1932

Abstract

In addition to their being vital components of mid- to high-latitude coastal ecosystems, salt marshes contain 0.1% of global sequestered terrestrial carbon. Their sustainability is now threatened by accelerating sea-level rise (SLR) that has reached a rate that is many times greater than the rate at which they formed and evolved. Modeling studies have been instrumental in predicting how marsh systems will respond to greater frequencies and durations of tidal inundation and in quantifying thresholds when marshes will succumb and begin to disintegrate due to accelerating SLR. Over the short term, some researchers believe that biogeomorphic feedbacks will improve marsh survival through greater biomass productivity enhanced by warmer temperatures and higher carbon dioxide concentrations. Increased sedimentation rates are less likely due to lower-than-expected suspended sediment concentrations. The majority of marsh loss today is through wave-induced edge erosion that beneficially adds sediment to the system. Edge erosion is partly offset by upland marsh migration during SLR.

  • ▪  Despite positive biogeomorphic feedbacks, many salt marshes will succumb to accelerating sea-level rise due to insufficient mineral sediment.
  • ▪  The latest multivariate marsh modeling is producing predictions of marsh evolution under various sea-level rise scenarios.
  • ▪  The least well-known variables in projecting changes to salt marshes are suspended sediment concentrations and net sediment influx to the marsh.
  • ▪  We are in the infancy of understanding the importance and processes of marsh edge erosion and the overall dynamicism of marshes.
  • ▪  This review defines the latest breakthroughs in understanding the response of salt marshes to accelerating sea-level rise and decreasing sediment supply.
  • ▪  Climate change is accelerating sea-level rise, warming temperatures, and increasing carbon dioxide, all of which are impacting marsh vegetation and vertical accretion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010255
2019-05-30
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-082517-010255.html?itemId=/content/journals/10.1146/annurev-earth-082517-010255&mimeType=html&fmt=ahah

Literature Cited

  1. Alizad K, Hagen SC, Morris JT, Bacopoulos P, Bilskie MV et al. 2016. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Ecol. Model. 327:29–43
    [Google Scholar]
  2. Argow BA, FitzGerald DM 2006. Winter processes on northern salt marshes: evaluating the impact of in-situ peat compaction due to ice loading, Wells, ME. Estuar. Coast. Shelf Sci. 69:3–4360–69
    [Google Scholar]
  3. Barlow NLM, Long AJ, Saher MH, Gehrels WR, Garnett MH, Scaife RG 2014. Salt-marsh reconstructions of relative sea-level change in the North Atlantic during the last 2000 years. Quat. Sci. Rev. 99:1–16
    [Google Scholar]
  4. Baustian JJ, Mendelssohn IA 2015. Hurricane-induced sedimentation improves marsh resilience and vegetation vigor under high rates of relative sea level rise. Wetlands 35:795–802
    [Google Scholar]
  5. Belknap DF, Kraft JC 1977. Holocene relative sea-level changes and coastal stratigraphic units on the northwest flank of the Baltimore Canyon trough geosyncline. J. Sediment. Res. 47:2610–29
    [Google Scholar]
  6. Bendoni M, Francalanci S, Cappietti L, Solari L 2014. On salt marshes retreat: experiments and modeling toppling failures induced by wind waves. J. Geophys. Res. Earth Surf. 119:3603–20
    [Google Scholar]
  7. Bendoni M, Mel R, Solari L, Lanzoni S, Francalanci S, Oumeraci H 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resour. Res. 52:1446–64
    [Google Scholar]
  8. Benner R, Fogel ML, Sprague EK 1991. Diagenesis of belowground biomass of Spartina alterniflora in salt‐marsh sediments. Limnol. Oceanogr. 36:71358–74
    [Google Scholar]
  9. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K 2008. IPCC, 2007: Climate Change 2007: Synthesis Report Geneva: IPCC
    [Google Scholar]
  10. Bertness MD, Holdredge C, Altieri AH 2009. Substrate mediates consumer control of salt marsh cordgrass on Cape Cod. N. Engl. Ecol. 90:2108–17
    [Google Scholar]
  11. Brenner OT, Moore LJ, Murray AB 2015. The complex influences of back-barrier deposition, substrate slope and underlying stratigraphy in barrier island response to sea-level rise: insights from the Virginia Barrier Islands, Mid-Atlantic Bight, U.S.A. Geomorphology 246:334–50
