1932

Abstract

While the Atlantic Ocean is ventilated by high-latitude deep water formation and exhibits a pole-to-pole overturning circulation, the Pacific Ocean does not. This asymmetric global overturning pattern has persisted for the past 2–3 million years, with evidence for different ventilation modes in the deeper past. In the current climate, the Atlantic-Pacific asymmetry occurs because the Atlantic is more saline, enabling deep convection. To what extent the salinity contrast between the two basins is dominated by atmospheric processes (larger net evaporation over the Atlantic) or oceanic processes (salinity transport into the Atlantic) remains an outstanding question. Numerical simulations have provided support for both mechanisms; observations of the present climate support a strong role for atmospheric processes as well as some modulation by oceanic processes. A major avenue for future work is the quantification of the various processes at play to identify which mechanisms are primary in different climate states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010045
2018-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/46/1/annurev-earth-082517-010045.html?itemId=/content/journals/10.1146/annurev-earth-082517-010045&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson M, Erez J 2017. The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosyst. 18:2177–99
    [Google Scholar]
  2. Beal LM, de Ruijter PM, Biastoch A, Zahn R SCOR/WCRP/IAPSO Work. Group 136 2011. On the role of the Agulhas system in ocean circulation and climate. Nature 472:429–36
    [Google Scholar]
  3. Bell DB, Jung SJA, Kroon D, Hodell DA, Lourens LJ, Raymo ME 2015. Atlantic deep-water response to the early Pliocene shoaling of the Central American Seaway. Sci. Rep. 5:12252
    [Google Scholar]
  4. Blanke B, Arhan M, Speich S 2006. Salinity changes along the upper limb of the Atlantic thermohaline circulation. Geophys. Res. Lett. 33:L06609
    [Google Scholar]
  5. Boccaletti G, Ferrari R, Adcroft A, Ferreira D, Marshall J 2005. The vertical structure of ocean heat transport. Geophys. Res. Lett. 32:L10603
    [Google Scholar]
  6. Böhm E, Lippold J, Gutjahr M, Frank M, Blaser P et al. 2015. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517:73–76
    [Google Scholar]
  7. Borrelli C, Cramer BS, Katz ME 2014. Bipolar Atlantic deepwater circulation in the middle-late Eocene: effects of Southern Ocean gateway openings. Paleoceanography 29:308–27
    [Google Scholar]
  8. Boyle EA, Keigwin LD 1985. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76:135–50
    [Google Scholar]
  9. Boyle EA, Keigwin LD 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330:35–40
    [Google Scholar]
  10. Boyle PR, Romans BW, Tucholke BE, Norris RD, Swift SA, Sexton PF 2017. Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland. Canada: Mar. Geol. 385:185–203
    [Google Scholar]
  11. Brass GW, Southam JR, Peterson WH 1982. Warm saline bottom water in the ancient ocean. Nature 296:620–23
    [Google Scholar]
  12. Broecker WS 1991. The great ocean conveyor. Oceanography 4:79–89
    [Google Scholar]
  13. Broecker WS, Peteet DM, Rind D 1985. Does the ocean-atmosphere system have more than one stable mode of operation. ? Nature 315:21–26
    [Google Scholar]
  14. Bryan F 1986. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323:301–4
    [Google Scholar]
  15. Buckley MW, Marshall J 2016. Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: a review. Rev. Geophys. 54:5–63
    [Google Scholar]
  16. Burckel P, Waelbroeck C, Gherardi JM, Pichat S, Arz H et al. 2015. Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial. Geophys. Res. Lett. 42:411–18
    [Google Scholar]
  17. Burls NJ, Fedorov AV, Sigman DM, Jaccard SL, Tiedemann R, Haug GH 2017. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3:e1700156
    [Google Scholar]
  18. Burton KW, Ling HF, O'Nions RK 1997. Closure of the Central American isthmus and its effect on deep-water formation in the North Atlantic. Nature 386:382–85
    [Google Scholar]
  19. Busecke J, Abernathey RP, Gordon AL 2017. Lateral eddy mixing in the subtropical salinity maxima of the global ocean. J. Phys. Oceanogr. 47:737–54
    [Google Scholar]
  20. Cessi P, Jones CS 2017. Warm-route versus cold-route interbasin exchange in the meridional overturning circulation. J. Phys. Oceanogr. 47:1981–97
    [Google Scholar]
  21. Chen JL, Wilson CR, Tapley BD 2006. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–60
    [Google Scholar]
  22. Coxall HK, Huck CE, Huber M, Lear CH, Legarda-Lisarri A et al. 2018. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nat. Geosci. 11:190–96
    [Google Scholar]
  23. Craig PM, Ferreira D, Methven J 2017. The contrast between Atlantic and Pacific surface water fluxes. Tellus A 69:1330454
    [Google Scholar]
  24. Cramer BS, Toggweiler JR, Wright JD, Katz ME, Miller GH 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24:PA4216
    [Google Scholar]
  25. Curry WB, Marchitto TM, McManus JF, Oppo DW, Laarkamp KL 1999. Millennial-scale changes in ventilation of the thermocline, intermediate, and deep waters of the glacial North Atlantic. Mechanisms of Global Climate Change at Millennial Time Scales PU Clark, RS Webb, LD Keigwin 59–76 Geophys. Monogr. Ser. 112 Washington, DC: Am. Geophys. U.
