1932

Abstract

Seismology provides important constraints on the structure and dynamics of the deep mantle. Computational and methodological advances in the past two decades improved tomographic imaging of the mantle and revealed the fine-scale structure of plumes ascending from the core-mantle boundary region and slabs of oceanic lithosphere sinking into the lower mantle. We discuss the modeling aspects of global tomography including theoretical approximations, data selection, and model fidelity and resolution. Using spectral, principal component, and cluster analyses, we highlight the robust patterns of seismic heterogeneity, which inform us of flow in the mantle, the history of plate motions, and potential compositionally distinct reservoirs. In closing, we emphasize that data mining of vast collections of seismic waveforms and new data from distributed acoustic sensing, autonomous hydrophones, ocean-bottom seismometers, and correlation-based techniques will boost the development of the next generation of global models of density, seismic velocity, and attenuation.

  • ▪   Seismic tomography reveals the 100-km to 1,000-km scale variation of seismic velocity heterogeneity in the mantle.
  • ▪   Tomographic images are the most important geophysical constraints on mantle circulation and evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082119-065909
2020-05-30
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-082119-065909.html?itemId=/content/journals/10.1146/annurev-earth-082119-065909&mimeType=html&fmt=ahah

Literature Cited

  1. Akbarashrafi F, Al-Attar D, Deuss A, Trampert J, Valentine AP 2018. Exact free‐oscillation spectra, splitting functions and the resolvability of Earth's density structure. Geophys. J. Int. 213:158–76
    [Google Scholar]
  2. Auer L, Boschi L, Becker TW, Nissen-Meyer T, Giardini D 2014. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. Solid Earth 119:3006–34
    [Google Scholar]
  3. Ballmer MD, Schmerr NC, Nakagawa T, Ritsema J 2015. Compositional mantle layering revealed by slab stagnation at ∼1000-km depth. Sci. Adv. 1:11e1500815
    [Google Scholar]
  4. Ballmer MD, Schumacher L, Lekić V, Thomas C, Ito G 2016. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochem. Geophys. Geosyst. 17:5056–77
    [Google Scholar]
  5. Bergen KJ, Johnson PA, de Hoop MV, Beroza GC 2019. Machine learning for data‐driven discovery in solid Earth geoscience. Science 363:6433eaau0323
    [Google Scholar]
  6. Bijwaard H, Spakman W, Engdahl ER 1998. Closing the gap between regional and global tomography. J. Geophys. Res. 103:30005–78
    [Google Scholar]
  7. Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J et al. 2016. Global adjoint tomography: first-generation model. Geophys. J. Int. 207:31739–66
    [Google Scholar]
  8. Burdick S, Lekić V. 2017. Velocity variations and uncertainty from transdimensional P-wave tomography of North America. Geophys. J. Int. 209:1337–51
    [Google Scholar]
  9. Burke K, Torsvik TH. 2004. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227:3–4531–38
    [Google Scholar]
  10. Chang S-J, Ferreira AMG. 2017. Improving global radial anisotropy tomography: the importance of simultaneously inverting for crustal and mantle structure. Bull. Seismol. Soc. Am. 107:2624–38
    [Google Scholar]
  11. Chang S-J, Ferreira AMG, Ritsema J, van Heijst HJ, Woodhouse JH 2015. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. Solid Earth 120:4278–300
    [Google Scholar]
  12. Civiero C, Hammond JOS, Goes S, Fishwick S, Ahmed A et al. 2015. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography. Geochem. Geophys. Geosyst. 16:2949–68
    [Google Scholar]
  13. Cottaar S, Lekić V. 2016. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207:21122–36
    [Google Scholar]
  14. Dahlen FA, Hung S-H, Nolet G 2000. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141:157–74