    [Google Scholar]
  12. Brinson MM, Christian RR, Blum LK 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18:648–59
    [Google Scholar]
  13. Butzeck C, Eschenbach A, Gröngröft A, Hansen K, Nolte S, Jensen K 2015. Sediment deposition and accretion rates in tidal marshes are highly variable along estuarine salinity and flooding gradients. Estuaries Coasts 38:2434–50
    [Google Scholar]
  14. Cahoon DR 2006. A review of major storm impacts on coastal wetland elevations. Estuaries Coasts 29:889–98
    [Google Scholar]
  15. Cahoon DR, Hensel PF, Spencer T, Reed TJ, McKee KL, Saintilan N 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. J. Ecol. Stud. 190:271–92
    [Google Scholar]
  16. Cahoon DR, Reed DJ, Day JW, Steyer GD, Boumans RM et al. 1995. The influence of Hurricane Andrew on sediment distribution in Louisiana coastal marshes. J. Coast. Res. 21:280–94
    [Google Scholar]
  17. Cavazzoni S, Gottardo D 1983. Processi evolutivi e morfologici nella Laguna di Venezia. Atti del Convegno Laguna, fiumi, lidi: cinque secoli di gestione delle acqua a Venezia2–18 Venice, Italy: Ministero dei Lavori Pubblici
    [Google Scholar]
  18. Cea L, French JR 2012. Bathymetric error estimation for the calibration and validation of estuarine hydrodynamic models. Estuar. Coast. Shelf Sci. 100:124–32
    [Google Scholar]
  19. Chen C, Liu H, Beardsley RC 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Am. Meteorol. Soc. 20:159–86
    [Google Scholar]
  20. Cherry J, McKee K, Grace J 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97:167–77
    [Google Scholar]
  21. Coco G, Zhou Z, Van Maanen B, Olabarrieta M, Tinico R, Townend I 2013. Morphodynamics of tidal networks: advances and challenges. Mar. Geol. 346:1–16
    [Google Scholar]
  22. Connell J 2017. Investigating salt marsh response to natural and anthropogenic changes in the Great Marsh, Plum Island, Massachusetts Sr. Thesis, Coll. William & Mary Williamsburg, VA:
    [Google Scholar]
  23. Coverdale TC, Altieri AH, Bertness MD 2012. Belowground herbivory increases vulnerability of New England marshes to die-off. Ecology 93:92085–94
    [Google Scholar]
  24. Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA et al. 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 181:93–99
    [Google Scholar]
  25. Currin CA, Gittman RK, Fodrie FJ, Popowich AM, Keller DA et al. 2015. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Environ. 13:6301–7
    [Google Scholar]
  26. Da Lio C, D'Alpaos A, Marani M 2013. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philos. Trans. R. Soc. A 371:20120367
    [Google Scholar]
  27. Dahl TE, Stedman SM 2013. Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States 2004 to 2009 Washington, DC: US Dep. Inter.
    [Google Scholar]
  28. D'Alpaos A, Lanzoni S, Marani M, Fagherazzi S, Rinaldo A 2005. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110:F2F02001
    [Google Scholar]
  29. D'Alpaos A, Lanzoni S, Marani M, Rinaldo A 2007. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. 112:F1F01008
    [Google Scholar]
  30. D'Alpaos A, Lanzoni S, Marani M, Rinaldo A 2010. On the tidal prism–channel area relations. J. Geophys. Res. 115:F1F01003
    [Google Scholar]
  31. D'Alpaos A, Lanzoni S, Mudd SM, Fagherazzi S 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69:3–4311–24
    [Google Scholar]
  32. Day JW, Pont W, Hensel D, Ibañez P 1995. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability. Estuaries 18:4636–47
    [Google Scholar]
  33. Day JW, Scarton F, Rismondo A 1998. Rapid deterioration of a salt marsh in Venice Lagoon, Italy. J. Coast. Res. 14:2583–90
    [Google Scholar]
  34. Deaton CD, Hein CJ, Kirwan ML 2017. Barrier island migration dominates ecogeomorphic feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology 45:2123–26
    [Google Scholar]
  35. Deegan LA, Fagherazzi S, Johnson DS, Warren RS, Peterson BJ et al. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490:7420388–92
    [Google Scholar]
  36. Dijkema KS 1997. Impact prognosis for salt marshes from subsidence by gas extraction in the Wadden Sea. J. Coast. Res. 13:41294–304
    [Google Scholar]
  37. Donnelly JP 2006. A revised late Holocene sea-level record for northern Massachusetts, USA. J. Coast. Res. 22:51051–61
    [Google Scholar]
