1932

Abstract

Sensory perception is of crucial importance for animals to interact with their biotic and abiotic environment. In amniotes, the clade including modern mammals (Synapsida), modern reptiles (Reptilia), and their fossil relatives, the evolution of sensory perception took place in a stepwise manner after amniotes appeared in the Carboniferous. Fossil evidence suggests that Paleozoic taxa had only a limited amount of sensory capacities relative to later forms, with the majority of more sophisticated types of sensing evolving during the Triassic and Jurassic. Alongside the evolution of improved sensory capacities, various types of social communication evolved across different groups. At present there is no definitive evidence for a relationship between sensory evolution and species diversification. It cannot be excluded, however, that selection for improved sensing was partially triggered by biotic interactions, e.g., in the context of niche competition, whereas ecospace expansion, especially during the Mesozoic, might also have played an important role.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010120
2018-05-30
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/earth/46/1/annurev-earth-082517-010120.html?itemId=/content/journals/10.1146/annurev-earth-082517-010120&mimeType=html&fmt=ahah

Literature Cited

  1. Abellán A, Desfilis E, Medina L 2013. The olfactory amygdala in amniotes: an evo-devo approach. Anat. Rec. 296:1317–32
    [Google Scholar]
  2. Alonso PD, Milner AC, Ketcham RA, Cookson MJ, Rowe TB 2004. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430:666–69
    [Google Scholar]
  3. Anderson SR, Wiens JJ 2017. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71:1944–59
    [Google Scholar]
  4. Angielczyk KD, Schmitz L 2014. Nocturnality in synapsids predates the origin of mammals by over 100 million years. Proc. R. Soc. B 281:20141642
    [Google Scholar]
  5. Anquetin J, Barrett PM, Jones MEH, Moore-Fay S, Evans SE 2009. A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles. Proc. R. Soc. B 276:879–86
    [Google Scholar]
  6. Araujo R, Fernandez V, Polcyn MJ, Fröbisch J, Martins RMS 2017. Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy. PeerJ 5:e3119
    [Google Scholar]
  7. Autumn K, Jindrich D, DeNardo D, Mueller R 1999. Locomotor performance at low temperature and the evolution of nocturnality in geckos. Evolution 53:580–99
    [Google Scholar]
  8. Bakken GS, Krochmal AR 2007. The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis. J. Exp. Biol. 210:2801–10
    [Google Scholar]
  9. Balanoff AM, Bever GS 2017. The role of endocasts in the study of brain evolution. Evol. Nerv. Syst. 1:223–41
    [Google Scholar]
  10. Balanoff AM, Bever GS, Rowe TB, Norell MA 2013. Evolutionary origins of the avian brain. Nature 501:93–96
    [Google Scholar]
  11. Barnosky AD, Hadly EA, Gonzalez P, Head J, Polly PD et al. 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355:eaah4787
    [Google Scholar]
  12. Barsbold R 1974. Saurornithoididae, a new family of small theropod dinosaurs from Central Asia and North America. Palaeontol. Pol. 30:5–22
    [Google Scholar]
  13. Bennett SC 2001. The osteology and functional morphology of the Late Cretaceous pterosaur Pteranodon. Palaeontogr. Abt. A 260:1–112
    [Google Scholar]
  14. Benson RBJ 2012. Interrelationships of basal synapsids: Cranial and postcranial morphological partitions suggest different topologies. J. Syst. Palaeontol. 10:601–24
    [Google Scholar]
  15. Berta A, Ekdale EG, Cranford TW 2014. Review of the cetacean nose: form, function, and evolution. Anat. Rec. 297:2205–15
    [Google Scholar]