    [Google Scholar]
  15. Davaille A. 1999. Simultaneous generation of hotspots and superswells by convection in a heterogenous planetary mantle. Nature 402:756–60
    [Google Scholar]
  16. Davies DR, Goes S, Davies JH, Schuberth BSA, Bunge HP, Ritsema J 2012. Reconciling dynamic and seismic models of Earth's lower mantle: the dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353–354:253–69
    [Google Scholar]
  17. de Hoop M, van der Hilst R 2005. On sensitivity kernels for ‘wave equation’ transmission tomography. Geophys. J. Int. 160:621–33
    [Google Scholar]
  18. de Wit RWL, Käufl PJ, Valentine AP, Trampert J 2014. Bayesian inversion of free oscillations for Earth's radial (an)elastic structure. Phys. Earth Planet. Inter. 237:1–17
    [Google Scholar]
  19. Debayle E, Ricard Y. 2012. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. J. Geophys. Res. 117:B10B10308
    [Google Scholar]
  20. Domeier MP, Doubrovine V, Torsvik TH, Spakman W, Bull AL 2016. Global correlation of lower mantle structure and past subduction. Geophys. Res. Lett. 43:4945–53
    [Google Scholar]
  21. Durand S, Debayle E, Ricard Y, Zaroli C, Lambotte S 2017. Confirmation of a change in the global shear velocity pattern at around 1000km depth. Geophys. J. Int. 211:31628–39
    [Google Scholar]
  22. Dziewoński AM, Anderson DL. 1981. Preliminary reference earth model. Phys. Earth Planet. Inter. 25:297–356
    [Google Scholar]
  23. Dziewoński AM, Hager BH, O'Connell RJ 1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res. 82:2239–55
    [Google Scholar]
  24. Dziewoński AM, Lekić V, Romanowicz BA 2010. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299:69–79
    [Google Scholar]
  25. Euler GG, Wysession ME. 2017. Geographic variations in lowermost mantle structure from the ray parameters and decay constants of core‐diffracted waves. J. Geophys. Res. Solid Earth 122:75369–94
    [Google Scholar]
  26. Farnetani CG, Hofmann AW. 2009. Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 282:1–4314–22
    [Google Scholar]
  27. Fei Y, Van Orman J, Li J, Van Westrenen W, Sanloup C et al. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. 109:B2B02305
    [Google Scholar]
  28. Fichtner A, Kennett BLN, Igel H, Bunge H-P 2009. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179:1703–25
    [Google Scholar]
  29. Fichtner A, Trampert J. 2011. Resolution analysis in full waveform inversion. Geophys. J. Int. 187:1604–24
    [Google Scholar]
  30. Fichtner A, van Leeuwen T 2015. Resolution analysis by random probing. J. Geophys. Res. Solid Earth 120:5549–73
    [Google Scholar]
  31. Flament N, Gurnis M, Müller RD 2013. A review of observations and models of dynamic topography. Lithosphere 5:2189–210
    [Google Scholar]
  32. Flanagan MP, Shearer PM. 1998. Global mapping of topography on transition zone velocity discontinuities by stacking of SS precursors. J. Geophys. Res. 103:B22673–92
    [Google Scholar]
  33. French S, Lekić V, Romanowicz B 2013. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342:6155227–30
    [Google Scholar]
  34. French SW, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature 525:95–99
    [Google Scholar]
  35. French SW, Romanowicz BA. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199:31303–27
    [Google Scholar]
  36. Frost DA, Rost S. 2014. The P-wave boundary of the Large-Low Shear Velocity Province beneath the Pacific. Sci. Lett. 403:380–92
    [Google Scholar]
  37. Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118:5920–38
    [Google Scholar]
  38. Fukao Y, Widiyantoro S, Obayashi M 2001. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. 39:3291–323
    [Google Scholar]
  39. Gao C, Lekić V. 2018. Consequences of parametrization choices in surface wave inversion: insights from transdimensional Bayesian methods. Geophys. J. Int. 215:21037–63
    [Google Scholar]