  38. Donnelly JP, Roll S, Wengren M, Butler J, Lederer R, Webb T III 2001. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology 29:7615–18
    [Google Scholar]
  39. Doody JP 2004. ‘Coastal squeeze’—an historical perspective. J. Coast. Conserv. 10:1129–38
    [Google Scholar]
  40. Duarte CM, Dennison WC, Orth RJW, Carruthers TJB 2008. The charisma of coastal ecosystems: addressing the imbalance. Estuaries Coasts 31:233–38
    [Google Scholar]
  41. Duc AW, Tye RS 1987. Evolution and stratigraphy of a regressive barrier/backbarrier complex: Kiawah Island, South Carolina. J. Sedimentol. 34:2237–51
    [Google Scholar]
  42. Emanuel K 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–88
    [Google Scholar]
  43. Engelhart SE, Horton BP, Douglas BC, Peltier WR, Törnqvist TE 2009. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 37:121115–18
    [Google Scholar]
  44. Erickson JE, Megonigal JP, Peresta G, Drake BG 2007. Salinity and sea level mediate elevated CO2 effects on C3–C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob. Change Biol. 13:202–15
    [Google Scholar]
  45. Escapa M, Perillo GME, Iribarne O 2015. Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes. Geomorphology 228:147–57
    [Google Scholar]
  46. Fagherazzi S, Bortoluzzi A, Dietrich WE, Adami A, Marani M et al. 1999. Tidal networks: 1 Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 35:123891–904
    [Google Scholar]
  47. Fagherazzi S, Carniello L, D'Alpaos L, Defina A 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. PNAS 103:228337–41
    [Google Scholar]
  48. Fagherazzi S, Gabet EJ, Furbish DJ 2004. The effect of bidirectional flow on tidal channel planforms. Earth Surf. Proc. Landf 29:295–309
    [Google Scholar]
  49. Fagherazzi S, Hannion M, D'Odorico P 2008. Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resour. Res. 44:W02419
    [Google Scholar]
  50. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S et al. 2012. Numerical models of salt marsh evolution: ecological and climatic factors. Rev. Geophys. 50:RG1002
    [Google Scholar]
  51. Fagherazzi S, Mariotti G, Banks AT, Morgan EJ, Fulweiler RW 2014. The relationships among hydrodynamics, sediment distribution, and chlorophyll in a mesotidal estuary. Estuar. Coast. Shelf Sci. 144:54–64
    [Google Scholar]
  52. Farron S 2018. Morphodynamic responses of salt marshes to sea-level rise: upland expansion, drainage evolution, and biological feedbacks PhD Thesis, Boston Univ Boston, MA:
    [Google Scholar]
  53. Feagin RA, Lozada-Bernard SM, Ravens TM, Möller I, Yeager KM, Baird AH 2009. Does vegetation prevent wave erosion of salt marsh edges. ? PNAS 106:10109–13
    [Google Scholar]
  54. Feagin RA, Martinez ML, Mendoza-Gonzalez G, Costanza R 2010. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecol. Soc. 15:414
    [Google Scholar]
  55. FitzGerald DM, Hein CJ, Hughes Z, Kulp M, Georgiou I, Miner M 2018. Runaway barrier island transgression concept: global case studies. Barrier Dynamics and Response to Changing Climate L Moore, A Murray 3–56 Cham, Switz: Springer
    [Google Scholar]
  56. Francalanci S, Bendoni M, Rinaldi M, Solari L 2013. Ecomorphodynamic evolution of salt marshes: experimental observations of bank retreat processes. J. Geomorphol. 195:53–65
    [Google Scholar]
  57. French J 2006. Tidal marsh sedimentation and resilience to environmental change: exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. J. Mar. Geol. 235:1119–36
    [Google Scholar]
  58. Friedrichs CT, Perry JE 2001. Tidal salt marsh morphodynamics: a synthesis. J. Coast. Res. 27:7–37
    [Google Scholar]
  59. Ganju NK, Defne Z, Kirwan ML, Fagherazzi S, D'Alpaos A, Carniello L 2017. Spatially integrative metrics reveal hidden vulnerability of salt marshes. Nat. Commun. 8:14156
    [Google Scholar]
  60. Gehrels WR, Belknap DF, Kelley JT 1996. Integrated high-precision analyses of Holocene relative sea-level changes: lessons from the coast of Maine. GSA Bull 108:91073–88
    [Google Scholar]
  61. Gehrels WR, Hayward BW, Newnham RM, Southall KE 2008. A 20th century acceleration of sea‐level rise in New Zealand. Geophys. Res. Lett. 35:2L02717
    [Google Scholar]
  62. Gehrels WR, Kirby JR, Prokoph A, Newnham RM, Achterberg EP et al. 2005. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quat. Sci. Rev. 24:182083–100
    [Google Scholar]