    [Google Scholar]
  26. Curry WB, Oppo DW 2005. Glacial water mass geometry and the distribution of δ13C of CO2 in the western Atlantic Ocean. Paleoceanography 24:PA1017
    [Google Scholar]
  27. Czaja A 2009. Atmospheric control on the thermohaline circulation. J. Phys. Oceanogr. 39:234–47
    [Google Scholar]
  28. de Boer AM, Gnanadesikan A, Edwards NR, Watson AJ 2010. Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr. 40:368–80
    [Google Scholar]
  29. de Boer AM, Nof D 2004. The Bering Strait's grip on the northern hemisphere climate. Deep-Sea Res. I 51:1347–66
    [Google Scholar]
  30. de Boer AM, Sigman D, Toggweiler JR, Russell JL 2007. Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography 22:PA2210
    [Google Scholar]
  31. de Boer AM, Toggweiler JR, Sigman DM 2008. Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr. 38:435–50
    [Google Scholar]
  32. de Vries P, Weber SL 2005. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett. 32:L09606
    [Google Scholar]
  33. Dee D, Uppala S, Simmons A, Berrisford P, Poli P et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:553–97
    [Google Scholar]
  34. den Toom M, Dijkstra HA, Cimatoribus AA, Drijfhout SS 2012. Effect of atmospheric feedbacks on the stability of the Atlantic meridional overturning circulation. J. Clim. 25:4081–96
    [Google Scholar]
  35. Dijkstra HA 2007. Characterization of the multiple equilibria regime in a global ocean model. Tellus A 59:695–705
    [Google Scholar]
  36. Donners J, Drijfhout SS 2004. The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results. J. Clim. 34:1019–35
    [Google Scholar]
  37. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N 1988. Deepwater source variations during the last climatic cycle and their impact on global deepwater circulation. Paleoceanography 3:343–60
    [Google Scholar]
  38. Durack PJ, Wijffels SE, Matear R 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–58
    [Google Scholar]
  39. Eichelberger SJ, Hartmann DL 2007. Zonal jet structure and the leading mode of variability. J. Clim. 20:5149–63
    [Google Scholar]
  40. Eldevik T, Risebrobakken B, Bjune AE, Andersson C, Birks HJB et al. 2014. A brief history of climate—the northern seas from the Last Glacial Maximum to global warming. Quat. Sci. Rev. 106:225–46
    [Google Scholar]
  41. Emile-Geay J, Cane MA, Naik N, Clement AC, van Geen A 2003. Warren revisited: atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific.”. J. Geophys. Res. 108:3178
    [Google Scholar]
  42. Ferrari R, Ferreira D 2011. What processes drive the ocean heat transport. Ocean Model 38:171–86
    [Google Scholar]
  43. Ferreira D, Marshall J, Campin JM 2010. Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim. 23:1456–76
    [Google Scholar]
  44. Forget G, Campin JM, Heimbach P, Hill C, Ponte R, Wunsch C 2015. ECCO version 4: an integrated framework for nonlinear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8:3653–743
    [Google Scholar]
  45. Frankignoul C 1985. Sea surface temperature anomalies, planetary waves, and air-sea feedback in mid latitudes. Rev. Geophys. 23:357–90
    [Google Scholar]
  46. Freeman E, Skinner LC, Tisserand A, Dokken T, Timmermann A et al. 2015. An Atlantic-Pacific ventilation seesaw across the last deglaciation. Earth Planet. Sci. Lett. 424:237–44
    [Google Scholar]
  47. Galaasen EV, Ninnemann US, Irval N, Kleiven HKF, Rosenthal Y et al. 2014. Rapid reductions in North Atlantic deep water during the peak of the last interglacial period. Nature 343:1129–32
    [Google Scholar]
  48. Garzoli SL, Baringera MO, Donga S, Pereza RC, Yaoa Q 2013. South Atlantic meridional fluxes. Deep-Sea Res. I 71:21–32
    [Google Scholar]
  49. Gebbie J, Huybers P 2012. The mean age of ocean waters inferred from radiocarbon observations: sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr. 42:291–305
    [Google Scholar]
  50. Gherardi JM, Labeyrie L, Nave S, Francois R, McManus JF, Cortijo E 2009. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary records in the North Atlantic region. Paleoceanography 24:PA2204
    [Google Scholar]