  40. Garnero EJ, McNamara AK, Shim S-H 2016. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle. Nat. Geosci. 9:481–89
    [Google Scholar]
  41. Goes S, Agrusta R, van Hunen J, Garel F 2017. Subduction-transition zone interaction: a review. Geosphere 13:3644–64
    [Google Scholar]
  42. Grand SP, van der Hilst RD, Widiyantoro S 1997. High resolution global tomography: a snapshot of convection in the Earth. GSA Today 7:1–7
    [Google Scholar]
  43. Gudmundsson O. 1996. On the effect of diffraction on traveltime measurements. Geophys. J. Int. 124:1304–14
    [Google Scholar]
  44. He Y, Wen L. 2009. Structural features and shear-velocity structure of the “Pacific Anomaly. .” J. Geophys. Res. 114:B2B02309
    [Google Scholar]
  45. He Y, Wen L, Zheng T 2014. Seismic evidence for an 850 km thick low-velocity structure in the Earth's lowermost mantle beneath Kamchatka. Geophys. Res. Lett. 41:7073–79
    [Google Scholar]
  46. Hernlund JW, McNamara AK. 2015. The core-mantle boundary region. Treatise on Geophysics G Schubert 461–519 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  47. Ho T, Priestley K, Debayle E 2016. A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements. Geophys. J. Int. 207:1542–61
    [Google Scholar]
  48. Hosseini K, Matthews KJ, Sigloch K, Shephard GE, Domeier M, Tsekhmistrenko M 2018. SubMachine: web-based tools for exploring seismic tomography and other models of Earth's deep interior. Geochem. Geophys. Geosyst. 19:1464–83
    [Google Scholar]
  49. Houser C, Masters G, Shearer P, Laske G 2008. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174:195–212
    [Google Scholar]
  50. Hwang YK, Ritsema J, van Keken PE, Goes S, Styles E 2011. Wavefront healing renders deep plumes seismically invisible. Geophys. J. Int. 187:273–77
    [Google Scholar]
  51. IRIS DMC 2014. Global stacks of millions of seismograms Data Services Products: Globalstacks. https://doi.org/10.17611/DP/GS.1
    [Crossref] [Google Scholar]
  52. Irving JC, Cottaar S, Lekić V 2018. Seismically determined elastic parameters for Earth's outer core. Sci. Adv. 4:eaar2538
    [Google Scholar]
  53. Ishii M, Tromp J. 1999. Normal‐mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science 285:54311231–36
    [Google Scholar]
  54. Jellinek AM, Manga M. 2002. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418:760–63
    [Google Scholar]
  55. Ji Y, Nataf H. 1998. Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet. Sci. Lett. 159:99–115
    [Google Scholar]
  56. Kaneshima S. 2018. Array analyses of SmKS waves and the stratification of Earth's outermost core. Phys. Earth Planet. Inter. 276:234–46
    [Google Scholar]
  57. Kaneshima S. 2019. Seismic scatterers in the lower mantle near subduction zones. Geophys. J. Int. 218:31873–91
    [Google Scholar]
  58. Kästle ED, Weber M, Krüger F 2017. Complex deep structure of the African low‐velocity zone. Bull. Seismol. Soc. Am. 107:41688–703
    [Google Scholar]
  59. Katsura T, Yamada H, Shinmei T, Kubo A, Ono S et al. 2003. Post-spinel transition in Mg2SiO4 determined by high PT in situ X-ray diffractometry. Phys. Earth Planet. Inter. 136:11–24
    [Google Scholar]
  60. King SD, Frost DJ, Rubie DC 2015. Why cold slabs stagnate in the transition zone. Geology 43:231–34
    [Google Scholar]
  61. King SD, Ritsema J. 2000. African hotspot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290:1137–40
    [Google Scholar]
  62. Koelemeijer P, Deuss A, Ritsema J 2017. Density structure of Earth's lowermost mantle from Stoneley mode splitting observations. Nat. Commun. 8:15241
    [Google Scholar]
  63. Koelemeijer P, Ritsema J, Deus A, van Heijst HJ 2016. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth's mantle. Geophys. J. Int. 204:21024–39
    [Google Scholar]
  64. Komatitsch D, Tromp J. 2002. Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149:2390–412
