1932

Abstract

At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies.

  • ▪   Antarctic meteorites dominate the inventory of the world's known meteorites and provide access to new types of planetary and asteroidal materials.
  • ▪   The first meteorites recognized to be of lunar and martian origin were collected from Antarctica and provided unique constraints on the evolution of the Moon and Mars.
  • ▪   Previously rare or unknown classes of meteorites have been recovered from Antarctica and provide new insights into the origin and evolution of the Solar System.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082719-055815
2020-05-30
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-082719-055815.html?itemId=/content/journals/10.1146/annurev-earth-082719-055815&mimeType=html&fmt=ahah

Literature Cited

  1. Abreu NM, Brearley AJ. 2010. Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochim. Cosmochim. Acta 74:1146–71
    [Google Scholar]
  2. Abreu NM, Bullock E. 2013. Opaque assemblages in CR2 Graves Nunataks (GRA) 06100 as indicators of shock driven hydrothermal alteration in the CR chondrite parent body. Meteorit. Planet. Sci. 48:2406–29
    [Google Scholar]
  3. Alexander CMO'D, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler LR 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–23
    [Google Scholar]
  4. Alexander CMO'D, Fogel M, Yabuta H, Cody GD 2007. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71:4380–403
    [Google Scholar]
  5. Alexander CMO'D, Greenwood RC, Bowden R, Gibson JM, Howard KT, Franchi IA 2018. A multi-technique search for the most primitive CO chondrites. Geochim. Cosmochim. Acta 221:406–20
    [Google Scholar]
  6. Alexander CMO'D, Howard KT, Bowden R, Fogel ML 2013. The classification of CM and CR chondrites using bulk H, C, and N abundances and isotopic compositions. Geochim. Cosmochim. Acta 123:244–60
    [Google Scholar]
  7. Amari S. 2010. Presolar grain studies. AIP Conf. Proc. 1269:27
    [Google Scholar]
  8. Arai T, Hawke BR, Giguere TA, Misawa K, Miyamoto M, Kojima H 2010. Antarctic lunar meteorites Yamato-793169, Asuka-881757, MIL 05035, and MET 01210 (YAMM): launch pairing and possible cryptomare origin. Geochim. Cosmochim. Acta 74:2231–48
    [Google Scholar]
  9. Asphaug E. 2009. Growth and evolution of asteroids. Annu. Rev. Earth Planet. Sci. 37:413–44
    [Google Scholar]
  10. Bayly PGW, Stillwell FL. 1923. The Adelie Land meteorite. Australasian Antarctic Expedition, 1911–14. Sci. Rpts. Ser. A 4:1–13
    [Google Scholar]
  11. Berlin J, Jones RH, Brearley AJ 2011. Fe-Mn systematics of type IIA chondrules in unequilibrated CO, CR, and ordinary chondrites. Meteorit. Planet. Sci. 46:513–33
    [Google Scholar]
  12. Bevan AWR. 1996. Meteorites recovered from Australia. J. R. Soc. West. Aust. 79:33–42
    [Google Scholar]
  13. Bevan AWR. 2006. Desert meteorites: a history. Geol. Soc. Lond. Spec. Publ. 256:325–43
    [Google Scholar]
  14. Bevan AWR, Bland PA, Jull AJT 1998. Meteorite flux on the Nullarbor region, Australia. Geol. Soc. Lond. Spec. Publ. 140:59–73
    [Google Scholar]
  15. Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F et al. 2005. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 207:1576–81
    [Google Scholar]
  16. Bintanja R. 1999. On the glaciological, meteoritological and climatological significance of Antarctic blue ice areas. Rev. Geophys. 37:337–59
    [Google Scholar]
  17. Bischoff A, Geiger T. 1995. Meteorites from the Sahara: find locations, shock classification, degree of weathering and pairing. Meteorit. Planet. Sci. 30:113–22
    [Google Scholar]
  18. Biswas S, Ngo HT, Lipschutz ME 1980. Trace element contents of selected Antarctic meteorites: I. Weathering effects and ALHA A77005, A77257 and A77299. Z. Naturforschung 35:191–96
    [Google Scholar]
  19. Bland PA. 2001. Quantification of meteorite infall rates from accumulations in deserts, and meteorite accumulations on Mars. Accretion of Extraterrestrial Matter Throughout Earth's History B Peucker-Ehrenbrink, B Schmitz 267–98 New York: Kluwer Academic/Plenum