  51. Gnanadesikan A 1999. A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–79
    [Google Scholar]
  52. Gordon AL 1986. Interocean exchange of thermocline water. J. Geophys. Res. 91:5037–46
    [Google Scholar]
  53. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E et al. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32:L12703
    [Google Scholar]
  54. Guihou A, Pichat S, Govin A, Nave S, Michel E et al. 2011. Enhanced Atlantic meridional overturning circulation supports the Last Glacial Inception. Quat. Sci. Rev. 30:1576–82
    [Google Scholar]
  55. Held IM, Soden BJ 2006. Robust responses of the hydrological cycle to global warming. J. Clim. 19:5686–99
    [Google Scholar]
  56. Henry LG, McManus JF, Curry WB, Roberts NL, Piotrowski AM, Keigwin LD 2016. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353:470–74
    [Google Scholar]
  57. Herold N, Huber M, Müller RD, Seton M 2012. Modeling the Miocene climatic optimum: ocean circulation. Paleoceanography 27:PA1209
    [Google Scholar]
  58. Hohbein MW, Sexton PF, Cartwright JA 2012. Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend. Geology 40:255–58
    [Google Scholar]
  59. Hu AG, Meehl A, Han W, Abe-Ouchi A, Morrill C et al. 2012. The Pacific-Atlantic seesaw and the Bering Strait. Geophys. Res. Lett. 39:L03702
    [Google Scholar]
  60. Huisman SE, Dijkstra HA, von der Heydt A, de Ruijter WPM 2012. Does net E-P set a preference for North Atlantic sinking. J. Phys. Oceanogr. 42:1781–92
    [Google Scholar]
  61. Jackson LC, Smith RS, Wood RA 2017. Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM. Clim. Dyn. 49:173–91
    [Google Scholar]
  62. Jia Y, Coward AC, de Cuevas BA, Webb DJ, Drijfhout S 2007. A model analysis of the behavior of the Mediterranean Water in the North Atlantic. J. Phys. Oceanogr. 34:764–86
    [Google Scholar]
  63. Johnson HL, Marshall DP, Sproson DAJ 2007. Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Clim. Dyn. 29:821–36
    [Google Scholar]
  64. Jones CS, Cessi P 2016. Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr. 46:1157–69
    [Google Scholar]
  65. Keigwin LD 1987. North Pacific deep water formation during the latest glaciation. Nature 330:362–64
    [Google Scholar]
  66. Keigwin LD, Swift SA 2017. Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. PNAS 114:2831–35
    [Google Scholar]
  67. Knudson KP, Ravelo AC 2015. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait. Paleoceanography 20:1287–304
    [Google Scholar]
  68. Kuhlbrodt T, Griesel A, Montoy M, Levermann A, Hofmann M, Rahmstorf S 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45:RG2001
    [Google Scholar]
  69. Kwiek PB, Ravelo AC 1999. Pacific Ocean intermediate and deep water circulation during the Pliocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154:191–217
    [Google Scholar]
  70. Laurian A, Drijfhout SS 2011. Response of the South Atlantic circulation to an abrupt collapse of the Atlantic meridional overturning circulation. Clim. Dyn. 37:521–30
    [Google Scholar]
  71. Leduc G, Vidal L, Tachikawa K, Rostek F, Sonzogni C et al. 2007. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 445:908–11
    [Google Scholar]
  72. Levang S, Schmitt RW 2015. Centennial changes of the global water cycle in CMIP5 models. J. Clim. 28:6489–502
    [Google Scholar]
  73. Lippold J, Luo Y, Francois R, Allen SE, Gherardi J et al. 2012. Strength and geometry of the glacial Atlantic meridional overturning circulation. Nat. Geosci. 5:813–16
    [Google Scholar]
  74. Lohmann G 2003. Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus A 55:438–49
    [Google Scholar]
  75. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR et al. 2007. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69
    [Google Scholar]
  76. Lynch-Stieglitz J, Fairbanks RG 1994. Strength and geometry of the glacial Atlantic meridional overturning circulation. Nature 369:41–43
    [Google Scholar]
  77. Marotzke J, Willebrand J 1991. Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr. 21:1372–85
    [Google Scholar]