  16. Berta A, Sumich JL, Kovacs KM 2015. Marine Mammals London: Academic, 3rd ed..
  17. Bickelmann C, Morrow JM, Du J, Schott RK, van Hazel I et al. 2015. The molecular origin and evolution of dim‐light vision in mammals. Evolution 69:2995–3003
    [Google Scholar]
  18. Blumer KJ 2004. Vision: the need for speed. Nature 427:20–21
    [Google Scholar]
  19. Boughman JW 2002. How sensory drive can promote speciation. Trends Ecol. Evol. 17:571–77
    [Google Scholar]
  20. Bourke JM, Ruger Porter WM, Ridgely RC, Lyson TR, Schachner ER et al. 2014. Breathing life into dinosaurs: tackling challenges of soft-tissue restoration and nasal airflow in extinct species. Anat. Rec. 297:2148–86
    [Google Scholar]
  21. Breed M, Moore J 2012. Animal Behavior San Diego, CA: Academic
  22. Brinkløv S, Fenton MB, Ratcliff JM 2014. Echolocation in oilbirds and swiftlets. Front. Physiol. 4:123
    [Google Scholar]
  23. Brocklehurst N, Reisz RR, Fernandez V, Fröbisch J 2016. A re-description of “Mycterosaurussmithae, an early Permian eothyridid, and its impact on the phylogeny of pelycosaurian-grade synapsids. PLOS ONE 11:e0156810
    [Google Scholar]
  24. Brocklehurst N, Ruta M, Müller J, Fröbisch J 2015. Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study. Sci. Rep. 5:17104
    [Google Scholar]
  25. Caprette CL, Lee MSY, Shine R, Mokany A, Downhower JF 2004. The origin of snakes (Serpentes) as seen through eye anatomy. Biol. J. Linn. Soc. 81:469–82
    [Google Scholar]
  26. Carabajal AP, Sterli J, Müller J, Hilger A 2013. Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae). PLOS ONE 8:e69264
    [Google Scholar]
  27. Carter RT, Adams RA 2015. Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation. J. Anat. 226:301–8
    [Google Scholar]
  28. Carr TD, Varricchio DJ, Sedlmayr JC, Roberts EM, Moore JR 2017. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Sci. Rep. 7:44942
    [Google Scholar]
  29. Chang BSW, Du J, Weadick CJW, Müller J, Bickelmann C et al. 2012. The future of codon models in studies of molecular function: ancestral reconstruction, and clade models of functional divergence. Codon Evolution: Mechanisms and Models GM Cannarozzi, A Schneider 145–63 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  30. Chang BSW, Jönsson K, Kazmi MA, Donoghue MJ, Sakmar TP 2002. Recreating a functional ancestral archosaur visual pigment. Mol. Biol. Evol. 199:1483–89
    [Google Scholar]
  31. Chiari Y, Cahais V, Galtier N, Delsuc F 2012. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10:65
    [Google Scholar]
  32. Child T, Phillips BL, Shine R 2008. Abiotic and biotic influences on the dispersal behavior of metamorph cane toads (Bufo marinus) in tropical Australia. J. Exp. Zool. A 309:215–24
    [Google Scholar]
  33. Clack JA 1997. The evolution of tetrapod ears and the fossil record. Brain. Behav. Evol. 50:198–212
    [Google Scholar]
  34. Clack JA 2012. Gaining Ground: The Origin and Evolution of Tetrapods Bloomington: Indiana Univ. Press, 2nd ed..
  35. Clack JA, Fay RR, Popper AN 2016. Evolution of the Vertebrate Ear: Evidence from the Fossil Record Cham, Switz.: Springer
  36. Clarke JA, Chatterjee S, Li Z, Riede T, Agnolin F et al. 2016. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538:502–5
    [Google Scholar]
  37. Colafrancesco KC, Gridi-Papp M 2016. Vocal sound production and acoustic communication in amphibians and reptiles. Vertebrate Sound Production and Acoustic Communication RA Suthers, WT Fitch, RR Fay, AN Popper 83–117 Cham, Switz.: Springer
    [Google Scholar]
  38. Colbert EH, Ostrom JH 1958. Dinosaur stapes. Am. Mus. Novit. 1900:1–20
    [Google Scholar]
  39. Condamine FL, Clapham ME, Kergoat GJ 2016. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence. Sci. Rep. 6:19208
    [Google Scholar]
  40. Cooper WE, Ferguson GW, Habegger JJ 2007. Responses to animal and plant chemicals by several iguanian insectivores and the tuatara, Sphenodon punctatus. J. Herpetol. 352:255–63
    [Google Scholar]