    [Google Scholar]
  65. Krischer L, Fichtner A, Boehm C, Igel H 2018. Automated large‐scale full seismic waveform inversion for North America and the North Atlantic. J. Geophys. Res. Solid Earth 123:5902–28
    [Google Scholar]
  66. Kuo C, Romanowicz B. 2002. On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal-mode data. Geophys. J. Int. 150:162–79
    [Google Scholar]
  67. Kustowski B, Ekström G, Dziewoński AM 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: a global model. J. Geophys. Res. 113:B6B06306
    [Google Scholar]
  68. Labrosse S, Hernlund JW, Coltice N 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450:866–69
    [Google Scholar]
  69. Lau HC, Mitrovica JX, Davis JL, Tromp J, Yang HY, Al-Attar D 2017. Tidal tomography constrains Earth's deep-mantle buoyancy. Nature 551:7680321–26
    [Google Scholar]
  70. Lay T. 1994. The fate of descending slabs. Annu. Rev. Earth Planet. Sci. 22:33–61
    [Google Scholar]
  71. Lee C-TA, Luffi P, Höink T, Li J, Dasgupta R, Hernlund J 2010. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463:930–33
    [Google Scholar]
  72. Lekić V, Cottaar S, Dziewoński A, Romanowicz B 2012. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357:68–77
    [Google Scholar]
  73. Lekić V, Romanowicz B. 2011. Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys. J. Int. 185:2799–831
    [Google Scholar]
  74. Leng K, Nissen-Meyer T, van Driel M, Hosseini K, Al-Attar D 2019. AxiSEM3D: broad-band seismic wavefields in 3-D global earth models with undulating discontinuities. Geophys. J. Int. 217:32125–46
    [Google Scholar]
  75. Li C, van der Hilst RD, Engdahl ER, Burdick S 2008. A new global model for P wave speed variations in Earth's mantle. Geochem. Geophys. Geosyst. 9:5Q05018
    [Google Scholar]
  76. Li M, McNamara AK, Garnero EJ 2014. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7:5366–70
    [Google Scholar]
  77. Li XD, Romanowicz B. 1995. Comparison of global waveform inversions with and without considering cross branch coupling. Geophys. J. Int. 121:695–709
    [Google Scholar]
  78. Li XD, Romanowicz B. 1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101:B1022245–72
    [Google Scholar]
  79. Lin JF, Speziale S, Mao Z, Marquardt H 2013. Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev. Geophys. 51:2244–75
    [Google Scholar]
  80. Liu C, Grand SP. 2018. Seismic attenuation in the African LLSVP estimated from PcS phases. Earth Planet. Sci Lett. 489:8–16
    [Google Scholar]
  81. Lognonné P, Banerdt WB, Giardini D, Pike WT, Christensen U et al. 2019. SEIS: Insight's seismic experiment for internal structure of Mars. Space Sci. Rev. 215:112
    [Google Scholar]
  82. Lu C, Grand SP. 2016. The effect of subducting slabs in global shear wave tomography. Geophys. J. Int. 205:21074–85
    [Google Scholar]
  83. Maguire R, Ritsema J, Bonnin M, van Keken PE, Goes S 2018. Evaluating the resolution of deep mantle plumes in teleseismic traveltime tomography. J. Geophys. Res. Solid Earth 123:384–400
    [Google Scholar]
  84. Maguire R, Ritsema J, van Keken PE, Goes S, Fichtner A 2016. P- and S-wave delays caused by thermal plumes. Geophys. J. Int. 206:1169–78
    [Google Scholar]
  85. Mancinelli N, Shearer P, Liu Q 2016. Constraints on the heterogeneity spectrum of Earth's upper mantle. J. Geophys. Res. Solid Earth 121:53703–21
    [Google Scholar]
  86. Marquering H, Nolet G, Dahlen FA 1998. Three-dimensional waveform sensitivity kernels. Geophys. J. Int. 132:521–34
    [Google Scholar]
  87. Marquering H, Snieder R. 1995. Surface wave mode coupling for efficient forward modeling and inversion of body wave phases. Geophys. J. Int. 120:186–208
    [Google Scholar]
  88. Marra G, Clivati C, Luckett R, Tampellini A, Kronjäger J et al. 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361:6401486–90
    [Google Scholar]
