Scholar]
  181. Windley BF, Smith JV. 1976. Archean high-grade complexes and modern continental margins. Nature 260:671–75
    [Google Scholar]
  182. Young GM, Von Brunn V, Gold DJC, Minter WEL 1998. Earth's oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (∼2.9 Ga) of South Africa. J. Geol. 106:523–38
    [Google Scholar]
  183. Zeh A, Gerdes A, Barton JM 2009. Archean accretion and crustal evolution of the Kalahari Craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. J. Petrol. 50:933–66
    [Google Scholar]
  184. Zibra I, Korhonen FJ, Peternell M, Weinberg RF, Romano SS et al. 2017. On thrusting, regional unconformities and exhumation of high-grade greenstones in Neoarchean orogens. The case of the Waroonga Shear Zone, Yilgarn Craton. Tectonophysics 712–713:362–95
    [Google Scholar]
/content/journals/10.1146/annurev-earth-081619-052705
Loading
/content/journals/10.1146/annurev-earth-081619-052705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error