  63. Gehrels W, Szkornik K, Bartholdy J, Kirby J, Bradley S et al. 2006. Late Holocene sea-level changes and isostasy in western Denmark. Quat. Res. 66:2288–302
    [Google Scholar]
  64. Goodbred SL, Hine AC 1995. Coastal storm deposition: salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23:8679–82
    [Google Scholar]
  65. Grabowski RC, Droppo IG, Wharton G 2011. Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci. Rev. 105:101–20
    [Google Scholar]
  66. Graham SA, Mendelssohn IA 2014. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment. Ecology 95:3271–83
    [Google Scholar]
  67. Gray AJ, Mogg RJ 2001. Climate impacts on pioneer saltmarsh plants. Climate Res 18:1–2105–12
    [Google Scholar]
  68. Hackney C, Avery G 2015. Tidal wetland community response to varying levels of flooding by saline water. J. Wetl. 35:2227–36
    [Google Scholar]
  69. Han SJ 1994. Quaternary sea-level changes and their implications in the evolution of coastal depositional environments (III) Rep., Korean Ocean Res. Dev. Inst., Ansan City Korea:
    [Google Scholar]
  70. Hartig EK, Gornitz V, Kolker A, Mushacke F, Fallon D 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. J. Wetl. 22:171–89
    [Google Scholar]
  71. Hayes MO 1979. Barrier island morphology as a function of tidal and wave regime. Islands SP Leatherman 1–27 New York: Academic
    [Google Scholar]
  72. Holdredge C, Bertness MD, Altieri AH 2008. Role of crab herbivory in die-off of New England salt marshes. Conserv. Biol. 23:3672–79
    [Google Scholar]
  73. Hopkinson CS, Morris JT, Fagherazzi S, Wollheim WM, Raymond PA 2018. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123:2444–65
    [Google Scholar]
  74. Horton BP, Peltier WR, Culver SJ, Drummond R, Engelhart SE et al. 2009. Holocene sea-level changes along the North Carolina coastline and their implications for glacial isostatic adjustment models. Quat. Sci. Rev. 28:171725–36
    [Google Scholar]
  75. Howes NC, FitzGerald DM, Hughes ZJ, Georgiou IY, Kulp MA et al. 2010. Hurricane-induced failure of low salinity wetlands. PNAS 107:14014–19
    [Google Scholar]
  76. Hughes ZJ, FitzGerald D, Wilson C, Pennings S, Wiski K, Mahadevan A 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophys. Res. Lett. 36:3L03602
    [Google Scholar]
  77. Hughes ZJ, Georgiou IY, Gaweesh A, Hannegan K, FitzGerald DM, Hein CJ 2017. Sediment transport trends in the Great Marsh, MA Paper presented at the Am. Geophys. Union Fall Meeting New Orleans, LA:
    [Google Scholar]
  78. Hussein AH 2009. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Sci. Soc. Am. J. 73:185–96
    [Google Scholar]
  79. Jevrejeva S, Moore J, Grinsted A 2012. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Change 80:14–20
    [Google Scholar]
  80. Jiménez M, Castanedo S, Zhou Z, Coco G, Medina R, Rodriguez‐Iturbe I 2014. Scaling properties of tidal networks. Water Resourc. Res. 50:4585–602
    [Google Scholar]
  81. Johnson DW 1925. The New England-Acadian Shoreline New York: Wiley
    [Google Scholar]
  82. Kirwan ML, Blum LK 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8:987–93
    [Google Scholar]
  83. Kirwan ML, Gedan K, Wolanski E, Barbier E, Silliman B 2011a. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106:17–29
    [Google Scholar]
  84. Kirwan ML, Guntenspergen GR 2010. The influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 115:F2F02009
    [Google Scholar]
  85. Kirwan ML, Guntenspergen GR, D'Alpaos A, Morris JT, Mudd SM, Temmerman S 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37:23L23401
    [Google Scholar]
  86. Kirwan ML, Guntenspergen GR, Langley J 2014. Temperature sensitivity of organic-matter decay in tidal marshes. Biogeosciences 11:174801–8
    [Google Scholar]
  87. Kirwan ML, Guntenspergen GR, Morris JT 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15:1982–89
    [Google Scholar]
  88. Kirwan ML, Langley JA, Guntenspergen GR, Megonigal JP 2013. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10:1869–76
    [Google Scholar]
  89. Kirwan ML, Mudd SM 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489:7417550–53
    [Google Scholar]
  90. Kirwan ML, Murray AB 2007. A coupled geomorphic and ecological model of tidal marsh evolution. PNAS 104:156118–22
    [Google Scholar]
  91. Kirwan ML, Murray AB, Donnelly JP, Corbett DR 2011b. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology 39:507–10
    [Google Scholar]