  89. McNamara AK. 2019. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics 760:199–220
    [Google Scholar]
  90. McNamara AK, Zhong SJ. 2005. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136–39
    [Google Scholar]
  91. Meschede M, Romanowicz B. 2015. Lateral heterogeneity scales in regional and global upper mantle shear velocity models. Geophys. J. Int. 200:21076–93
    [Google Scholar]
  92. Montelli R, Nolet G, Dahlen FA, Masters G 2006. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7:Q11007
    [Google Scholar]
  93. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–43
    [Google Scholar]
  94. Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J 2012. Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J. Geophys. Res. 117:B6B06304
    [Google Scholar]
  95. Mosegaard K, Tarantola A. 1995. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100:B712431–47
    [Google Scholar]
  96. Moulik P, Ekström G. 2014. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms. Geophys. J. Int. 199:31713–38
    [Google Scholar]
  97. Moulik P, Ekström G. 2016. The relationships between large-scale variations in shear velocity, density, and compressional velocity in the Earth's mantle. J. Geophys. Res. Solid Earth 121:2737–71
    [Google Scholar]
  98. Nakagawa T, Tackley PJ. 2004. Thermo-chemical structure in the mantle arising from a three-component convective system and implications for geochemistry. Phys. Earth Planet. Int. 146:125–38
    [Google Scholar]
  99. Ni S, Ding X, Helmberger DV, Gurnis M 1999. Low-velocity structure beneath Africa from forward modeling. Earth Planet. Sci. Lett. 170:4497–507
    [Google Scholar]
  100. Ni S, Tan E, Gurnis M, Helmberger D 2002. Sharp sides to the African superplume. Science 296:55741850–52
    [Google Scholar]
  101. Niu F, Levander A, Ham S, Obayashi M 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi‐net receiver functions. Earth Planet. Sci. Lett. 239:9–17
    [Google Scholar]
  102. Nolet G, Hello Y, van der Lee S, Bonnieux S, Ruiz MC et al. 2019. Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Sci. Rep. 9:11326
    [Google Scholar]
  103. Obayashi M, Yoshimitsu J, Nolet G, Fukao Y, Shiobara H et al. 2013. Finite frequency whole mantle P wave tomography: improvement of subducted slab images. Geophys. Res. Lett. 40:5652–57
    [Google Scholar]
  104. Panning M, Capdeville Y, Romanowicz B 2009. Seismic waveform modelling in a 3‐D Earth using the Born approximation: potential shortcomings and a remedy. Geophys. J. Int. 177:161–78
    [Google Scholar]
  105. Panning M, Lekić V, Romanowicz B 2010. Importance of crustal corrections in the development of a new global model of radial anisotropy. J. Geophys. Res. 115:B12B12325
    [Google Scholar]
  106. Phm T-S, Tkalčić H, Sambridge M, Kennett BLN 2018. Earth's correlation wavefield: late coda correlation. Geophys. Res. Lett. 45:3035–42
    [Google Scholar]
  107. Poli P, Campillo M, Pedersen H 2012. Body-wave imaging of Earth's mantle discontinuities from ambient seismic noise. Science 338:61101063–65
    [Google Scholar]
  108. Rawlinson N, Spakman W. 2016. On the use of sensitivity tests in seismic tomography. Geophys. J. Int. 205:21221–43
    [Google Scholar]
  109. Resovsky JS, Ritzwoller MH. 1999. Regularization uncertainty in density models estimated from normal mode data. Geophys. Res. Lett. 26:2319–22
    [Google Scholar]
  110. Rickers F, Fichtner A, Trampert J 2012. Imaging mantle plumes with instantaneous phase measurements of diffracted waves. Geophys. J. Int. 190:650–64
    [Google Scholar]
  111. Rickers F, Fichtner A, Trampert J 2013. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367:39–51
    [Google Scholar]
  112. Ritsema J, Ni S, Helmberger DV, Crotwell HP 1998. Anomalous shear velocity reductions and gradients in the lower mantle beneath Africa. Geophys. Res. Lett. 25:4245–48