    [Google Scholar]
  20. Bland PA, Zolensky ME, Benedic GK, Sephton MA 2006. Weathering of chondritic meteorites. Meteorites and the Early Solar System II DS Lauretta, HY McSween Jr 853–67 Tucson: Univ. Ariz. Press
    [Google Scholar]
  21. Bogard DD, Johnson P. 1983. Martin gases in an Antarctic meteorite. ? Science 221:651–54
    [Google Scholar]
  22. Bonal L, Bourot-Denise M, Quirico E, Montagnac G, Lewin E 2007. Organic matter and metamorphic history of CO chondrites. Geochim. Cosmochim. Acta 71:1605–23
    [Google Scholar]
  23. Bonal L, Quirico E, Flandinet L, Montagnac G 2016. Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter. Geochim. Cosmochim. Acta 189:312–37
    [Google Scholar]
  24. Borg LE, Connelly JN, Nyquist LE, Shih C-Y, Wiesmann H, Reese Y 1999. The age of the carbonates in the martian meteorite ALH84001. Science 286:90–94
    [Google Scholar]
  25. Borg LE, Nyquist LE, Taylor LA, Wiesmann H, Shih C-Y 1997. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta 61:4915–31
    [Google Scholar]
  26. Brearley AJ. 1993. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: origins and evidence for diverse, primitive nebular dust components. Geochim. Cosmochim. Acta 57:1521–50
    [Google Scholar]
  27. Budde G, Kruijer TS, Fischer-Gödde M, Irving AJ, Kleine T 2015. Planetesimal differentiation revealed by the Hf–W systematics of ureilites. Earth Planet. Sci. Lett. 430:316–25
    [Google Scholar]
  28. Budde G, Kruijer TS, Kleine T 2018. Hf-W chronology of CR chondrites: implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochim. Cosmochim. Acta 222:284–304
    [Google Scholar]
  29. Burbine TH, McCoy TJ, Meibom A, Gladman B, Keil K 2002. Meteoritic parent bodies: their number and identification. Asteroids III WF Bottke Jr., A Cellino, P Paolicchi, RP Binzel 653–67 Tucson: Univ. Ariz. Press
    [Google Scholar]
  30. Burton AS, Elsila JE, Hein JE, Glavin DP, Dworkin JP 2013. Extraterrestrial amino acids identified in metal-rich CH and CB carbonaceous chondrites from Antarctica. Meteorit. Planet. Sci. 48:390–402
    [Google Scholar]
  31. Bus SJ, Vilas F, Barucci MA 2002. Visible-wavelength spectroscopy of asteroids. Asteroids III WF Bottke Jr., A Cellino, P Paolicchi, RP Binzel 169–82 Tucson: Univ. Ariz. Press
    [Google Scholar]
  32. Busemann H, Alexander CMO'D, Nittler LR 2007. Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit. Planet. Sci. 42:1387–1416
    [Google Scholar]
  33. Busemann H, Young AF, Alexander CMO'D, Hoppe P, Mukhopadhyay S, Nittler LR 2006. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727–30
    [Google Scholar]
  34. Cassidy WA, Harvey RP. 1991. Are there real differences between Antarctic finds and modern falls meteorites?. Geochim. Cosmochim. Acta 55:99–104
    [Google Scholar]
  35. Cassidy WA, Harvey RP, Schutt JW, Delisle G, Yanai K 1992. The meteorite collection sites of Antarctica. Meteoritics 27:490–525
    [Google Scholar]
  36. Clayton RN, Mayeda TK. 1996. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60:1999–2017
    [Google Scholar]
  37. Clayton RN, Mayeda TK. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63:2089–104
    [Google Scholar]
  38. Cody GD, Alexander CMO'D, Yabuta H, Kilcoyne ALD, Araki T et al. 2008. Organic thermometry for chondritic parent bodies. Earth Planet. Sci. Lett. 272:446–55
    [Google Scholar]
  39. Cohen BE, Darren FM, Cassata WS, Lee MR, Tomkinson T, Smith CL 2017. Taking the pulse of Mars via dating of a plume-fed volcano. Nat. Commun. 8:640
    [Google Scholar]
  40. Connolly HC Jr, Huss GR. 2010. Compositional evolution of the protoplanetary disk: oxygen isotopes of type-II chondrules from CR2 chondrites. Geochim. Cosmochim. Acta 74:2473–83
    [Google Scholar]
  41. Connelly JN, Bizzarro M, Krot AN, Nordlund Å, Wielandt D, Ivanova MA 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–55
    [Google Scholar]
  42. Corrigan CM, Velbel MA, Vicenzi EP 2015a. Modal abundances of pyroxene, olivine, and mesostasis in nakhlites: heterogeneity, variation, and implications for nakhlite emplacement. Meteorit. Planet. Sci. 50:1497–511