  92. Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S 2016a. Overestimation of marsh vulnerability to sea level rise. Nat. Climate Change 6:253–60
    [Google Scholar]
  93. Kirwan ML, Walters D, Reay W, Carr J 2016b. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43:94366–73
    [Google Scholar]
  94. Kolker A, Kirwan M, Goodbred S, Cochran J 2010. Global climate changes recorded in coastal wetland sediments: empirical observations linked to theoretical predictions. Geophys. Res. Lett. 37:14L14706
    [Google Scholar]
  95. Krone RB 1987. A method for simulating historic marsh elevations. Coastal Sediments ’87 NC Kraus 316–23 New York: ASCE
    [Google Scholar]
  96. Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. PNAS 106:156182–86
    [Google Scholar]
  97. Lanzoni S, D'Alpaos A 2015. On funneling of tidal channels. J. Geophys. Res. Earth Surf. 120:433–52
    [Google Scholar]
  98. Le Hir P, Monbet Y, Orvain F 2007. Sediment erodibility in sediment transport modelling: Can we account for biota effects?. Cont. Shelf Res. 27:1116–42
    [Google Scholar]
  99. Leonard LA, Croft AL 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar. Coast. Shelf Sci. 69:325–36
    [Google Scholar]
  100. Leonardi N, Defne Z, Ganju NK, Fagherazzi S 2016a. Salt marsh erosion rates and boundary features in a shallow bay. J. Geophys. Res. Earth Surf. 121:1861–75
    [Google Scholar]
  101. Leonardi N, Fagherazzi S 2015. Effect of local variability in erosional resistance on large-scale morphodynamic response of salt marshes to wind waves and extreme events. Geophys. Res. Lett. 42:5872–79
    [Google Scholar]
  102. Leonardi N, Ganju NK, Fagherazzi S 2016b. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. PNAS 113:164–68
    [Google Scholar]
  103. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS 2004. Development and validation of a three-dimensional morphological model. Coast. Eng. 51:883–915
    [Google Scholar]
  104. Li C, Chen C, Guadagnoli D, Georgiou I 2008. Geometry-induced residual eddies in estuaries with curved channels: observations and modeling studies. J. Geophys. Res. 113:C1C01005
    [Google Scholar]
  105. Liu K, Chen Q, Hu K, Xu K, Twilley RR 2018. Modeling hurricane-induced wetland-bay and bay-shelf sediment fluxes. Coast. Eng. 135:77–90
    [Google Scholar]
  106. Marani M, Da Lio C, D'Alpaos A 2013. Vegetation engineers marsh morphology through multiple competing stable states. PNAS 110:3259–63
    [Google Scholar]
  107. Marani M, D'Alpaos A, Lanzoni S, Santalucia M 2011. Understanding and predicting wave erosion of marsh edges. Geophys. Res. Lett. 38:L21401
    [Google Scholar]
  108. Marani M, Lanzoni S, Silvestri S, Rinaldo A 2004. Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. J. Mar. Syst. 51:191–210
    [Google Scholar]
  109. Marani M, Lanzoni S, Zandolin D, Seminara G, Rinaldo A 2002. Tidal meanders. Water Resour. Res. 38:7–17-14
    [Google Scholar]
  110. Mariotti G 2016. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss?. J. Geophys. Res. Earth Surf. 121:1391–407
    [Google Scholar]
  111. Mariotti G, Carr J 2014. Dual role of salt marsh retreat: long‐term loss and short‐term resilience. Water Resour. Res. 50:42963–74
    [Google Scholar]
  112. Mariotti G, Fagherazzi S 2010. A numerical model for the coupled long‐term evolution of salt marshes and tidal flats. J. Geophys. Res. 115:F1F01004
    [Google Scholar]
  113. Mariotti G, Fagherazzi S 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. PNAS 110:5352–56
    [Google Scholar]
  114. Mariotti G, Kearney WS, Fagherazzi S 2016. Soil creep in salt marshes. Geology 44:6459–62
    [Google Scholar]
  115. McKee KL, Cherry JA 2009. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta. Wetlands 29:2–15
    [Google Scholar]
  116. McKee KL, Patrick W 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: a review. Estuaries 11:3143–51
    [Google Scholar]
  117. McLoughlin S, Wiberg PA, Safak I, McGlathery K 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries Coasts 38:2620–38
    [Google Scholar]
  118. Mcowen C, Weatherdon LV, Bochove J, Sullivan E, Blyth S et al. 2017. A global map of saltmarches. Biodivers. Data J 5:e11764
    [Google Scholar]
  119. Meng XM, Jia YG, Shan HX, Yang ZN, Zheng JW 2012. An experimental study on erodibility of intertidal sediments in the Yellow River delta. Intern. J. Sediment Res. 27:240–49
    [Google Scholar]