    [Google Scholar]
  113. Ritsema J, van Heijst HJ, Deuss A, Woodhouse JH 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184:1223–36
    [Google Scholar]
  114. Ritsema J, van Heijst HJ, Woodhouse JH 1999. Complex shear velocity structure imaged beneath Africa and Iceland. Science 286:1925–28
    [Google Scholar]
  115. Romanowicz B. 2003. Global mantle tomography: progress status in the last 10 years. Annu. Rev. Earth Planet. Sci. 31:303–28
    [Google Scholar]
  116. Romanowicz B, Gung Y. 2002. Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux. Science 296:5567513–16
    [Google Scholar]
  117. Romanowicz B, Panning M, Gung Y, Capdeville Y 2008. On the computation of long period seismograms in a 3D earth using normal mode based approximations. Geophys. J. Int. 175:2520–36
    [Google Scholar]
  118. Romanowicz B, Wenk H-R. 2017. Anisotropy in the deep Earth. Phys. Earth Planet. Int. 269:58–90
    [Google Scholar]
  119. Rudolph ML, Lekić V, Lithgow-Bertelloni C 2015. Viscosity jump in Earth's mid-mantle. Science 350:62661349–52
    [Google Scholar]
  120. Sato H, Fehler MC, Maeda T 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth Berlin: Springer-Verlag
    [Google Scholar]
  121. Schaeffer AJ, Lebedev S. 2013. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194:417–49
    [Google Scholar]
  122. Shapiro NM, Ritzwoller MH. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151:188–105
    [Google Scholar]
  123. Shephard GE, Matthews KJ, Hosseini K, Domeier M 2017. On the consistency of seismically imaged lower mantle slabs. Nat. Sci. Rep. 7:110976
    [Google Scholar]
  124. Shim SH. 2008. The postperovskite transition. Annu. Rev. Earth Planet. Sci. 36:569–99
    [Google Scholar]
  125. Sigloch K, Mihalynuk MG. 2013. Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496:50–56
    [Google Scholar]
  126. Simmons NA, Forte AM, Boschi L, Grand SP 2010. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 115:B12B12310
    [Google Scholar]
  127. Snieder R. 1986. 3-D linearized scattering of surface waves and a formalism for surface wave holography. Geophys. J. Int. 84:581–605
    [Google Scholar]
  128. Spetzler J, Snieder R. 2001. The effects of small-scale heterogeneity on arrival time of waves. Geophys. J. Int. 144:786–96
    [Google Scholar]
  129. Spica Z, Perton M, Beroza GC 2017. Lateral heterogeneity imaged by small-aperture ScS retrieval from the ambient seismic field. Geophys. Res. Lett. 44:8276–84
    [Google Scholar]
  130. Stixrude L, Jeanloz R. 2015. Constraints on seismic models from other disciplines—constraints from mineral physics on seismological models. Treatise on Geophysics G Schubert 829–52 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  131. Stockmann F, Cobden L, Deschamps F, Fichtner A, Thomas C 2019. Investigating the seismic structure and visibility of dynamic plume models with seismic array methods. Geophys. J. Int. 219:S167–94
    [Google Scholar]
  132. Styles E, Goes S, van Keken PE, Ritsema R, Smith H 2011. Synthetic images of dynamically predicted plumes and comparison with a global tomographic model. Earth Planet. Sci. Lett. 311:3–4351–63
    [Google Scholar]
  133. Su WJ, Dziewoński AM. 1991. Predominance of long-wavelength heterogeneity in the mantle. Nature 352:6331121–26
    [Google Scholar]
  134. Suetsugu D, Shiobara H. 2014. Broadband ocean bottom seismology. Annu. Rev. Earth Planet. Sci. 42:27–43
    [Google Scholar]
  135. Sun D, Tan E, Helmberger D, Gurnis M 2007. Seismological support for the metastable superplume model, sharp features, and phase changes within the lower mantle. PNAS 104:9151–55
    [Google Scholar]
  136. Tackley PJ. 2012. Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci. Rev. 110:1–25
    [Google Scholar]
  137. Takeuchi N. 2007. Whole mantle SH velocity model constrained by waveform inversion based on three-dimensional Born kernels. Geophys. J. Int. 169:31153–63