    [Google Scholar]
  43. Corrigan CM, Welzenbach LC, Righter K, McBride KM, McCoy TJ et al. 2015b. A statistical look at the U.S. Antarctic meteorite collection. 35 Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection K Righter, CM Corrigan, TJ McCoy, RP Harvey 173–87 Hoboken, NJ: Wiley
    [Google Scholar]
  44. Crawford I. 2012. The scientific legacy of Apollo. Astron. Geophys. 53:624–.28
    [Google Scholar]
  45. Crozaz G, Floss C, Wadhwa M 2003. Chemical alteration and REE mobilization in meteorites from hot and cold deserts. Geochim. Cosmochim. Acta 67:4727–41
    [Google Scholar]
  46. Crozaz G, Wadhwa M. 2001. The terrestrial alteration of Saharan shergottites Dar al Gani 476 and 489: a case study of weathering in a hot desert environment. Geochim. Cosmochim. Acta 65:971–77
    [Google Scholar]
  47. Daly L, Piazolo S, Lee MR, Griffin S, Chung P et al. 2019. Understanding the emplacement of Martian volcanic rocks using petrofabrics of the nakhlite meteorites. Earth Planet. Sci. Lett. 520:220–30
    [Google Scholar]
  48. Davidson J, Alexander CMO'D, Stroud RM, Busemann H, Nittler LR 2019a. Mineralogy and petrology of Dominion Range 08006: a very primitive CO3 carbonaceous chondrite. Geochim. Cosmochim. Acta 265:259–78
    [Google Scholar]
  49. Davidson J, Busemann H, Nittler LR, Alexander CMO'D, Orthous-Daunay F-R et al. 2014. Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS. Geochim. Cosmochim. Acta 139:248–66
    [Google Scholar]
  50. Davidson J, Schrader DL, Alexander CMO'D, Nittler LR, Bowden R 2019b. Re-examining thermal metamorphism of the Renazzo-like (CR) carbonaceous chondrites: insights from pristine Miller Range 090657 and shock-heated Graves Nunataks 06100. Geochim. Cosmochim. Acta 267:24–56
    [Google Scholar]
  51. Delisle G, Schultz L, Spettel B, Weber HW, Wlotzka F et al. 1989. Meteorite finds near the Frontier Mountain Range in North Victoria Land. Geol. Jahrb. 38:483–513
    [Google Scholar]
  52. Duke MB. 1965. Discovery of Neptune Mountains iron meteorite, Antarctica. Meteorit. Bull. 34:2–3
    [Google Scholar]
  53. Elsila JE, Charnley SB, Burton AS, Glavin DP, Dworkin JP 2012. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways. Meteorit. Planet. Sci. 47:1517–36
    [Google Scholar]
  54. Evatt GW, Coughlan MJ, Joy KH, Smedley ARD, Connolly PJ, Abrahams ID 2015. A potential hidden layer of meteorites below the ice surface of Antarctica. Nat. Commun. 7:10679
    [Google Scholar]
  55. Fireman EL, Norris TL. 1981. Ages and composition of gas trapped in Allan Hills and Byrd core ice. Earth Planet. Sci. Lett. 60:339–50
    [Google Scholar]
  56. Fireman EL, Rancitelli LA, Kirsten T 1979. Terrestrial ages of four Allan Hills meteorites. Science 203:453–55
    [Google Scholar]
  57. Floss C. 2000. Complexities on the acapulcoite-lodranite parent body: evidence from trace element distributions in silicate minerals. Meteorit. Planet. Sci. 35:1073–85
    [Google Scholar]
  58. Floss C, Stadermann FJ. 2009. High abundances of circumstellar and interstellar C-anomalous phases in the primitive CR3 chondrites QUE 99177 and MET 00426. Astrophys. J. 697:1232–55
    [Google Scholar]
  59. Gattacceca J, Valenzuela M, Uehara M, Jull AJT, Giscard M et al. 2011. The densest meteorite collection area in hot deserts: the San Juan meteorite field (Atacama Desert, Chile). Meteorit. Planet. Sci. 46:1276–87
    [Google Scholar]
  60. Geiss J, Hess DC. 1958. Argon-potassium ages and the isotopic composition of argon from meteorites. Astrophys. J. 127:224–36
    [Google Scholar]
  61. Gladman BJ, Burns JA, Duncan MJ, Levison HF 1995. The dynamical evolution of lunar impact ejecta. Icarus 118:302–21
    [Google Scholar]
  62. Glavin DP, Alexander CMO'D, Aponte JC, Dworkin JP, Elsila JE, Yabuta H 2018. The origin and evolution of organic matter in carbonaceous chondrites and links to their parent bodies. Primitive Meteorites and Asteroids N Abreu 205–71 Amsterdam: Elsevier
    [Google Scholar]