  78. Marshall J, Schott F 1999. Open ocean deep convection observations, models and theory. Rev. Geophys. 37:1–64
    [Google Scholar]
  79. Marshall J, Speer K 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5:171–80
    [Google Scholar]
  80. McCave IN, Manighetti B, Beveridge NAS 1995. Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature 374:149–52
    [Google Scholar]
  81. McManus JF, Francois R, Gherardi J, Keigwin LD, Brown-Leger S 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:824–37
    [Google Scholar]
  82. McManus JF, Oppo DW, Cullen JL 1999. A 0.5 million year record of millennial-scale climate variability in the North Atlantic. Nature 283:971–75
    [Google Scholar]
  83. McManus JF, Oppo DW, Keigwin LD, Cullen JL, Bond GG 2002. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quat. Res. 58:17–21
    [Google Scholar]
  84. Mecking JV, Drijfhout SS, Jackson LC, Graham T 2016. Stable AMOC off state in an eddy-permitting coupled climate model. Clim. Dyn. 47:2455–70
    [Google Scholar]
  85. Mikolajewicz U, Maier-Reimer E, Crowley TJ, Kim KY 1993. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography 8:409–26
    [Google Scholar]
  86. Miller KG, Tucholke BE 1983. Development of Cenozoic abyssal circulation south of the Greenland-Scotland Ridge. Structure and Development of the Greenland-Scotland Ridge MHP Bott, S Saxov, M Talwani, J Thiede 549–89 NATO Conf. Ser. 8 New York: Plenum Press
    [Google Scholar]
  87. Moiroud M, Pucéat E, Donnadieu Y, Bayon G, Guiraud M et al. 2016. Evolution of neodymium isotopic signature of seawater during the Late Cretaceous: implications for intermediate and deep circulation. Gondwana Res 36:503–22
    [Google Scholar]
  88. Mokeddem Z, McManus JF, Oppo DW 2014. Oceanographic dynamics and the end of the last interglacial in the subpolar North Atlantic. PNAS 111:11263–68
    [Google Scholar]
  89. Molnar P, Boos WR, Battisti DS 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38:77–102
    [Google Scholar]
  90. Murphy DP, Thomas DJ 2013. The evolution of Late Cretaceous deep-ocean circulation in the Atlantic basins: neodymium isotope evidence from South Atlantic drill sites for tectonic controls. Geochem. Geophys. Geosyst. 14:5323–40
    [Google Scholar]
  91. Nikurashin M, Vallis G 2012. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42:1652–67
    [Google Scholar]
  92. Nilsson J, Langen PL, Ferreira D, Marshall J 2013. Ocean basin geometry and the salinification of the Atlantic Ocean. J. Clim. 26:6163–84
    [Google Scholar]
  93. Nisancioglu KH, Raymo ME, Stone PH 2003. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography 18:1006
    [Google Scholar]
  94. Okazaki Y, Timmermann A, Menviel L, Harada N, Abe-Ouchi A et al. 2010. Deepwater formation in the North Pacific during the last glacial termination. Science 329:200–4
    [Google Scholar]
  95. Okumura YM, Deser C, Hu A, Timmermann A, Xie S 2009. North Pacific climate response to freshwater forcing in the Subarctic North Atlantic: oceanic and atmospheric pathways. J. Clim. 22:1424–45
    [Google Scholar]
  96. Oppo DW, McManus JF, Cullen JL 2003. Deepwater variability in the Holocene epoch. Nature 422:277–78
    [Google Scholar]
  97. Pithan F, Mauritsen T 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature 7:181–84
    [Google Scholar]
  98. Ponte RM, Vinogradova NT 2016. An assessment of basic processes controlling mean surface salinity over the global ocean. Geophys. Res. Lett. 43:7052–58
    [Google Scholar]
  99. Rae JW, Sarnthein M, Foster GL, Ridgwell A, Grootes PM, Elliott T 2014. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29:645–67
    [Google Scholar]
  100. Rahmstorf S 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12:799–811
    [Google Scholar]
  101. Rahmstorf S, Crucifix M, Ganapolski A, Goosse H, Kamenkovich I et al. 2005. Thermohaline circulation hysteresis: a model intercomparison. Geophys. Res. Lett. 32:L23605
    [Google Scholar]
  102. Raymo ME, Oppo DW, Flower B, Hodell D, McManus JF et al. 2004. Stability of North Atlantic water masses in the face of pronounced natural climate variability. Paleoceanography 19:PA2008