  120. Mitsch WJ, Gosselink JG 2000. Wetlands New York: Wiley & Sons. , 3rd ed..
    [Google Scholar]
  121. Möller I 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: results from a UK East coast saltmarsh. Estuar. Coast. Shelf Sci. 69:337–51
    [Google Scholar]
  122. Möller I, Kudella M, Franziska R, Spencer T, Paul M et al. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7:727–31
    [Google Scholar]
  123. Möller I, Spencer T 2002. Wave dissipation over macro-tidal saltmarshes: effects of marsh edge typology and vegetation change. J. Coast. Res. 36:506–21
    [Google Scholar]
  124. Morris JT, Barber DC, Callaway JC, Chambers R, Hagen SC et al. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth's Future 4:4110–21
    [Google Scholar]
  125. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR 2002. Responses of coastal wetlands to rising sea level. Ecology 83:102869–77
    [Google Scholar]
  126. Morton RA, Barras JA 2011. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana. J. Coast. Res. 27:6A27–43
    [Google Scholar]
  127. Mudd SM, D'Alpaos A, Morris J 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 115:F3F03029
    [Google Scholar]
  128. Mudd SM, Fagherazzi S, Morris JT, Furbish DJ 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. The Ecogeomorphology of Tidal Marshes S Fagherazzi, M Marani, LK Blum 165–87 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  129. Mudd SM, Howell SM, Morris JT 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82:3377–89
    [Google Scholar]
  130. Mudge B 1862. The salt marsh formations of Lynn [Massachusetts]. Proceedings of the Essex Institute117–19 Salem, MA: Essex Inst. Press
    [Google Scholar]
  131. Murray AB, Coco G, Goldstein EB 2014. Cause and effect in geomorphic systems: complex systems perspectives. Geomorphology 214:1–9
    [Google Scholar]
  132. Negrin VL, de Villalobos AE, Trilla GG, Botté SE, Marcovecchio JE 2012. Above- and belowground biomass and nutrient pools of Spartina alterniflora (smooth cordgrass) in a South American salt marsh. Chem. Ecol. 28:4391–404
    [Google Scholar]
  133. Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT 2018. Climate-change–driven accelerated sea-level rise detected in the altimeter era. PNAS 115:92022–25
    [Google Scholar]
  134. Neumeier U 2007. Velocity and turbulence variations at the edge of salt marshes. Cont. Shelf Res. 27:1046–59
    [Google Scholar]
  135. Neumeier URS, Amos CL 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology 53:259–77
    [Google Scholar]
  136. Nienhuis J, Tornqvist T, Esposito C 2016. How much land for your sand: effects of vegetation and compaction on crevasse splay formation Paper presented at the Am. Geophys. Union 2016 Fall Meeting San Francisco, CA:
    [Google Scholar]
  137. Nikitina DL, Pizzuto JE, Schwimmer RA, Ramsey KW 2000. An updated Holocene sea-level curve for the Delaware coast. Mar. Geol. 171:17–20
    [Google Scholar]
  138. Nikitina DL, Kemp AC, Horton BP, Vane CH, van de Plassche O, Engelhart SE 2014. Storm erosion during the past 2000 years along the north shore of Delaware Bay, USA. Geomorphology 208:160–72
    [Google Scholar]
  139. Nyman JA, Walters RJ, Delaune RD, Patrick WH 2006. Marsh vertical accretion via vegetative growth. Estuar. Coast. Shelf Sci. 69:3370–80
    [Google Scholar]
  140. Oertel G, Wong G, Conway J 1989. Sediment accumulation at a fringe marsh during transgression, Oyster, Virginia. Estuaries 12:118–26
    [Google Scholar]
  141. Orr M, Crooks S, Williams PB 2003. Will restored tidal marshes be sustainable. ? San Franc. Estuary Watershed Sci. 1:1–33
    [Google Scholar]
  142. Paramor OAL, Hughes RG 2004. The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in southeast England. J. Appl. Ecol. 41:449–63
    [Google Scholar]
  143. Pardi RR, Tomecek L, Newman WS 1984. Queens College radiocarbon measurements IV. Radiocarbon 26:412–30
    [Google Scholar]
  144. Penland S, Ramsey KE 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. J. Coast. Res. 6:2323–42
    [Google Scholar]
  145. Penland S, Wayne LD, Britsch LD, Williams SJ, Beall AD, Butterworth VC 2000. Geomorphic classification of coastal land loss between 1932 and 1990 in the Mississippi River delta plain, southeastern Louisiana US Geol. Surv. Open File Rep. 00-417, US Geol. Surv Reston, VA:
    [Google Scholar]
  146. Perillo GME, Iribarne OO 2003. Processes of tidal channel development in salt and freshwater marshes. Earth Surf. Proc. Landf. 28:1473–82
    [Google Scholar]
  147. Pomeroy LR, Darley WM, Dunn EL, Gallagher JL, Haines EB, Whitney DM 1981. The ecology of a salt marsh. Primary Production LR Pomeroy, RG Wiegert 39–67 New York: Springer-Verlag
    [Google Scholar]
  148. Quintana-Alcantara CE 2014. Carbon sequestration in tidal salt marsh and mangrove ecosystems PhD Thesis, Univ. San Francisco San Francisco, CA:
    [Google Scholar]
  149. Raabe EA, Stumpf RP 2016. Expansion of tidal marsh in response to sea-level rise: gulf coast of Florida, USA. Estuaries Coasts 39:145–57