  63. Gooding JL. 1981. Mineralogic effects of terrestrial weathering effects in chondrites from Allan Hills, Antarctica. Lunar Planet. Sci. Conf. Proc. 12:1105–22
    [Google Scholar]
  64. Goodrich CA. 1992. Ureilites: a critical review. Meteoritics 27:327–52
    [Google Scholar]
  65. Goodrich CA, Scott ERD, Fioretti AM 2004. Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Geochemistry 64:283–327
    [Google Scholar]
  66. Goodrich CA, Van Orman JA, Wilson L 2007. Fractional melting and smelting on the ureilite parent body. Geochim. Cosmochim. Acta 71:2876–95
    [Google Scholar]
  67. Greeley R, Foing BH, McSween HY Jr, Neukum G, Pinet P et al. 2005. Fluid lava flows in Gusev crater, Mars. J. Geophys. Res. 110:E5E05008
    [Google Scholar]
  68. Greenwood RC, Franchi IA, Gibson JM, Benedix GK 2012. Oxygen isotope variation in primitive achondrites: the influence of primordial, asteroidal and terrestrial processes. Geochim. Cosmochim. Acta 94:146–63
    [Google Scholar]
  69. Grady MM. 2000. Catalogue of Meteorites Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  70. Hamilton VE, Simon AA, Christensen PR, Reuter DC, Clark BE et al. 2019. Evidence for widespread hydrated mineral on asteroid (101955) Bennu. Nat. Astron. 3:332–40
    [Google Scholar]
  71. Harju ER, Rubin AE, Ahn I, Choi B-G, Ziegler K, Wasson JT 2014. Progressive aqueous alteration of CR carbonaceous chondrites. Geochim. Cosmochim. Acta 139:267–92
    [Google Scholar]
  72. Harvey RP. 2003. The origin and significance of Antarctic meteorites. Geochemistry 63:93–147
    [Google Scholar]
  73. Harvey RP, Schutt JW, Karner J 2015. Fieldwork methods of the U.S. Antarctic Search for Meteorites program. 35 Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection K Righter, R Harvey, CM Corrigan, TJ McCoy 23–41 Hoboken, NJ: Wiley
    [Google Scholar]
  74. Haskin LA. 1998. The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. 103:E11679–89
    [Google Scholar]
  75. Herd CDK. 2019. Reconciling redox: making spatial and temporal sense of oxygen fugacity variations in martian igneous rocks. Lunar Planet. Sci. Conf. Abstr. 50:2746
    [Google Scholar]
  76. Herd CDK, Borg LE, Jones JH, Papike JJ 2002. Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66:2025–36
    [Google Scholar]
  77. Herd CDK, Papike JJ, Brearley AJ 2001. Oxygen fugacity of martian basalts from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. Am. Mineral. 86:1015–24
    [Google Scholar]
  78. Herzog GF, Caffee MW. 2014. Cosmic-ray exposure ages of meteorites. Treatise on Geochemistry, Vol. 1 HD Holland, KK Turekian 419–53 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  79. Herzog GF, Caffee MW, Jull AJT 2015. Cosmogenic nuclides in Antarctic meteorites. 35 Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection K Righter, R Harvey, CM Corrigan, TJ McCoy 153–72 Hoboken, NJ: Wiley
    [Google Scholar]
  80. Hill DH, Boynton WV, Haag RA 1991. A lunar meteorite found outside the Antarctic. Nature 352:614–17
    [Google Scholar]
  81. Howard KT, Alexander CMO'D, Schrader DL, Dyl KA 2015. Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochim. Cosmochim. Acta 149:206–22
    [Google Scholar]
  82. Huss GR. 1991. Meteorite mass distributions and differences between Antarctic and non-Antarctic meteorites. Geochim. Cosmochim. Acta 55:105–11
    [Google Scholar]
  83. Jilly-Rehak CE, Huss GR, Nagashima K, Schrader DL 2018. Low temperature aqueous alteration on the CR chondrite parent body: implications from in situ oxygen isotopes. Geochim. Cosmochim. Acta 222:230–52
    [Google Scholar]
  84. Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA 2000. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. 105:E24197–216
    [Google Scholar]
  85. Joy KH, Crawford IA, Anand M, Greenwood RC, Franchi IA, Russell SS 2008. The petrology and geochemistry of Miller Range 05035: a new lunar gabbroic meteorite. Geochim. Cosmochim. Acta 72:3822–44
    [Google Scholar]