  41. Coues E 1896. Key to North American Birds Boston: Estes and Lauriat, 4th ed..
  42. Crompton AW, Taylor CR, Jagger JA 1978. Evolution of homeothermy in mammals. Nature 272:333–36
    [Google Scholar]
  43. Cunningham SJ, Castro I, Jensen T, Potter MA 2010. Remote touch prey-detection by Madagascar crested ibises Lophotibis cristata urschi. J. Avian Biol. 41:350–53
    [Google Scholar]
  44. Czech-Damal NU, Dehnhardt G, Manger P, Hanke W 2013. Passive electroreception in aquatic mammals. J. Comp. Physiol. A 199:555–63
    [Google Scholar]
  45. Dall SRX, Giraldeau LA, Olsson O, McNamara JM, Stephens DW 2005. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20:187–93
    [Google Scholar]
  46. Davies KTJ, Maryanto I, Rossiter SJ 2013. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear. Front. Zool. 10:2
    [Google Scholar]
  47. Davies WL, Cowing JA, Bowmaker JK, Carvalho LS, Gower DJ, Hunt DM 2009. Shedding light on serpent sight: the visual pigments of henophidian snakes. J. Neurosci. 29:7519–25
    [Google Scholar]
  48. Daza JD, Bauer AM, Snively ED 2014. On the fossil record of the Gekkota. Anat. Rec. 297:433–62
    [Google Scholar]
  49. Dehnhardt G, Mauck B 2008. Mechanoreception in secondarily aquatic vertebrates. See Thewissen & Nummela 295–314
  50. Di-Poï N, Milinkovitch MC 2013. Crocodylians evolved scattered multi-sensory micro-organs. EvoDevo 4:19
    [Google Scholar]
  51. Dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 379:3491–500
    [Google Scholar]
  52. Dufeau DL, Witmer LM 2015. Ontogeny of the middle-ear air-sinus system in Alligator mississippiensis (Archosauria: Crocodylia). PLOS ONE 10:e0137060
    [Google Scholar]
  53. Evans DC, Ridgely R, Witmer LM 2009. Endocranial anatomy of lambeosaurine hadrosaurids (Dinosauria: Ornithischia): a sensorineural perspective on cranial crest function. Anat. Rec. 292:1315–37
    [Google Scholar]
  54. Evans SE 1986. The braincase of Prolacerta broomi (Reptilia; Triassic). Neues Jahrb. Geol. Paläontol. Abh. 173:181–200
    [Google Scholar]
  55. Evans SE 2016. The lepidosaurian ear: variations on a theme. See Clack et al. 2016 245–84
  56. Ewer RF 1965. The anatomy of the thecodont reptile Euparkeria capensis Broom. Philos. Trans. R. Soc. B 248:379–435
    [Google Scholar]
  57. Ferrara CR, Vogt RC, Sousa-Lima RS 2013. Turtle vocalizations as the first evidence of posthatching parental care in chelonians. J. Comp. Psychol. 127:24–32
    [Google Scholar]
  58. Fitch W 2006. Production of vocalizations in mammals. Encyclopedia of Language and Linguistics K Brown 115–21 Amsterdam: Elsevier
    [Google Scholar]
  59. Freitag J, Ludwig G, Andreini I, Rössler P, Breer H 1998. Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A 183:635–50
    [Google Scholar]
  60. Gaffney ES 1979. Comparative cranial morphology of recent and fossil turtles. Bull. Am. Mus. Nat. Hist. 164:65–376
    [Google Scholar]
  61. Gaffney ES 1990. The comparative osteology of the Triassic turtle Proganochelys. Bull. Am. Mus. Nat. His. 194:1–263
    [Google Scholar]
  62. Gardner NM, Holliday CM, O'Keefe FR 2010. The braincase of Youngina capensis (Reptilia: Diapsida): new insights from high-resolution CT scanning of the holotype. Palaeontol. Electron. 13:3.19A
    [Google Scholar]
  63. Geisler JH, Colbert MW, Carew JL 2014. A new fossil species supports an early origin for toothed whale echolocation. Nature 508:383–86
    [Google Scholar]
  64. Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB et al. 2013. The star-nosed mole reveals clues to the molecular basis of mammalian touch. PLOS ONE 8:e55001
    [Google Scholar]