    [Google Scholar]
  150. Rahmstorf S 2007. A semi-empirical approach to projecting future sea-level rise. Science 315:5810368–70
    [Google Scholar]
  151. Ratliff KM, Braswell AE, Marani M 2015. Spatial response of coastal marshes to increased atmospheric CO2. PNAS 112:15580–84
    [Google Scholar]
  152. Redfield AC 1965. Ontogeny of a salt marsh estuary. Science 147:365350–55
    [Google Scholar]
  153. Redfield AC 1972. Development of a New England salt marsh. Ecol. Monogr. 42:2201–37
    [Google Scholar]
  154. Reed DJ 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12:222–27
    [Google Scholar]
  155. Reed DJ 1995. Sediment dynamics, deposition and erosion in temperate salt marshes. J. Coast. Res. 11:2295
    [Google Scholar]
  156. Reed DJ, Cahoon DR 1992. The relationship between marsh surface topography, hydroperiod, and growth of Spartina alterniflora in a deteriorating Louisiana salt marsh. J. Coast. Res. 8:177–87
    [Google Scholar]
  157. Reed MS 2008. Stakeholder participation for environmental management: a literature review. Biol. Conserv. 141:102417–31
    [Google Scholar]
  158. Reef R, Schuerch M, Christie EK, Möller I, Spencer T 2018. The effect of vegetation height and biomass on the sediment budget of a European saltmarsh. Estuar. Coast. Shelf Sci. 202:125–33
    [Google Scholar]
  159. Rinaldo A, Belluco E, D'Alpaos A, Feola A, Lanzoni S, Marani A 2004. Tidal networks: form and function. The Ecogeomorphology of Tidal Marshes S Fagherazzi, M Marani, LK Blum 75–91 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  160. Rinaldo A, Fagherazzi S, Lanzoni S, Marani M, Dietrich WE 1999. Tidal networks: 2, Watershed delineation and comparative network morphology. Water Resour. Res. 35:3905–17
    [Google Scholar]
  161. Saito Y, Giosan L, Nicholls RJ 2009. Sinking deltas due to human activities. Nat. Geosci. 2:10681–86
    [Google Scholar]
  162. Schile LM, Callaway JC, Morris JT, Stralberg D, Parker VT, Kelly M 2014. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLOS ONE 9:2e88760
    [Google Scholar]
  163. Schuerch M, Vafeidis A, Slawig T, Temmerman S 2013. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 118:84–96
    [Google Scholar]
  164. Schwimmer RA 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, U.S.A. J. Coast. Res. 17:3672–83
    [Google Scholar]
  165. Shaler N 1888. The crenitic hypothesis and mountain building. Science 11:280–81
    [Google Scholar]
  166. Sharma S, Goff J, Moody RM, McDonald A, Byron D, Heck KL Jr 2016. Effects of shoreline dynamics on saltmarsh vegetation. PLOS ONE 11:7e0159814
    [Google Scholar]
  167. Silliman BR, van de Koppel J, Bertness MD, Stanton LE, Mendelssohn IA 2005. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310:57551803–6
    [Google Scholar]
  168. Smith JAM 2013. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLOS ONE 8:5e65091
    [Google Scholar]
  169. Smith JE, Bentley SJ, Snedden GA, White C 2015. What role do hurricanes play in sediment delivery to subsiding river deltas?. Sci. Rep. 5:17582
    [Google Scholar]
  170. Smith SM 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeast. Nat. 16:183–209
    [Google Scholar]
  171. Smith SM, Green CW 2015. Sediment suspension and elevation loss triggered by Atlantic mud fiddler crab (Uca pugnax) bioturbation in salt marsh dieback areas of southern New England. J. Coast. Res. 31:188–94
    [Google Scholar]
  172. Stanley JD, Warne AG 1998. Nile Delta in its destruction phase. J. Coast. Res. 14:3794–825
    [Google Scholar]
  173. Stefanon L, Carniello L, D'Alpaos A, Rinaldo A 2012. Signatures of sea level changes on tidal geomorphology: experiments on network incision and retreat. Geophys. Res. Lett. 39:L12402
    [Google Scholar]
  174. Stéphan P, Goslin J, Pailler Y, Manceau R, Suanez S et al. 2014. Holocene salt-marsh sedimentary infilling and relative sea-level changes in West Brittany (France) using foraminifera-based transfer functions. Boreas 44:1153–77
    [Google Scholar]
  175. Stralberg D, Brennan M, Callaway JC, Wood JK, Schile LM 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay. PLOS ONE 6:e27388
    [Google Scholar]
  176. Swanson KM, Drexler JZ, Schoellhamer DH, Thorne KM, Casazza ML et al. 2013. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries Coasts 37:476–92
    [Google Scholar]
  177. Sullivan J, Raymond T, Alfred G, Jackson B, Clark A Jr et al. 2015. Complexity in salt marsh circulation for a semienclosed basin. J. Geophys. Res. Earth Surf. 120:1973–89
    [Google Scholar]
  178. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT et al. 2009. Sinking deltas due to human activities. Nat. Geosci. 2:681–86
    [Google Scholar]
  179. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:5720376–80
    [Google Scholar]
  180. Temmerman S, Bouma TJ, Van de Koppel J, Van der Wal D, De Vries MB, Herman PMJ 2007. Vegetation causes channel erosion in a tidal landscape. Geology 35:7631–34