  86. Jull AJT. 2006. Terrestrial ages of meteorites. Meteorites and the Early Solar System II D Lauretta, HY McSween Jr 889–905 Tucson: Univ. Ariz. Press
    [Google Scholar]
  87. Kimura M, Grossman JN, Weisberg MK 2008. Fe-Ni metal in primitive chondrites: indicators of classification and metamorphic conditions of ordinary and CO chondrites. Meteorit. Planet. Sci. 43:1161–77
    [Google Scholar]
  88. Kimura M, Grossman JN, Weisberg MK 2011. Fe-Ni metal and sulfide minerals in CM chondrites: an indicator for thermal history. Meteorit. Planet. Sci. 46:431–42
    [Google Scholar]
  89. King AJ, Bates HC, Krietsch D, Busemann H, Clay PL et al. 2019. The Yamato-type (CY) carbonaceous chondrite group: analogues for the surface of asteroid Ryugu. ? Geochemistry 2019:125531
    [Google Scholar]
  90. Kita NT, Ushikubo T. 2012. Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47:1108–19
    [Google Scholar]
  91. Kita NT, Yin Q-Z, MacPherson GJ, Ushikubo T, Jacobsen B et al. 2013. 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci. 48:1383–400
    [Google Scholar]
  92. Kitazato K, Milliken RE, Iwata T, Abe M, Ohtake M et al. 2019. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science 364:272–75
    [Google Scholar]
  93. Korotev RL. 2005. Lunar geochemistry as told by lunar meteorites. Geochemistry 65:297–346
    [Google Scholar]
  94. Korotev RL. 2012. Lunar meteorites from Oman. Meteorit. Planet. Sci. 47:1365–402
    [Google Scholar]
  95. Korotev RL, Zeigler RA. 2015. ANSMET meteorites from the Moon. 35 Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection K Righter, R Harvey, CM Corrigan, TJ McCoy 101–30 Hoboken, NJ: Wiley
    [Google Scholar]
  96. Krot AN, Amelin Y, Cassen P, Meibom A 2005. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436:989–92
    [Google Scholar]
  97. Krot AN, Meibom A, Weisberg MK, Keil K 2002. The CR chondrite clan: implications for early Solar System processes. Meteorit. Planet. Sci. 37:1451–90
    [Google Scholar]
  98. Krot AN, Nagashima K. 2017. Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochem. J. 51:45–68
    [Google Scholar]
  99. Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL et al. 2010. A younger age for ALH84001 and its geochemical link to shergottites sources in Mars. Science 328:347–51
    [Google Scholar]
  100. Lawrence DJ, Feldman WC, Barraclough BL, Binder AB, Elphic RC et al. 2000. Thorium abundances on the lunar surface. J. Geophys. Res. 105:E820307–31
    [Google Scholar]
  101. Lee MR, Bland PA. 2004. Mechanisms of weathering of meteorites recovered from hot and cold deserts and the formation of phyllosilicates. Geochim. Cosmochim. Acta 69:893–916
    [Google Scholar]
  102. Li S, Yin Q-Z, Bao H, Sanborn ME, Irving A et al. 2018. Evidence for a multilayered internal structure of the chondritic acapulcoite-lodranite parent asteroid. Geochim. Cosmochim. Acta 242:82–101
    [Google Scholar]
  103. Makide K, Nagashima K, Krot AN, Huss GR, Hutcheon ID, Bischoff A 2009. Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta 73:5018–50
    [Google Scholar]
  104. Marvin UB. 1983. The discovery and initial characterization of Allan-Hills-81005: the first lunar meteorite. Geophys. Res. Lett. 10:775–78
    [Google Scholar]
  105. Marvin UB. 2015. The origin and early history of the U.S. Antarctic Search for Meteorites program (ANSMET). 35 Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection K Righter, R Harvey, CM Corrigan, TJ McCoy 1–22 Hoboken, NJ: Wiley
    [Google Scholar]
  106. Mawson D. 1915. The Home of the Blizzard, Being the Story of the Australasian Antarctic Expedition, 1911–1914, Vol. 2 London: Heinemann
    [Google Scholar]
  107. McBride KM, Righter K. 2010. Comparison of U.S. Antarctic meteorite collection to other cold and hot desert and modern falls. Meteorit. Planet. Sci. Abstr. 45:Suppl.5343
    [Google Scholar]
  108. McBride K, Satterwhite D, Righter K 2013. US Antarctic CR chondrites: a limited resource providing material for a broad array of planetary sciences. Lunar Planet. Sci. Conf. Abstr. 44:2325
    [Google Scholar]