  65. Gow CE 1972. The osteology and relationships of the Millerettidae (Reptilia: Cotylosauria). J. Zool. 167:219–64
    [Google Scholar]
  66. Gow CE 1975. The morphology and relationships of Youngina capensis Broom and Prolacerta broomi Parrington. Palaeontol. Afr. 18:89–131
    [Google Scholar]
  67. Gregory JE, Iggo A, McIntyre AK, Proske U 1988. Receptors in the bill of the platypus. J. Physiol. 400:349–66
    [Google Scholar]
  68. Grossnickle DM, Newham E 2016. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary. Proc. R. Soc. B 283:20160256
    [Google Scholar]
  69. Gutierrez EA, Van Nyatten A, Lovejoy NR, Chang BSW 2016. Sensory systems: molecular evolution in vertebrates. Encyclopedia of Evolutionary Biology RM Kliman 33–40 Cambridge, MA: Academic
    [Google Scholar]
  70. Hall MI, Kamilar JM, Kirk EC 2012. Eye shape and the nocturnal bottleneck of mammals. Proc. R. Soc. B 279:4962–68
    [Google Scholar]
  71. Head JJ 2015. Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontol. Electron. 18:1.6FC
    [Google Scholar]
  72. Heaton MJ 1979. Cranial Anatomy of Primitive Captorhinid Reptiles from the Late Pennsylvanian and Early Permian Oklahoma and Texas Bull. Okla. Geol. Surv. 127 Norman: Univ. Okla.
  73. Hemilä S, Reuter T 2008. The physics and biology of olfaction and taste. See Thewissen & Nummela 29–33
  74. Ivanov M 1999. The first European pit viper from the Miocene of Ukraine. Acta Palaeontol. Pol. 44:327–34
    [Google Scholar]
  75. Jacobs GH 2012. The evolution of vertebrate color vision. Adv. Exp. Med. Biol. 739:156–72
    [Google Scholar]
  76. Jacobs GH 2013. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Vis. Neurosci. 30:39–53
    [Google Scholar]
  77. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–31
    [Google Scholar]
  78. Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR 2013. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13:208
    [Google Scholar]
  79. Kaas JH 2013. The evolution of brains from early mammals to humans. Wiley Interdiscip. Rev. Cogn. Sci. 41:33–45
    [Google Scholar]
  80. Kardong KV 2001. Vertebrates: Comparative Anatomy, Function and Evolution New York: McGraw-Hill, 3rd ed..
  81. Kemp TS 1969. On the functional morphology of the gorgonopsid skull. Philos. Trans. R. Soc. B 256:1–83
    [Google Scholar]
  82. Kemp TS 1979. The primitive cynodont Procynosuchus: functional anatomy of the skull and relationships. Philos. Trans. R. Soc. B 285:73–122
    [Google Scholar]
  83. Kemp TS 2005. The Origin and Evolution of Mammals Oxford, UK: Oxford Univ. Press
  84. Kemp TS 2016. Non-mammalian synapsids: the beginning of the mammal line. See Clack et al. 2016 107–38
  85. Kermack KA, Musset F, Rigney HW 1981. The skull of Morganucodon. Zool. J. Linn. Soc. 71:1–158
    [Google Scholar]
  86. Kley NJ, Sertich JJW, Turner AH, Krause DW, O'Connor PM, Georgi JA 2010. Craniofacial morphology of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Soc. Vertebr. Paleontol. Mem. 10:13–98
    [Google Scholar]
  87. Krochmal AR, Bakken GS 2003. Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes. J. Exp. Biol. 206:2539–45
    [Google Scholar]
  88. Kröger RHH 2008. The physics of light in air and water. See Thewissen & Nummela 113–19
  89. Kröger RHH, Katzir G 2008. Comparative anatomy and physiology of vision in aquatic tetrapods. See Thewissen & Nummela 121–47
  90. Laaß M 2016. The origins of the cochlea and impedance matching hearing in synapsids. Acta Pal. Pol. 61:267–80
    [Google Scholar]
  91. Lautenschlager S, Ferreira GS, Werneburg I 2018. Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions. Front. Ecol. Evol. 6: https://doi.org/10.3389/fevo.2018.00007