    [Google Scholar]
  181. Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ 2003. Ecosystem-based coastal defence in the face of global change. Nature 504:747879–83
    [Google Scholar]
  182. Thorne CR, Lawson EC, Ozawa C, Hamlin SL, Smith LA 2018. Overcoming uncertainty and barriers to adoption of Blue‐Green Infrastructure for urban flood risk management. J. Flood Risk Manag. 11:S960–72
    [Google Scholar]
  183. Tonelli M, Fagherazzi S, Petti M 2010. Modeling wave impact on salt marsh boundaries. J. Geophys. Res. 115:C9C09028
    [Google Scholar]
  184. Torio DD, Chmura GL 2013. Assessing coastal squeeze of tidal wetlands. J. Coast. Res. 29:51049–61
    [Google Scholar]
  185. Turner RE 1976. Geographic variations in salt marsh macrophyte production: a review. Contrib. Mar. Sci. 20:47–68
    [Google Scholar]
  186. Turner RE 2011. Beneath the salt marsh canopy: loss of soil strength with increasing nutrient loads. Estuaries Coasts 34:51084–93
    [Google Scholar]
  187. Turner RE, Baustian JJ, Swenson EM, Spicer JS 2006. Wetland sedimentation from Hurricanes Katrina and Rita. Science 314:449–52
    [Google Scholar]
  188. Turner RE, Boyer ME 1997. Mississippi River diversions, coastal wetland restoration/creation and an economy of scale. Ecol. Eng. 8:2117–28
    [Google Scholar]
  189. Turner RE, Swenson EM, Milan CS, Lee JM 2007. Hurricane signals in salt marsh sediments: inorganic sources and soil volume. Limnol. Oceanogr. 52:1231–38
    [Google Scholar]
  190. Tweel AW, Turner RE 2012. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events. PLOS ONE 7:e50528
    [Google Scholar]
  191. Tweel AW, Turner RE 2014. Contribution of tropical cyclones to the sediment budget for coastal wetlands in Louisiana, USA. Landsc. Ecol. 29:61083–94
    [Google Scholar]
  192. Valiela I, Teal JM, Allen SD, Etten RV, Goehringer D, Volkmann S 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J. Exp. Mar. Biol. Ecol. 89:129–54
    [Google Scholar]
  193. van Veen J, van der Spek AD, Stive M, Zitman T 2005. Ebb and flood channel systems in the Netherlands tidal waters. J. Coast. Res. 21:1107–20
    [Google Scholar]
  194. Veloz SD, Nur N, Salas L, Jongsomjit D, Wood J 2013. Modeling climate change impacts on tidal marsh birds: restoration and conservation planning in the face of uncertainty. Ecosphere 4:449
    [Google Scholar]
  195. Viles H 1988. Biogeomorphology Oxford, UK: Blackwell
    [Google Scholar]
  196. Vu H, Więski K, Pennings S 2017. Ecosystem engineers drive creek formation in salt marshes. Ecology 98:1162–74
    [Google Scholar]
  197. Wang A, Ye X, Du Y, Yin X 2017. Hydrodynamic and biological mechanisms for variations in near-bed suspended sediment concentrations in a Spartina alterniflora marsh—a case study of Luoyuan Bay, China. Estuaries Coasts 40:1540–50
    [Google Scholar]
  198. Watson EB, Raposa KB, Carey JC, Wigand C, Warren RS 2017. Anthropocene survival of southern New England's salt marshes. Estuaries Coasts 40:3617–25
    [Google Scholar]
  199. Webster PJ, Holland GJ, Curry JA, Chang HR 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–46
    [Google Scholar]
  200. Weston N 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries Coasts 37:11–23
    [Google Scholar]
  201. White E, Kaplan D 2017. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Health Sustain. 3:1e01258
    [Google Scholar]
  202. White WA, Morton RA 1997. Wetland losses related to fault movement and hydrocarbon pro. J. Coast. Res. 13:41305–20
    [Google Scholar]
  203. Widdows J, Brinsley MD 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J. Sea Res. 48:143–56
    [Google Scholar]
  204. Wilson CA, Allison MA 2008. An equilibrium profile model for retreating marsh shorelines in southeast Louisiana. Estuar. Coast. Shelf Sci. 80:4483–94
    [Google Scholar]
  205. Wilson CA, Hughes ZJ, FitzGerald DM 2012. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: geotechnical and geochemical changes. Estuar. Coast. Shelf Sci. 106:33–44
    [Google Scholar]
  206. Wilson CA, Hughes ZJ, FitzGerald DM, Hopkinson CS, Valentine V, Kolker A 2014. Saltmarsh pool and tidal creek morphodynamics: dynamic equilibrium of northern latitude saltmarshes. ? Geomorphology 213:99–115
    [Google Scholar]
  207. Wilson KR, Kelley JT, Tanner B, Belknap DF 2010. Probing the origins and stratigraphic signature of salt pools from north-temperate marshes in Maine, USA. J. Coast. Res. 26:61007–26
    [Google Scholar]
  208. Yapp RH, Johns D, Jones OT 1917. The salt marshes of the Dovey Estuary. J. Ecol. 5:265–103
    [Google Scholar]
  209. Zhao L, Changsheng C, Joseph V, Chas H, Robert B et al. 2010. Wetland-estuarine-shelf interactions in the Plum Island Sound and Merrimack River in the Massachusetts coast. J. Geophys. Res. 115:C10C10039
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010255
Loading
/content/journals/10.1146/annurev-earth-082517-010255
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error