  109. McCoy TJ. 2015. Meteorite misfits: fuzzy clues to Solar System processes. 35 Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection K Righter, R Harvey, CM Corrigan, TJ McCoy 145–52 Hoboken, NJ: Wiley
    [Google Scholar]
  110. McCoy TJ, Carlson WD, Nittler LR, Stroud RM, Bogard DD, Garrison DH 2006. Graves Nunataks 95209: a snapshot of metal segregation and core formation. Geochim. Cosmochim. Acta 70:516–31
    [Google Scholar]
  111. McCoy TJ, Corrigan CM, Dickinson TL, Benedix GK, Schrader DL, Davidson J 2019a. Grove Mountains (GRV) 020043: insights into Acapulcoite-Lodranite genesis from the most primitive member. Geochemistry 2019:125536
    [Google Scholar]
  112. McCoy TJ, Corrigan CM, Nagashima K, Reynolds VS, Ash RD et al. 2019b. The Milton Pallasite and South Byron Trio irons: evidence for oxidation and core crystallization. Geochim. Cosmochim. Acta 259:358–70
    [Google Scholar]
  113. McCoy TJ, Keil K, Clayton RN, Mayeda TK, Bogard DD et al. 1996. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: evidence for formation by incipient partial melting. Geochim. Cosmochim. Acta 60:2681–708
    [Google Scholar]
  114. McCoy TJ, Keil K, Clayton RN, Mayeda TK, Bogard DD et al. 1997a. A petrologic and isotopic study of lodranites: evidence for early formation as partial melt residues from heterogeneous precursors. Geochim. Cosmochim. Acta 61:623–37
    [Google Scholar]
  115. McCoy TJ, Keil K, Muenow DW, Wilson L 1997b. Partial melting and melt migration in the acapulcoite-lodranite parent body. Geochim. Cosmochim. Acta 61:639–50
    [Google Scholar]
  116. McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS et al. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273:924–30
    [Google Scholar]
  117. McSween HY Jr, Eisenhour DD, Taylor LA, Wadhwa M, Crozaz G. 1996. QUE 94201 shergottite: crystallization of a Martian basaltic magma. Geochim. Cosmochim. Acta 60:4563–69
    [Google Scholar]
  118. McSween HY Jr, Stolper E. 1980. Basaltic meteorites. Sci. Am. 242:54–63
    [Google Scholar]
  119. Meteorit. Soc 2019. Meteoritical Bulletin Database, Chantilly, VA, updated Nov. 2019, retrieved Aug. 2019. https://www.lpi.usra.edu/meteor/
  120. Mikouchi T, Miyamoto M, Koizumi E, Makishima J, McKay G 2006. Relative burial depths of nakhlites: an update. Lunar Planet. Sci. Conf. Abstr. 37:1865
    [Google Scholar]
  121. Mittlefehldt DW. 1994. ALH84001, a cumular orthopyroxenite member of the martian meteorite clan. Meteoritics 29:214–21
    [Google Scholar]
  122. Mittlefehldt DW, Lindstrom MM, Bogard DD, Garrison DH, Field SW 1996. Acapulco- and Lodran-like achondrites: petrology, geochemistry, chronology, and origin. Geochim. Cosmochim. Acta 60:867–82
    [Google Scholar]
  123. Nguyen AN, Nittler LR, Stadermann FJ, Stroud RM, Alexander CMO'D 2010. Coordinated analyses of presolar grains in the Allan Hills 77307 and Queen Elizabeth Range 99177 meteorites. Astrophys. J. 719:166–89
    [Google Scholar]
  124. Nittler LR. 2003. Presolar stardust in meteorites: recent advances and scientific frontiers. Earth Planet. Sci. Lett. 209:259–73
    [Google Scholar]
  125. Nittler LR, Alexander CMO'D, Davidson J, Riebe MEI, Stroud RM, Wang J 2018. High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006. Geochim. Cosmochim. Acta 226:107–31
    [Google Scholar]
  126. Nittler LR, Stroud RM, Trigo-Rodríguez JM, De Gregorio BT, Alexander CMO'D et al. 2019. A cometary building block in a primitive asteroidal meteorite. Nat. Astron. 3:659–66
    [Google Scholar]
  127. Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O 2001. Ages and geologic histories of martian meteorites. Space Sci. Rev. 96:105–64
    [Google Scholar]
  128. Patzer A, Hill DH, Boynton WV 2004. Evolution and classification of acapulcoites and lodranites from a chemical point of view. Meteorit. Planet. Sci. 39:61–85
    [Google Scholar]
  129. Pizzarello S, Schrader DL, Monroe AA, Lauretta DS 2012. The chiral composition of primitive CR meteorites and the diverse effects of water in cosmochemical evolution. PNAS 109:11949–54
    [Google Scholar]