    [Crossref] [Google Scholar]
  92. Le Duc D, Schöneberg T 2016. Adaptation to nocturnality—learning from avian genomes. BioEssays 38:694–703
    [Google Scholar]
  93. Leitch DB, Catania KC 2012. Structure, innervation and response properties of integumentary sensory organs in crocodilians. J. Exp. Biol. 215:4217–30
    [Google Scholar]
  94. Li C, Wu XC, Rieppel O, Wang LT, Zhao LJ 2008. An ancestral turtle from the Late Triassic of southwestern China. Nature 456:497–501
    [Google Scholar]
  95. Li Q, Gao KQ, Meng Q, Clarke JA, Shawkey MD et al. 2012. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–19
    [Google Scholar]
  96. Luo ZX 2007. Transformation and diversification in early mammal evolution. Nature 450:1011–19
    [Google Scholar]
  97. Luo ZX 2011. Developmental patterns in Mesozoic evolution of mammal ears. Annu. Rev. Ecol. Evol. Syst. 42:355–80
    [Google Scholar]
  98. Luo ZX, Schultz JA, Ekdale EG 2016. Evolution of the middle and inner ears of mammaliaforms: the approach to mammals. See Clack et al. 2016 139–74
  99. Lyell C, Dawson C 1853. On the remains of a reptile (Dendrerpeton Acadianum, Wyman and Owen) and of a land shell discovered in the interior of an erect fossil tree in the coal measures of Nova Scotia. Q. J. Geol. Soc. 9:58–67
    [Google Scholar]
  100. MacIver MA, Schmitz L, Mugan U, Murphey TD, Mobley CD 2017. Massive increase in visual range preceded the origin of terrestrial vertebrates. PNAS 114:E2375–84
    [Google Scholar]
  101. Macrini TE, Rowe T, Archer M 2006. Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly. J. Morphol. 267:1000–15
    [Google Scholar]
  102. Maor R, Dayan T, Ferguson-Gow H, Jones K 2017. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1:1889–95
    [Google Scholar]
  103. Marek RD, Moon BC, Williams M, Benton MJ 2015. The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology 58:723–42
    [Google Scholar]
  104. Meyer-Rochow VB 1988. Behaviour of young tuatara (Sphenodon punctatus) in total darkness. Tuatara 30:36–38
    [Google Scholar]
  105. Milner AC, Walsh SA 2009. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool. J. Linn. Soc. 155:198–219
    [Google Scholar]
  106. Miyashita T, Arbour VM, Witmer LM, Currie PJ 2011. The internal cranial morphology of an armoured dinosaur Euoplocephalus corroborated by X-ray computed tomographic reconstruction. J. Anat. 219:661–75
    [Google Scholar]
  107. Motani R, Rothschild BM, Wahl W 1999. Large eyeballs in diving ichthyosaurs. Nature 402:747
    [Google Scholar]
  108. Mourlam MJ, Orliac MJ 2017. Infrasonic and ultrasonic hearing evolved after the emergence of modern whales. Curr. Biol. 27:1776–81
    [Google Scholar]
  109. Müller J 2005. The anatomy of Askeptosaurus italicus from the Middle Triassic of Monte San Giorgio and the interrelationships of thalattosaurs (Reptilia, Diapsida). Can. J. Earth Sci. 42:1347–67
    [Google Scholar]
  110. Müller J, Reisz R 2006. The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Syst. Biol. 55:503–11
    [Google Scholar]
  111. Müller J, Tsuji LA 2007. Impedance-matching hearing in Paleozoic reptiles: evidence of advanced sensory perception at an early stage of amniote evolution. PLOS ONE 2:e889
    [Google Scholar]
  112. Newman EA, Hartline PH 1981. Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum. Science 213:789–91
    [Google Scholar]
  113. O'Connor J, Wang X, Sullivan C, Zheng X, Tubaro P et al. 2013. Unique caudal plumage of Jeholornis and complex tail evolution in early birds. PNAS 110:17404–8
    [Google Scholar]