    [Google Scholar]
  103. Raymo ME, Ruddiman WF, Shackleton NJ, Oppo DW 1990. Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y. Earth Planet. Sci. Lett. 97:353–68
    [Google Scholar]
  104. Reid JL 1961. On the temperature, salinity, and density differences between the Atlantic and Pacific Oceans in the upper kilometre. Deep-Sea Res 7:265–75
    [Google Scholar]
  105. Reid JL 1979. On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res 26A:1199–223
    [Google Scholar]
  106. Rintoul SR 1991. South Atlantic interbasin exchange. J. Geophys. Res. 96:2675–92
    [Google Scholar]
  107. Robinson LF, Adkins JF, Keigwin LD, Southon J, Fernandez DP et al. 2005. Radiocarbon variability in the Western North Atlantic during the last deglaciation. Science 310:1469–73
    [Google Scholar]
  108. Rooth C 1982. Hydrology and ocean circulation. Prog. Oceanogr. 11:131–49
    [Google Scholar]
  109. Roquet F, Madec G, Brodeau L, Nycander J 2015. Defining a simplified yet “realistic” equation of state for seawater. J. Phys. Oceanogr. 45:2564–79
    [Google Scholar]
  110. Sandström JW 1916. Meteorologische Studien im Schwedischen Hochgebirge Göteborg, Swed.: Wettergren & Kerber
  111. Sardeshmukh PD, Hoskins BJ 1988. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45:1228–51
    [Google Scholar]
  112. Scher HD, Martin EE 2004. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett. 228:391–405
    [Google Scholar]
  113. Schmitt RW, Bogden PS, Dorman CE 1989. Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr. 19:1208–21
    [Google Scholar]
  114. Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F 2012. Effects of mountains and ice sheets on global ocean circulation. J. Clim. 24:2814–29
    [Google Scholar]
  115. Sgubin G, Swingedouw D, Drijfhout S, Mary Y, Bennabi A 2017. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8: https://doi.org/10.1038/ncomms14375
    [Crossref] [Google Scholar]
  116. Sigman DM, Jaccard SL, Haugh GH 2004. Polar ocean stratification in a cold climate. Nature 428:59–63
    [Google Scholar]
  117. Sijp WP, England MH 2009. Southern Hemisphere westerly wind control over the ocean's thermohaline circulation. J. Clim. 22:1277–86
    [Google Scholar]
  118. Sinha B, Blaker AT, Hirshi JJM, Bonham S, Brand M et al. 2012. Mountain ranges favor vigorous Atlantic meridional overturning. Geophys. Res. Lett. 39:L02705
    [Google Scholar]
  119. Speich S, Blanke B, Madec G 2001. Warm and cold water routes of an O.G.C.M. thermohaline conveyor belt. Geophys. Res. Lett. 28:311–14
    [Google Scholar]
  120. Stommel H 1948. The westward intensification of the wind-driven ocean currents. Trans. Am. Geophys. Union 29:202–6
    [Google Scholar]
  121. Stommel H 1961. Thermohaline convection with two stable regimes of flow. Tellus A 13:224–30
    [Google Scholar]
  122. Stouffer RJ, Yin J, Gregory J, Dixon K, Spelman M et al. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19:1365–87
    [Google Scholar]
  123. Straneo F 2006. On the connection between dense water formation, overturning and poleward heat transport in a convective basin. J. Phys. Oceanogr. 36:1822–40
    [Google Scholar]
  124. Studer AS, Martínez-Garcia A, Jaccard SL, Girault FE, Sigman DM, Haug GH 2012. Enhanced stratification and seasonality in the Subarctic Pacific upon Northern Hemisphere glaciation—new evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers. Earth Planet. Sci. Lett. 351–52:84–94
    [Google Scholar]
  125. Sverdrup HU 1947. Wind-driven current in a baroclinic ocean; with application to the equatorial currents of the Eastern Pacific. PNAS 33:318–26
    [Google Scholar]
  126. Talley LD 2003. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 33:530–60
    [Google Scholar]
  127. Talley LD 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:80–97
    [Google Scholar]
  128. Thiede J 1979. History of the North Atlantic Ocean: evolution of an asymmetric zonal paleo-environment in a latitudinal ocean basin. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment M Talwani, W Hay, WBF Ryan 275–96 Washington, DC: Am. Geophys. U.