  130. Podosek FA. 1973. Thermal history of the nakhlites by the 40Ar/39Ar method. Earth Planet. Sci. Lett. 19:135–44
    [Google Scholar]
  131. Rubin AE, Trigo-Rodríguez JM, Huber H, Wasson JT 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71:2361–82
    [Google Scholar]
  132. Scherer P, Loeken T, Schultz L 1992. Differences of terrestrial alteration effects in ordinary chondrites from hot and cold deserts: petrography and noble gases. Meteoritics 27:314–15
    [Google Scholar]
  133. Schlüter J, Schultz L, Thiedig F, Al-Mahdi BO, Abu Aghreb AE 2002. The Dar al Gani meteorite field (Libyan Sahara): geological setting, pairing of meteorites, and recovery density. Meteorit. Planet. Sci. 37:1079–93
    [Google Scholar]
  134. Schmidt ME, Schrader CM, McCoy TJ 2013. The primary fO2 of basalts examined by the Spirit rover in Gusev Crater, Mars: evidence for multiple redox states in the martian interior. Earth Planet. Sci. Lett. 384:198–208
    [Google Scholar]
  135. Schrader DL, Connolly HC Jr, Lauretta DS, Nagashima K, Huss GR et al. 2013. The formation and alteration of the Renazzo-like carbonaceous chondrites II: linking O-isotope composition and oxidation state of chondrule olivine. Geochim. Cosmochim. Acta 101:302–27
    [Google Scholar]
  136. Schrader DL, Connolly HC Jr, Lauretta DS, Zega TJ, Davidson J, Domanik KJ 2015. The formation and alteration of the Renazzo-like carbonaceous chondrites III: towards understanding the genesis of ferromagnesian chondrules. Meteorit. Planet. Sci 50:15–50
    [Google Scholar]
  137. Schrader DL, Davidson J. 2017. CM and CO chondrites: a common parent body or asteroidal neighbors? Insights from chondrule silicates. Geochim. Cosmochim. Acta 214:157–71
    [Google Scholar]
  138. Schrader DL, Davidson J, Greenwood RC, Franchi IA, Gibson JM 2014a. A water-ice rich minor body from the early Solar System: the CR chondrite parent asteroid. Earth Planet. Sci. Lett. 407:48–60
    [Google Scholar]
  139. Schrader DL, Franchi IA, Connolly HC Jr, Greenwood RC, Lauretta DS, Gibson JM 2011. The formation and alteration of the Renazzo-like carbonaceous chondrites I: implications of bulk-oxygen isotopic composition. Geochim. Cosmochim. Acta 75:308–25
    [Google Scholar]
  140. Schrader DL, Fu RR, Desch SJ, Davidson J 2018a. The background temperature of the protoplanetary disk within the first four million years of the Solar System. Earth Planet. Sci. Lett. 504:30–37
    [Google Scholar]
  141. Schrader DL, Nagashima K, Krot AN, Ogliore RC, Hellebrand E 2014b. Variations in the O-isotope compositions of gas during the formation of chondrules from the CR chondrites. Geochim. Cosmochim. Acta 132:50–74
    [Google Scholar]
  142. Schrader DL, Nagashima K, Krot AN, Ogliore RC, Yin Q-Z et al. 2017. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201:275–302
    [Google Scholar]
  143. Schrader DL, Nagashima K, Waitukaitis SR, Davidson J, McCoy TJ et al. 2018b. The retention of dust in protoplanetary disks: evidence from agglomeratic olivine chondrules from the outer Solar System. Geochim. Cosmochim. Acta 223:405–21
    [Google Scholar]
  144. Sephton MA, Bland PA, Pillinger CT, Gilmour I 2004. The preservation state of organic matter in meteorites from Antarctica. Meteorit. Planet. Sci. 39:747–54
    [Google Scholar]
  145. Takeda H, Mori H, Hiroi T, Saito J 1994. Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid. Meteoritics 29:830–42
    [Google Scholar]
  146. Tenner TJ, Kimura M, Kita NT 2017. Oxygen isotope characteristics of chondrules from the Yamato-82094 ungrouped carbonaceous chondrite: further evidence for common O-isotope environments sampled among carbonaceous chondrites. Meteorit. Planet. Sci. 52:268–94
    [Google Scholar]
  147. Tenner TJ, Nakashima D, Ushikubo T, Kita NT, Weisberg MK 2015. Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta 148:228–50
    [Google Scholar]
  148. Tenner TJ, Nakashima D, Ushikubo T, Tomioka N, Kimura M et al. 2019. Extended chondrule formation intervals in distinct physicochemical environments: evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. Geochem. Cosmochim. Acta 260:133–60