  114. Oelrich TM 1956. The Anatomy of the Head of Ctenosaura pectinata (Iguanidae) Ann Arbor: Mus. Zool., Univ. Mich.
    [Google Scholar]
  115. Olori JC 2010. Digital endocasts of the cranial cavity and osseous labyrinth of the burrowing snake Uropeltis woodmasoni (Alethinophidia: Uropeltidae). Copeia 201:14–26
    [Google Scholar]
  116. Park T, Fitzgerald EMG, Evans AR 2016. Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12:20160060
    [Google Scholar]
  117. Pereyra MO, Womack MC, Barrionuevo JS, Blotto BL, Baldo D et al. 2016. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Sci. Rep. 6:34130
    [Google Scholar]
  118. Pettigrew JD 1999. Electroreception in monotremes. J. Exp. Biol. 202:1447–54
    [Google Scholar]
  119. Phillips MJ, Bennett TH, Lee MSY 2009. Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. PNAS 106:17089–94
    [Google Scholar]
  120. Pihlström H 2008. Comparative anatomy and physiology of chemical senses in aquatic mammals. See Thewissen & Nummela 95–109
  121. Prugh LR, Golden CD 2014. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83:504–14
    [Google Scholar]
  122. Romer AS, Price LW 1940. Review of the Pelycosauria Spec. Pap. Geol. Soc. Am. 28 Boulder, CO: Geol. Soc. Am.
  123. Roth LS, Kelber A 2004. Nocturnal colour vision in geckos. Proc. R. Soc. B 271:485–87
    [Google Scholar]
  124. Rowe TB, Macrini TE, Luo ZX 2011. Fossil evidence on origin of the mammalian brain. Science 332:955–57
    [Google Scholar]
  125. Ruf I, Luo ZX, Martin T 2013. Re-investigation of the basicranium of Haldanodon exspectatus (Docodonta, Mammaliaformes). J. Vertebr. Paleontol. 33:382–400
    [Google Scholar]
  126. Ruf I, Maier W, Rodrigues PG, Schultz CL 2014. Nasal anatomy of the non‐mammaliaform cynodont Brasilitherium riograndensis (Eucynodontia, Therapsida) reveals new insight into mammalian evolution. Anat. Rec. 297:2018–30
    [Google Scholar]
  127. Sahney S, Benton MJ, Ferry PA 2010. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 6:544–47
    [Google Scholar]
  128. Schmitz L, Motani R 2010. Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vis. Res. 50:936–46
    [Google Scholar]
  129. Schmitz L, Motani R 2011. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332:705–8
    [Google Scholar]
  130. Schott RK, Müller J, Yang CGY, Bhattacharyya N, Chan N et al. 2016. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. PNAS 113:356–61
    [Google Scholar]
  131. Schwenk K 1995. Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol. Evol. 10:7–12
    [Google Scholar]
  132. Seifan T, Federman A, Mautz WJ, Smith KJ, Werner YL 2010. Nocturnal foraging in a diurnal tropical lizard (Squamata: Gekkonidae: Phelsuma laticauda) on Hawaii. J. Trop. Ecol. 26:243–46
    [Google Scholar]
  133. Slater GJ, Harmon LJ, Alfaro ME 2012. Integrating fossils with molecular phylogenies improves inferences of trait evolution. Evolution 66:3931–44
    [Google Scholar]
  134. Sobral G, Reisz RR, Scheyer T, Neenan J, Müller J 2016.a Basal reptilians, marine diapsids, and turtles: the flowering of reptile diversity. See Clack et al. 2016 207–43
  135. Sobral G, Sookias RB, Bhullar BAS, Smith R, Butler RJ, Müller J 2016.b New information on the braincase and inner ear of Euparkeria capensis Broom: implications for diapsid and archosaur evolution. R. Soc. Open Sci. 3:160072
    [Google Scholar]
  136. Sobral G, Sues HD, Müller J 2015. Anatomy of the enigmatic reptile Elachistosuchus huenei Janensch, 1949 (Reptilia: Diapsida) from the Upper Triassic of Germany and its relevance for the origin of Sauria. PLOS ONE 10:e0135114
    [Google Scholar]
  137. Sterli J, Joyce WG 2007. The cranial anatomy of the Early Jurassic turtle Kayentachelys aprix. Acta Palaeontol. Pol. 52:675–94
    [Google Scholar]
  138. Stevens M 2010. Sensory ecology, evolution, and behavior. Curr. Zool. 56:2009–11
    [Google Scholar]