    [Google Scholar]
  138. Tanimoto T. 1995. Formalism for traveltime inversion with finite frequency effects. Geophys. J. Int. 121:103–10
    [Google Scholar]
  139. Tape C, Liu Q, Maggi A, Tromp J 2009. Adjoint tomography of the Southern California crust. Science 325:988–92
    [Google Scholar]
  140. Tarantola A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation Philadelphia: SIAM
    [Google Scholar]
  141. To A, Fukao Y, Tsuboi S 2011. Evidence for a thick and localized ultra low shear velocity zone at the base of the mantle beneath the central Pacific. Phys. Earth Planet. Inter. 184:119–33
    [Google Scholar]
  142. Trampert J, Deschamps F, Resovsky J, Yuen D 2004. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306:5697853–56
    [Google Scholar]
  143. Trampert J, Snieder R. 1996. Model estimations biased by truncated expansions: possible artifacts in seismic tomography. Science 271:1257–60
    [Google Scholar]
  144. Tromp J, Tape C, Liu Q 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160:1195–216
    [Google Scholar]
  145. van der Meer DG, van Hinsbergen DJJ, Spakman W 2018. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723:309–448
    [Google Scholar]
  146. van der Voo R, Spakman W, Bijwaard H 1999. Mesozoic subducted slabs under Siberia. Nature 397:246–49
    [Google Scholar]
  147. Vance SD, Kedar S, Panning MP, Stähler SC, Bills BG et al. 2018. Vital signs: seismology of icy ocean worlds. Astrobiology 18:137–53
    [Google Scholar]
  148. Visser K, Trampert J, Kennett BLN 2008. Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. Geophys. J. Int. 172:31016–32
    [Google Scholar]
  149. Weber RC, Neal CR, Kedar S, Panning M, Schmerr NC et al. 2018. Lunar seismology enabled by a deep space gateway. Deep Space Gateway Concept Science Workshop ed. B Bussey, JB Garvin, M New, P Niles, JF Spann, Pap. 3091. LPI Contrib. 2063. Houston: Lunar Planet. Inst.
    [Google Scholar]
  150. Wen L. 2002. An SH hybrid method and shear velocity structures in the lowermost mantle beneath the Central Pacific and South Atlantic Oceans. J. Geophys. Res. 107:B3ESE 4–14-20
    [Google Scholar]
  151. White WM. 2015. Probing the Earth's deep interior through geochemistry. Geochem. Perspect. 4:95–251
    [Google Scholar]
  152. Wolfe CJ, Solomon SC, Laske G, Collins JA, Detrick RS et al. 2009. Mantle shear‐wave velocity structure beneath the Hawaiian hot spot. Science 326:1388–90
    [Google Scholar]
  153. Woodhouse JH, Dziewoński AM. 1984. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. 89:B75953–86
    [Google Scholar]
  154. Young A, Flament N, Maloney K, Williams S, Matthews K et al. 2019. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10:3989–1013
    [Google Scholar]
  155. Yu S, Garnero EJ. 2018. Ultra-low velocity zone locations: a global assessment. Geochem. Geophys. Geosyst. 19:396–414
    [Google Scholar]
  156. Zhang Z, Dorfman SM, Labidi J, Zhang S, Li M et al. 2016. Primordial metallic melt in the deep mantle. Geophys. Res. Lett. 43:3693–99
    [Google Scholar]
  157. Zhao C, Garnero EJ, McNamara AK, Schmerr N, Carlson RW 2015. Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii. Earth Planet. Sci. Lett. 426:143–53
    [Google Scholar]
  158. Zhao D. 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Int. 146:1–23–34
    [Google Scholar]
  159. Zhou Y, Nolet G, Dahlen FA, Laske G 2006. Global upper-mantle structure from finite-frequency surface-wave tomography. J. Geophys. Res. 111:B4B04304
    [Google Scholar]
  160. Zhu H, Bozdağ E, Peter D, Tromp J 2012. Structure of the European upper mantle revealed by adjoint tomography. Nat. Geosci. 5:493–98
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082119-065909
Loading
/content/journals/10.1146/annurev-earth-082119-065909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error