    [Google Scholar]
  149. Tenner TJ, Ushikubo T, Nakashima D, Schrader DL, Weisberg MK et al. 2018. Oxygen isotope characteristics of chondrules from recent studies by secondary ion mass spectrometry. Chondrules: Records of Protoplanetary Disk Processes S Russell, HC Connolly Jr., AN Krot 196–246 New York: Cambridge Univ. Press
    [Google Scholar]
  150. Tolstikov E. 1961. Discovery of Lazarev iron meteorite, Antarctica. Meteorit. Bull. 20:1
    [Google Scholar]
  151. Tonui E, Zolensky M, Lipschutz M 2002. Petrography, mineralogy and trace element chemistry of Yamato-86029, Yamato-793321 and Lewis Cliff 85332: aqueous alteration and heating events. Antarct. Meteorite Res. 15:38–58
    [Google Scholar]
  152. Turner MD. 1962. Discovery of Horlick Mountains stony-iron meteorite, Antarctica. Meteorit. Bull. 24:1
    [Google Scholar]
  153. Van Kooten EMME, Wielandt D, Schiller M, Nagashima K, Thomen A et al. 2016. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. PNAS 113:2011–16
    [Google Scholar]
  154. Verdier-Paoletti MJ, Marrocchi Y, Avice G, Roskosz M, Gurenko A, Gounelle M 2017. Oxygen isotope constraints on the alteration temperatures of CM chondrites. Earth Planet. Sci. Lett. 458:273–81
    [Google Scholar]
  155. Wadhwa M. 2000. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291:1527–30
    [Google Scholar]
  156. Warren PH. 1994. Lunar and martian meteorite delivery systems. Icarus 111:338–63
    [Google Scholar]
  157. Warren PH, Kallemeyn GW. 1991. The MacAlpine Hills lunar meteorite and implications of the lunar meteorites collectively for the composition and origin of the Moon. Geochim. Cosmochim. Acta 55:3123–38
    [Google Scholar]
  158. Wasson JT, Kallemeyn GW. 1990. Allan Hills 85085: a subchondritic meteorite of mixed nebular and regolithic heritage. Earth Planet. Sci. Lett. 101:148–61
    [Google Scholar]
  159. Weisberg MK, Ebel DS, Nakashima D, Kita NT, Humayun M 2015. Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: a new type of metal-rich chondrite. Geochim. Cosmochim. Acta 167:269–85
    [Google Scholar]
  160. Weisberg MK, Huber H. 2007. The GRO 95577 CR1 chondrite and hydration of the CR parent body. Meteorit. Planet. Sci. 42:1495–503
    [Google Scholar]
  161. Weisberg MK, McCoy TJ, Krot AN 2006. Systematics and evaluation of meteorite classification. Meteorites and the Early Solar System II DS Lauretta, HY McSween Jr 19–52 Tucson: Univ. Arizona Press
    [Google Scholar]
  162. Weisberg MK, Prinz M, Clayton RN, Mayeda TK 1993. The CR (Renazzo-like) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta 57:1567–86
    [Google Scholar]
  163. Weisberg MK, Prinz M, Clayton RN, Mayeda TK, Grady MM et al. 1995. The CR chondrite clan. Proc. NIPR Symp. Antarct. Meteor. 8:11–32
    [Google Scholar]
  164. Weisberg MK, Prinz M, Clayton RN, Mayeda TK, Sugiura N et al. 2001. A new metal-rich chondrite grouplet. Meteorit. Planet. Sci. 36:401–18
    [Google Scholar]
  165. Welzenbach LC, McCoy TJ. 2006. Meteorites from hot and cold deserts: what's there, what's missing, and why we should care. Meteorit. Planet. Sci. Abstr. 45:A215
    [Google Scholar]
  166. Whillans IM, Cassidy WA. 1983. Catch a falling star: meteorites and old ice. Science 222:55–57
    [Google Scholar]
  167. Zipfel J, Palme H, Kennedy AK, Hutcheon ID 1995. Chemical composition and origin of the Acapulco meteorite. Geochim. Cosmochim. Acta 59:3607–27
    [Google Scholar]
  168. Zolensky ME, Mittlefehldt DW, Lipschutz ME, Wang M-S, Clayton RN et al. 1997. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochim. Cosmochim. Acta 61:5009–15
    [Google Scholar]
  169. Zolensky ME, Wells GL, Rendell HM 1990. The accumulation rate of meteorite falls at the Earth's surface: the view from Roosevelt County, New Mexico. Meteoritics 25:11–17
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082719-055815
Loading
/content/journals/10.1146/annurev-earth-082719-055815
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error