  139. Sues HD, Reisz RR 1998. Origins and early evolution of herbivory in tetrapods. Trends Ecol. Evol. 13:141–45
    [Google Scholar]
  140. Sverinsen , Jørgensen JM, Nyengaard JR 2003. Structure and growth of the utricular macula in the inner ear of the slider turtle Trachemys scripta. J. Assoc. Res. Otolaryngol. 4:505–20
    [Google Scholar]
  141. Teeling EC, Dool S, Springer MS 2012. Phylogenies, fossils and functional genes: the evolution of echolocation in bats. Evolutionary History of Bats: Fossils, Molecules, and Morphology GF Gunnell, NB Simmons 1–22 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  142. Thewissen JGM, Nummela S 2008. Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates Berkeley: Univ. Calif. Press
  143. Thornton JW 2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 5:366–75
    [Google Scholar]
  144. Tsuji LA 2013. Anatomy, cranial ontogeny and phylogenetic relationships of the pareiasaur Deltavjatia rossicus from the Late Permian of central Russia. Earth Environ. Sci. Trans. R. Soc. Edinb. 104:81–122
    [Google Scholar]
  145. Turner CH 1892. A few characteristics on the avian brain. Science 19:16–17
    [Google Scholar]
  146. Vandewege MW, Mangum SF, Gabaldón T, Castoe TA, Ray DA, Hoffmann FG 2016. Contrasting patterns of evolutionary diversification in the olfactory repertoires of reptile and bird genomes. Genome Biol. Evol. 8:470–80
    [Google Scholar]
  147. Vidan E, Roll U, Bauer A, Grismer L, Guo P et al. 2017. The Eurasian hot nightlife: environmental forces associated with nocturnality in lizards. Glob. Ecol. Biogeogr. 26:1316–25
    [Google Scholar]
  148. Vinther J, Briggs DEG, Clarke J, Mayr G, Prum RO 2010. Structural coloration in a fossil feather. Biol. Lett. 6:128–31
    [Google Scholar]
  149. von Baczko MB, Desojo JB 2016. Cranial anatomy and palaeoneurology of the archosaur Riojasuchus tenuisceps from the Los Colorados Formation, La Rioja. Argentina: PLOS ONE 11:e0148575
    [Google Scholar]
  150. Walls GL 1942. The Vertebrate Eye and Its Adaptive Radiation Bloomfield Hills, Mich.: Cranbrook Inst. Sci.
  151. Wang Z, Zhu T, Xue H, Fang N, Zhang J et al. 2017. Prenatal development supports a single origin of laryngeal echolocation in bats. Nat. Ecol. Evol. 1:0021
    [Google Scholar]
  152. Webb JF 2013. Morphological diversity, development, and evolution of the mechanosensory lateral line system. The Lateral Line System S Coombs, H Blekmann, RR Fay, AN Popper 17–72 New York: Springer
    [Google Scholar]
  153. Weishampel D 1981. Acoustic analyses of potential vocalization in lambeosaurine dinosaurs (Reptilia: Ornithischia). Paleobiology 7:252–61
    [Google Scholar]
  154. Wever EG 1978. The Reptile Ear: Its Structure and Function Princeton, NJ: Princeton Univ. Press
  155. Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM et al. 2012. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol. Lett. 8:1043–46
    [Google Scholar]
  156. Witmer LM 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Functional Morphology in Vertebrate Paleontology JJ Thomason 19–33 New York: Cambridge Univ. Press
    [Google Scholar]
  157. Witmer LM, Chatterjee S, Franzosa J, Rowe T 2003. Neuroanatomy of flying reptiles and implications for flight, posture and behavior. Nature 425:950–53
    [Google Scholar]
  158. Witmer LM, Ridgely RC 2009. New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat. Rec. 292:1266–96
    [Google Scholar]
  159. Yokoyama S 2008. Evolution of dim-light and color vision pigments. Annu. Rev. Genom. Hum. Genet. 9:259–82
    [Google Scholar]
  160. Zelenitsky DK, Therrien F, Ridgely RC, McGee AR, Witmer LM 2011. Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc. R. Soc. B 278:3625–34
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010120
Loading
/content/journals/10.1146/annurev-earth-082517-010120
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error