    [Google Scholar]
  129. Thomas DJ, Korty R, Huber M, Schubert JA, Haines B 2014. Nd isotopic structure of the Pacific Ocean 70–30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. Paleoceanography 29:454–69
    [Google Scholar]
  130. Thomas DJ, Via RK 2007. Neogene evolution of Atlantic thermohaline circulation: perspective from Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography 22:PA2212
    [Google Scholar]
  131. Thompson AJ, Stewart AL, Bischoff T 2016. A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr. 46:2583–604
    [Google Scholar]
  132. Thornalley DJ, Blaschek M, Davies FJ, Praetorius S, Oppo DW et al. 2013. Long-term variations in Iceland-Scotland overflow strength during the Holocene. Clim. Past 9:2073–84
    [Google Scholar]
  133. Thorpe RB, Gregory J, Johns T, Wood R, Mitchell J 2001. Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a nonflux-adjusted coupled climate model. J. Clim. 14:3102–16
    [Google Scholar]
  134. Vellinga M, Wood R 2002. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54:251–67
    [Google Scholar]
  135. Via RK, Thomas DJ 2006. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34:441–44
    [Google Scholar]
  136. Voigt S, Jung C, Friedrich O, Frank M, Teschner C, Hoffmann J 2013. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse. Earth Planet. Sci. Lett. 369–70:169–77
    [Google Scholar]
  137. von der Heydt A, Dijkstra HA 2006. Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography 21:PA1011
    [Google Scholar]
  138. Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB 2000. Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. J. Hydrol. 237:17–39
    [Google Scholar]
  139. Warren BA 1983. Why is no deep water formed in the North Pacific. ? J. Mar. Res. 41:327–47
    [Google Scholar]
  140. Weaver AJ, Bitz CM, Fanning AF, Holland MM 1999. Thermohaline circulation: high-latitude phenomena and the difference between the Pacific and the Atlantic. Annu. Rev. Earth Planet. Sci. 27:231–85
    [Google Scholar]
  141. Welander P 1986. Thermohaline effects in the ocean circulation and related simple models. Large-Scale Transport Processes in Oceans and Atmosphere J Willebrand, DLT Anderson 163–200 NATO ASI Ser. 190 Dordrecht, Neth.: Springer
    [Google Scholar]
  142. Wills RC, Schneider T 2015. Stationary eddies and the zonal asymmetry of net precipitation and ocean freshwater forcing. J. Clim. 28:5115–33
    [Google Scholar]
  143. Wolfe CL, Cessi P 2010. What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models. J. Phys. Oceanogr. 40:1520–38
    [Google Scholar]
  144. Woodruff F, Savin SM 1989. Miocene deepwater oceanography. Paleoceanography 4:87–140
    [Google Scholar]
  145. Wright A, Miller KG 1993. Southern Ocean influences on late Eocene to Miocene deepwater circulation. Antarct. Res. Ser. 60:1–25
    [Google Scholar]
  146. Wunsch C, Heimbach P 2013. Two decades of the Atlantic meridional overturning circulation: anatomy, variations, extremes, prediction, and overcoming its limitations. J. Clim. 26:7167–86
    [Google Scholar]
  147. Yang S, Galbraith E, Palter J 2014. Coupled climate impacts of the Drake Passage and the Panama Seaway. Clim. Dyn. 43:37
    [Google Scholar]
  148. Yin J, Stouffer R 2007. Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere-ocean general circulation models. J. Clim. 20:4293–315
    [Google Scholar]
  149. Zachos JC, Pagani M, Sloan LC, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93
    [Google Scholar]
  150. Zaucker F, Stocker TF, Broecker WS 1994. Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. J. Geophys. Res. 99:12443–57
    [Google Scholar]
  151. Zika JD, Skliris N, Nurser AJG, Josey SA, Mudrykd L, Laliberté F 2015. Maintenance and broadening of the ocean's salinity distribution by the water cycle. J. Clim. 28:9550–60
    [Google Scholar]
  152. Zweng MM, Reagan JR, Antonov JI, Locarnini RA, Mishonov AV et al. 2013. World Ocean Atlas 2013, Vol. 2: Salinity S Levitus, A. Mishonov. NOAA Atlas NESDIS 74 Silver Spring, MD: Natl. Ocean. Data Cent.
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010045
Loading
/content/journals/10.1146/annurev-earth-082517-010045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error